Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T16:48:02.811Z Has data issue: false hasContentIssue false

13 - Fuel Cells For Automobiles

Published online by Cambridge University Press:  10 December 2009

John M. Deutch
Affiliation:
Massachusetts Institute of Technology
Richard K. Lester
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

In this chapter we discuss fuel cells, an exciting energy technology that many hope will become the (environmentally benign) successor to the internal combustion engine for automobile propulsion. Our study of fuel cells illustrates once again a recurring theme of this book – the importance of properly specifying the system boundary when making technology comparisons. The fuel cell case also reveals several important issues that arise in R&D project management.

As societies around the world become increasingly aware of the environmental consequences of energy supply, distribution and use, there is an understandable wish to invent and deploy new technologies that avoid the costs, both environmental and economic, of the technologies in use today. The desire to find something “new,” that does not have the drawbacks of what is here now and familiar, is invaluable because it is the fundamental driving force of innovation. But good intentions are not the same as successful outcomes, and it is important to insist on disciplined analysis of the technical, economic, and environmental aspects of a new technology before launching expensive new initiatives. This is true for entrepreneurs thinking about starting a new company around a new technology, for an established company considering an expensive new R&D program, or for a government agency considering adopting a new tax, regulatory, or technology development program.

One of the biggest targets in the search for a qualitatively more attractive energy technology is the automobile.

Type
Chapter
Information
Making Technology Work
Applications in Energy and the Environment
, pp. 205 - 220
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×