Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T18:30:02.825Z Has data issue: false hasContentIssue false

12 - Machine learning experiments

Published online by Cambridge University Press:  05 November 2012

Peter Flach
Affiliation:
University of Bristol
Get access

Summary

MACHING LEARNING IS a practical subject as much as a computational one. While we may be able to prove that a particular learning algorithm converges to the theoretically optimal model under certain assumptions, we need actual data to investigate, e.g., the extent to which those assumptions are actually satisfied in the domain under consideration, or whether convergence happens quickly enough to be of practical use. We thus evaluate or run particular models or learning algorithms on one or more data sets, obtain a number of measurements and use these to answer particular questions we might be interested in. This broadly characterises what is known as machine learning experiments.

In the natural sciences, an experiment can be seen as a question to nature about a scientific theory. For example, Arthur Eddington's famous 1919 experiment to verify Einstein's theory of general relativity asked the question: Are rays of light bent by gravitational fields produced by large celestial objects such as the Sun? To answer this question, the perceived position of stars was recorded under several conditions including a total solar eclipse. Eddington was able to show that these measurements indeed differed to an extent unexplained by Newtonian physics but consistent with general relativity.

While you don't have to travel to the island of Príncipe to perform machine learning experiments, they bear some similarity to experiments in physics in that machine learning experiments pose questions about models that we try to answer by means of measurements on data.

Type
Chapter
Information
Machine Learning
The Art and Science of Algorithms that Make Sense of Data
, pp. 343 - 359
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×