Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword – Alan B. Scott
- Preface
- 1 The pretherapeutic history of botulinum toxin
- 2 Botulinum toxin: history of clinical development
- 3 Pharmacology of botulinum toxin drugs
- 4 Immunological properties of botulinum toxins
- 5 Treatment of cervical dystonia
- 6 Treatment of hemifacial spasm
- 7 Treatment of blepharospasm
- 8 Treatment of oromandibular dystonia
- 9 Treatment of focal hand dystonia
- 10 Botulinum toxin applications in ophthalmology
- 11 Botulinum toxin therapy of laryngeal muscle hyperactivity syndromes
- 12 The use of botulinum toxin in otorhinolaryngology
- 13 Spasticity
- 14 The use of botulinum toxin in spastic infantile cerebral palsy
- 15 Hyperhidrosis
- 16 Cosmetic uses of botulinum toxins
- 17 Botulinum toxin in the gastrointestinal tract
- 18 Botulinum toxin in urological disorders
- 19 Use of botulinum toxin in musculoskeletal pain and arthritis
- 20 The use of botulinum toxin in the management of headache disorders
- 21 Treatment of plantar fasciitis with botulinum toxin
- 22 Treatment of stiff-person syndrome with botulinum toxin
- 23 Botulinum toxin in tic disorders and essential hand and head tremor
- 24 Developing the next generation of botulinum toxin drugs
- Index
- References
17 - Botulinum toxin in the gastrointestinal tract
Published online by Cambridge University Press: 28 July 2009
- Frontmatter
- Contents
- List of contributors
- Foreword – Alan B. Scott
- Preface
- 1 The pretherapeutic history of botulinum toxin
- 2 Botulinum toxin: history of clinical development
- 3 Pharmacology of botulinum toxin drugs
- 4 Immunological properties of botulinum toxins
- 5 Treatment of cervical dystonia
- 6 Treatment of hemifacial spasm
- 7 Treatment of blepharospasm
- 8 Treatment of oromandibular dystonia
- 9 Treatment of focal hand dystonia
- 10 Botulinum toxin applications in ophthalmology
- 11 Botulinum toxin therapy of laryngeal muscle hyperactivity syndromes
- 12 The use of botulinum toxin in otorhinolaryngology
- 13 Spasticity
- 14 The use of botulinum toxin in spastic infantile cerebral palsy
- 15 Hyperhidrosis
- 16 Cosmetic uses of botulinum toxins
- 17 Botulinum toxin in the gastrointestinal tract
- 18 Botulinum toxin in urological disorders
- 19 Use of botulinum toxin in musculoskeletal pain and arthritis
- 20 The use of botulinum toxin in the management of headache disorders
- 21 Treatment of plantar fasciitis with botulinum toxin
- 22 Treatment of stiff-person syndrome with botulinum toxin
- 23 Botulinum toxin in tic disorders and essential hand and head tremor
- 24 Developing the next generation of botulinum toxin drugs
- Index
- References
Summary
Cricopharyngeal dysphagia
The cricopharyngeal muscle, or upper esophageal sphincter (UES), corresponds to the most inferior portion of the inferior constrictor muscle. It constitutes a sphincter separating the hypopharynx from the esophagus, preventing the inlet of air into the esophagus during inspiration and the esophageal reflux into the pharynx. It is myoelectrically silent at rest and active during swallowing.
Cricopharyngeal dysphagia arises from its dysfunction which can be primary or secondary to a number of pathological conditions including cerebrovascular accidents, amyotrophic lateral sclerosis, oculopharyngeal muscular dystrophy, skull basal lesion, etc. Oropharyngeal dysphagia is the clinical presentation, and possibly correlates with aspiration or penetration of liquid or food in the upper airways. During manometry an incomplete relaxation of the UES or an increased intrabolus pressure may be demonstrated (Figure 17.1a).
Cricopharyngeal muscle dysfunction has been traditionally treated with surgical myotomy, mechanical dilation, or plexus neurectomy. Localized injections of botulinum toxin (BoNT) into the dorsomedial or ventrolateral parts of the muscle have also been successfully performed endoscopically by means of electromyographic (EMG) guidance, or percutaneously with EMG guidance (Figure 17.1b) and eventual computerized tomography or fluoroscopic control (Moerman, 2006). Unfortunately, there are no standards or guidelines and the administered dose ranges widely between 10 and 120 (mouse) units of Botox® per patient, usually selected on the basis of symptom severity. Local injections are relatively simple, safe (complication rate about 7%) and effective, although the effect wanes after 4–6 months (Moerman, 2006). Injection in the horizontal part of the muscle and an adequate (i.e., high enough) starting dose are predictors of greater efficacy.
- Type
- Chapter
- Information
- Manual of Botulinum Toxin Therapy , pp. 143 - 152Publisher: Cambridge University PressPrint publication year: 2009