Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T16:44:55.152Z Has data issue: false hasContentIssue false

5 - Controlling Acid Rain from Coal-fired Power Plants

Published online by Cambridge University Press:  10 December 2009

John M. Deutch
Affiliation:
Massachusetts Institute of Technology
Richard K. Lester
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The acid rain case considered in this chapter is an example of good government decision making. The history of federal acid rain control legislation demonstrates that it is possible for the government to arrive at an environmental control strategy that minimizes the costs of bringing about reductions, and that is at least consistent with analyses of the costs and benefits of alternative courses of action. The rational approach to decision making in this case is very different from the story of the federal gasohol program presented in chapter 2.

The public is greatly concerned about the environmental impact of emissions from coal-fired electric power plants. An important question is how much of society's resources should be spent on reducing the environmental impact of electricity generated from coal. As discussed in the preceding chapter, there are many different consequential emissions that must be considered, including carbon dioxide (CO2), sulfur dioxide (SO2), oxides of nitrogen (NOx), particulates, heat, and solid and liquid wastes.

In this chapter we consider the gaseous emissions of SO2 and NOx. These emissions form acids when combined with moisture in the atmosphere. The possible result is the phenomenon of “acid rain,” in which rain falling at a considerable distance from the originating plant (perhaps across a national border) has high acidity. This high acidity rain can harm forests, vegetation, lakes, and the fish the lakes contain; indeed, acid rain impacts the entire ecology.

Type
Chapter
Information
Making Technology Work
Applications in Energy and the Environment
, pp. 66 - 80
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×