Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgments
- List of abbreviations
- 1 Bringing muscles into focus; the first two millennia
- 2 Muscle metabolism after the Chemical Revolution; lactic acid takes the stage
- 3 The relationship between mechanical events, heat production and metabolism; studies between 1840 and 1930
- 4 The influence of brewing science on the study of muscle glycolysis; adenylic acid and the ammonia controversy
- 5 The discovery of phosphagen and adenosinetriphosphate; contraction without lactic acid
- 6 Adenosinetriphosphate as fuel and as phosphate-carrier
- 7 Early studies of muscle structure and theories of contraction, 1870–1939
- 8 Interaction of actomyosin and ATP
- 9 Some theories of contraction mechanism, 1939 to 1956
- 10 On myosin, actin and tropomyosin
- 11 The sliding mechanism
- 12 How does the sliding mechanism work?
- 13 Excitation, excitation-contraction coupling and relaxation
- 14 Happenings in intact muscle: the challenge of adenosinetriphosphate breakdown
- 15 Rigor and the chemical changes responsible for its onset
- 16 Respiration
- 17 Oxidative phosphorylation
- 18 The regulation of carbohydrate metabolism for energy supply to the muscle machine
- 19 A comparative study of the striated muscle of vertebrates
- 20 Enzymic and other effects of denervation, cross-innervation and repeated stimulation
- 21 Some aspects of muscle disease
- 22 Contraction in muscles of invertebrates
- 23 Vertebrate smooth muscle
- 24 Energy provision and contractile proteins in non-muscular functions
- The perspective surveyed
- References
- Author index
- Subject index
9 - Some theories of contraction mechanism, 1939 to 1956
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Acknowledgments
- List of abbreviations
- 1 Bringing muscles into focus; the first two millennia
- 2 Muscle metabolism after the Chemical Revolution; lactic acid takes the stage
- 3 The relationship between mechanical events, heat production and metabolism; studies between 1840 and 1930
- 4 The influence of brewing science on the study of muscle glycolysis; adenylic acid and the ammonia controversy
- 5 The discovery of phosphagen and adenosinetriphosphate; contraction without lactic acid
- 6 Adenosinetriphosphate as fuel and as phosphate-carrier
- 7 Early studies of muscle structure and theories of contraction, 1870–1939
- 8 Interaction of actomyosin and ATP
- 9 Some theories of contraction mechanism, 1939 to 1956
- 10 On myosin, actin and tropomyosin
- 11 The sliding mechanism
- 12 How does the sliding mechanism work?
- 13 Excitation, excitation-contraction coupling and relaxation
- 14 Happenings in intact muscle: the challenge of adenosinetriphosphate breakdown
- 15 Rigor and the chemical changes responsible for its onset
- 16 Respiration
- 17 Oxidative phosphorylation
- 18 The regulation of carbohydrate metabolism for energy supply to the muscle machine
- 19 A comparative study of the striated muscle of vertebrates
- 20 Enzymic and other effects of denervation, cross-innervation and repeated stimulation
- 21 Some aspects of muscle disease
- 22 Contraction in muscles of invertebrates
- 23 Vertebrate smooth muscle
- 24 Energy provision and contractile proteins in non-muscular functions
- The perspective surveyed
- References
- Author index
- Subject index
Summary
BACKGROUND TO THE THEORIES
MUSCLE STRUCTURE. Before introducing some of these conceptions entertained during the ten or fifteen years after the discovery of the interaction of myosin, actin and ATP, we may consider the re-orientation of ideas concerning interpretation of visible muscle structure. This closer look was necessitated by the discovery of actin, the more exact knowledge of the relative quantities of the muscle proteins and the early observations by means of the electron microscope. As we have seen, ‘myosin’ had been allotted by Noll & Weber (1) in 1935 to the A band, and the double refraction of the fibre had been explained as due to the rod and intrinsic double refraction of this protein. Weber (6) in 1956 remarked that this would mean that the I band must consist of other proteins – perhaps including globulin X and stroma. The assumption however was frequently made that it consisted of disordered myosin. Some observers recorded that the I band rather than the A band shortened on contraction, but the general opinion seems to have been that the material of the A band was that primarily concerned in the mechanism of movement, the changes in the I band being passive.
It is striking to see how many of the observations of classical histology were confirmed by the electron microscope – for example, the A and I bands, the H zone, and the Z and M lines could all be distinguished.
- Type
- Chapter
- Information
- Machina CarnisThe Biochemistry of Muscular Contraction in its Historical Development, pp. 169 - 189Publisher: Cambridge University PressPrint publication year: 1971
- 1
- Cited by