Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T11:29:40.818Z Has data issue: false hasContentIssue false

3 - Imaging of Lung Cancer

Published online by Cambridge University Press:  12 August 2009

Sayed A.H.Z. Jafri
Affiliation:
Department of Radiology, Hammersmith Hospital, London, UK
Sarah J. Copley
Affiliation:
Department of Radiology, Hammersmith Hospital, London, UK
Sujal R. Desai
Affiliation:
King's College Hospital, London
Get access

Summary

Introduction

According to estimates of the American Cancer Society over 170,000 new cases of bronchogenic carcinoma will have been diagnosed in the United States alone during 2005. Moreover, nearly 60% of those diagnosed with lung cancer will die within one year of diagnosis rising to a staggering 75% at two years and 90% at five years. Lung cancer remains the leading cause of cancer deaths worldwide in both sexes with an estimated 163,510 deaths (90,490 in men and 73,020 in women) predicted in 2005. It is a sobering thought that no improvement in survival from lung cancer has occurred in the last 10 years.

In the following chapter the imaging features of primary bronchogenic carcinoma, principally on chest radiography and computed tomography (CT) are considered; a separate chapter has been devoted to the utility of imaging tests in the staging of lung cancer in this volume. Although the histopathological features are also covered in detail elsewhere in this volume on lung cancer, the present chapter begins with a brief discussion of the pertinent histopathological considerations.

Histopathological Classification of Lung Cancer

The most widely accepted histological classification system is that of the World Health Organisation which categorizes primary lung neoplasms into four common cell types:

Squamous Cell Carcinoma

This histological subtype accounts for 30% of all primary malignant lung tumours and it typically originates centrally.

Type
Chapter
Information
Lung Cancer , pp. 27 - 45
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Cancer Society, (2005). Cancer Facts & Figures - 2005. Atlanta, GA: American Cancer Society.Google Scholar
Travis, W. D., Colby, T. V., Corrin, B., et al. (1999). World Health Organisation. Histological typing of lung and pleural tumours, 3rd ed. International histological classification of tumours, Vol I. Berlin: Springer Verlag.Google Scholar
Hansell, D. M., Armstrong, P., Lynch, D. A., McAdams, H. P. (2005). Neoplasms of the lungs, airways, and pleura. In: Imaging of diseases of the chest (4th edition). Hansell, D. M., Armstrong, P., Lynch, D. A., McAdams, H. P. (eds.). Philadelphia: Elsevier-Mosby.Google Scholar
Wynder, E. L., Muscat, J. E. (1995). The changing epidemiology of smoking and lung cancer histology. Environ Health Perspect, 103 (Suppl 8), 143–8.CrossRefGoogle ScholarPubMed
Bonomo, L., Storto, M. L., Ciccotosto, C., Polverosi, R., Merlino, B., Bellelli, M., Guidotti, A. (1998). Bronchioloalveolar carcinoma of the lung. Eur Radiol, 8, 996–1001.CrossRefGoogle ScholarPubMed
Sider, L. (1990). Radiographic manifestations of primary bronchogenic carcinoma. Radiol Clin North Am, 28, 583–97.Google ScholarPubMed
Theros, E. G. (1977). Varying manifestations of peripheral pulmonary neoplasms: a radiologic-pathologic correlative study. AJR Am J Roentgenol, 128, 893–914.CrossRefGoogle Scholar
Filderman, A. E., Shaw, C., Matthay, R. A. (1986). Lung cancer. Part I: Etiology, pathology, natural history, manifestations, and diagnostic techniques. Invest Radiol, 21, 80–90.CrossRefGoogle ScholarPubMed
Haque, A. K. (1991). Pathology of carcinoma of lung: an update on current concepts. J Thorac Imaging, 7, 9–20.CrossRefGoogle ScholarPubMed
Filderman, A. E., Shaw, C., Matthay, R. A. (1986). Lung cancer. Part I: Etiology, pathology, natural history, manifestations, and diagnostic techniques. Invest Radiol, 21, 80–90.CrossRefGoogle ScholarPubMed
Pearlberg, J. L., Sandler, M. A., Lewis, J. W. Jr, et al. (1988). Small-cell bronchogenic carcinoma: CT evaluation. AJR Am J Roentgenol, 150, 265–8.CrossRefGoogle ScholarPubMed
Micke, P., Faldum, A., Metz, T., Beeh, K. M., Bittinger, F., Hengstler, J. G., Buhl, R. (2002). Staging small cell lung cancer: Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer–what limits limited disease?Lung Cancer, Sept, 37, 271–6.CrossRefGoogle Scholar
Burke, M., Fraser, R. (1988). Obstructive pneumonitis: a pathologic and pathogenetic reappraisal. Radiology, 166, 699–704.CrossRefGoogle ScholarPubMed
Kuriyama, K., et al. (1987). CT-pathologic correlation in small peripheral lung cancers. AJR Am J Roentgenol, 149, 1139–43.CrossRefGoogle ScholarPubMed
Woodring, J. H., Fried, A. M., Chuang, V. P. (1980). Solitary cavities of the lung: diagnostic implications of cavity wall thickness. AJR Am J Roentgenol, 135, 1269–71.CrossRefGoogle ScholarPubMed
Johnson, D. H., Hainsworth, J. D., Greco, F. A. (1982). Pancoast's syndrome and small cell lung cancer. Chest, 82, 602–6.CrossRefGoogle ScholarPubMed
Schaefer-Prokop, C., Prokop, M. (2002). New imaging techniques in the treatment guidelines for lung cancer. Eur Respir J Suppl, 35, 71s–83s.CrossRefGoogle ScholarPubMed
Heesewijk, H. P., Graaf, Y., Valois, J. C., Vos, J. A., Feldberg, M. A. (1996). Chest imaging with a selenium detector versus conventional film radiography: a CT-controlled study. Radiology, 200, 687–90.CrossRefGoogle ScholarPubMed
Heesewijk, H. P., Neitzel, U., Graaf, Y., Valois, J. C., Feldberg, M. A. (1995). Digital chest imaging with a selenium detector: comparison with conventional radiography for visualization of specific anatomic regions of the chest. AJR Am J Roentgenol, 165, 535–40.CrossRefGoogle ScholarPubMed
Difazio, M. C., MacMahon, H., Xu, X. W., Tsai, P., Shiraishi, J., Armato, , S. G. 3rd, , Doi, K. (1997). Digital chest radiography: effect of temporal subtraction images on detection accuracy. Radiology, 202, 447–52.CrossRefGoogle ScholarPubMed
Kido, S., Ikezoe, J., Naito, H., Arisawa, J., Tamura, S., Kozuka, T., Ito, W., Shimura, K., Kato, H. (1995). Clinical evaluation of pulmonary nodules with single-exposure dual-energy subtraction chest radiography with an iterative noise-reduction algorithm. Radiology, 194, 407–12.CrossRefGoogle ScholarPubMed
MacMahon, H. (2000). Improvement in detection of pulmonary nodules: digital image processing and computer-aided diagnosis. Radiographics, 20, 1169–77.CrossRefGoogle ScholarPubMed
Herman, P. G., Gerson, D. E., Hessel, S. J., et al. (1975). Disagreements in chest roentgenogram interpretation. Chest, 68, 278–82.CrossRefGoogle Scholar
Kundel, H. L. (1981). Predictive value and threshold detectability of lung tumors. Radiology, 139, 25–9.CrossRefGoogle ScholarPubMed
Muhm, J. R., Miller, W. E., Fontana, R. S., Sanderson, D. R., Uhlenhopp, M. A. (1983). Lung cancer detected during a screening program using four-month chest radiographs. Radiology, 148, 609–15.CrossRefGoogle ScholarPubMed
Hansell, D. M. (2005). Neoplasms of the lungs airways and pleura. In: Hansell, D. M., Lynch, D. A., Page McAdams, H. eds. Imaging of disease of the chest, 4th ed. London: Elsevier Mosby (Harcourt), 785–899.Google Scholar
Kuriyama, K., Tateishi, R., Doi, O., Higashiyama, M., Kodama, K., Inoue, E., Narumi, Y., Fujita, M., Kuroda, C. (1991). Prevalence of air bronchograms in small peripheral carcinomas of the lung on thin-section CT: comparison with benign tumors. AJR Am J Roentgenol, 156, 921–4.CrossRefGoogle ScholarPubMed
Yabuuchi, H., Murayama, S., Sakai, S., Hashiguchi, N., Murakami, J., Muranaka, T., Soeda, H., Sugio, K., Nagashima, A., Masuda, K. (1999). Resected peripheral small cell carcinoma of the lung: computed tomographic-histologic correlation. J Thorac Imaging, 14, 105–8.CrossRefGoogle ScholarPubMed
Mahoney, M. C., Shipley, R. T., Corcoran, H. L., Dickson, B. A. (1990). CT demonstration of calcification in carcinoma of the lung. AJR Am J Roentgenol, 154(2), 255–8.CrossRefGoogle ScholarPubMed
Grewal, R. G., Austin, J. H. (1994). CT demonstration of calcification in carcinoma of the lung. J Comput Assist Tomogr, 18, 867–71.CrossRefGoogle ScholarPubMed
Ratto, G. B., Piacenza, G., Frola, C., Musante, F., Serrano, I., Giua, R., Salio, M., Jacovoni, P., Rovida, S. (1991). Chest wall involvement by lung cancer: computed tomographic detection and results of operation. Ann Thorac Surg, 51, 182–8.CrossRefGoogle ScholarPubMed
Yankelevitz, D. F., Reeves, A. P., Kostis, W. J., Zhao, B., Henschke, C. I. (2000). Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology, 217, 251–6.CrossRefGoogle ScholarPubMed
Swensen, S. J., Brown, L. R., Colby, T. V. (1996). Lung nodule enhancement at CT: prospective findings. Radiology, 201, 447–55.CrossRefGoogle ScholarPubMed
Leyn, P., Schoonooghe, P., Deneffe, G., Raemdonck, D., Coosemans, W., Vansteenkiste, J., Lerut, T. (1996). Surgery for non-small cell lung cancer with unsuspected metastasis to ipsilateral mediastinal or subcarinal nodes (N2 disease). Eur J Cardiothorac Surg, 10, 649–54.Google Scholar
Arita, T., Kuramitsu, T., Kawamura, M., Matsumoto, T., Matsunaga, N., Sugi, K., Esato, K. (1995). Bronchogenic carcinoma: incidence of metastases to normal sized lymph nodes. Thorax, 5012, 1267–9.CrossRefGoogle Scholar
Padovani, B., Mouroux, J., Seksik, L., Chanalet, S., Sedat, J., Rotomondo, C., Richelme, H., Serres, J. J. (1993). Chest wall invasion by bronchogenic carcinoma: evaluation with MR imaging. Radiology, 187, 33–8.CrossRefGoogle ScholarPubMed
Heelan, R. T., Demas, B. E., Caravelli, J. F., Martini, N., Bains, M. S., McCormack, P. M., Burt, M., Panicek, D. M., Mitzner, A. (1989). Superior sulcus tumors: CT and MR imaging. Radiology, 170, 637–41.Google ScholarPubMed
Haramati, L. B., White, C. S. (2000). MR imaging of lung cancer. Magn Reson Imaging Clin N Am, 8, 43–57.Google ScholarPubMed
Quint, L. E., Francis, I. R. (1999). Radiologic staging of lung cancer. J Thorac Imaging, 14, 235–46.CrossRefGoogle ScholarPubMed
Takahashi, K., Furuse, M., Hanaoka, H., Yamada, T., Mineta, M., Ono, H., Nagasawa, K., Aburano, T. (2000). Pulmonary vein and left atrial invasion by lung cancer: assessment by breath-hold gadolinium-enhanced three-dimensional MR angiography. J Comput Assist Tomogr, 24, 557–61.CrossRefGoogle ScholarPubMed
Auerbach, O., Garfinkel, L. (1991). The changing pattern of lung carcinoma. Cancer, 68, 1973–7.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Aronberg, D. J., Sagel, S. S., Jost, R. G., Levitt, R. G. (1979). Oat cell carcinoma manifesting as a bronchocele. AJR Am J Roentgenol, 132, 23–5.CrossRefGoogle ScholarPubMed
Kuriyama, K., Seto, M., Kasugai, T., Higashiyama, M., Kido, S., Sawai, Y., Kodama, K., Kuroda, C. (1999). Ground-glass opacity on thin-section CT: value in differentiating subtypes of adenocarcinoma of the lung. AJR Am J Roentgenol, 173, 465–9.CrossRefGoogle ScholarPubMed
Theros, E. G. (1977). 1976 Caldwell Lecture: varying manifestation of peripheral pulmonary neoplasms: a radiologic-pathologic correlative study. AJR Am J Roentgenol, 128, 893–914.CrossRefGoogle ScholarPubMed
Matsuoka, S., Kurihara, Y., Yagihashi, K., Niimi, H., Nakajima, Y. (2005). Peripheral solitary pulmonary nodule: CT findings in patients with pulmonary emphysema. Radiology, 235, 266–73.CrossRefGoogle ScholarPubMed
Aoki, T., Tomoda, Y., Watanabe, H., Nakata, H., Kasai, T., Hashimoto, H., Kodate, M., Osaki, T., Yasumoto, K. (2001). Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology, 220, 803–9.CrossRefGoogle Scholar
Woodring, J. H., Fried, A. M. (1983). Significance of wall thickness in solitary cavities of the lung: a follow-up study. AJR Am J Roentgenol, 140, 473–74.CrossRefGoogle ScholarPubMed
Yankelevitz, D. F., Henschke, C. I. (1997). Does 2-year stability imply that pulmonary nodules are benign?AJR Am J Roentgenol, 168, 325–8.CrossRefGoogle ScholarPubMed
Aberle, D. R., Gamsu, G., Henschke, C. I., Naidich, D. P., Swensen, S. J. (2001). A consensus statement of the Society of Thoracic Radiology: screening for lung cancer with helical computed tomography. J Thorac Imaging, 16, 65–8.CrossRefGoogle ScholarPubMed
Reeves, A. P., Yankelevitz, D. F., Kostis, W. J., Henschke, C. I. (2001). Volumetric growth index (VGI) for small pulmonary nodules: development and validation. Program and abstracts of the 87th Scientific Assembly of the Radiological Society of North America; November 25–30, 2001; Chicago, Illinois. Radiology, 221(suppl), 311.Google Scholar
Ko, J. P., Rusinek, H., Naidich, D. P., et al. (2001). Wavelet compression of low-dose chest CT: effect on nodule detection. Program and abstracts of the 87th Scientific Assembly of the Radiological Society of North America; November 25–30, 2001; Chicago, Illinois. Radiology, 221(suppl), 311.Google Scholar
Byrd, R. B., Miller, W. E., Carr, D. T., Payne, W. S., Woolner, L. B. (1968). The roentgenographic appearance of squamous cell carcinoma of the bronchus. Mayo Clin Proc, 43, 327–32.Google ScholarPubMed
Reinig, J. W., Ross, P. (1984). Computed tomography appearance of Golden's “S” sign. J Comput Tomogr, 8, 219–23.CrossRefGoogle ScholarPubMed
Onitsuka, H., Tsukuda, M., Araki, A., Murakami, J., Torii, Y., Masuda, K. (1991). Differentiation of central lung tumor from postobstructive lobar collapse by rapid sequence computed tomography. J Thorac Imaging, 6, 28–31.CrossRefGoogle ScholarPubMed
Tobler, J., Levitt, R. G., Glazer, H. S., Moran, J., Crouch, E., Evens, R. G. (1987). Differentiation of proximal bronchogenic carcinoma from postobstructive lobar collapse by magnetic resonance imaging. Comparison with computed tomography. Invest Radiol, 22, 538–43.CrossRefGoogle ScholarPubMed
Greco, R. J., Steiner, R. M., Goldman, S., Cotler, H., Patchefsky, A., Cohn, H. E. (1986). Bronchoalveolar cell carcinoma of the lung. Ann Thorac Surg, 41, 652–6.CrossRefGoogle ScholarPubMed
Quinn, D., Gianlupi, A., Broste, S. (1996). The changing radiographic presentation of bronchogenic carcinoma with reference to cell types. Chest, 110, 1474–9.CrossRefGoogle ScholarPubMed
Cadranel, J. (2005). Bronchioloalveolar carcinoma. Rev Mal Respir, 28, 570–5.Google Scholar
Okubo, K., Mark, E. J., Flieder, D., Wain, J. C., Wright, C. D., Moncure, A. C., Grillo, H. C., Mathisen, D. J. (1999). Bronchoalveolar carcinoma: clinical, radiologic, and pathologic factors and survival. J Thorac Cardiovasc Surg, 118, 702–9.CrossRefGoogle Scholar
Maldonado, R. L. (1999). The CT angiogram sign. Radiology, 210, 323–4.CrossRefGoogle ScholarPubMed
Sandomenico, F., Catalano, O., Cusati, B., Esposito, M., Siani, A. (1999). The angiogram sign in pulmonary atelectases studied by spiral computed tomography. Its incidence and semeiologic value. Radiol Med (Torino), 98, 477–81.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×