Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T19:35:11.568Z Has data issue: false hasContentIssue false

4 - The laser–atom interaction

Published online by Cambridge University Press:  07 October 2011

Get access

Summary

As light passes an atom, it exerts forces on the charges, electrons, and nuclei that alter the atomic structure. These may be slight distortions (perturbations) of the electron cloud or they may be more severe, as described in subsequent sections of this monograph. We wish to determine those changes, given the radiation field, or to devise a radiation field that will produce specified changes.

The changes to the atomic structure also affect the radiation that subsequently passes the atom. To describe those effects we must consider wave equations for radiation in the presence of altered atomic structure. More generally we must find self-consistent equations for the atoms and the field together, as discussed in Chaps. 21 and 22. Here we consider mathematical descriptions of the influence of coherent radiation on individual atoms, molecules, or other single quantum systems.

Individual atoms

Traditional sources of emission and absorption spectra, though revealing energy states of the constituent atoms and molecules, are macroscopic samples. One observes averaged characteristics of many individual particles, see Chap. 16. Quantum theory offers the basic formalism for dealing with individual atoms exposed to controlled radiation fields. Several experimental techniques provide acceptable approximations to this ideal. The following paragraphs note some of these examples.

Vapors

Neutral atoms or molecules in a vapor move freely along straight-line paths, interrupted by brief collisions that redirect the two collision partners. When the kinetic energies of the two partners are small, there can be no transfer of kinetic energy into internal energy of either particle – the collision is elastic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×