Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T00:24:32.738Z Has data issue: false hasContentIssue false

12 - Life-history adaptations to polar and alpine environments

from PART II - ECOLOGICAL AND EVOLUTIONARY RESPONSES

Published online by Cambridge University Press:  04 May 2010

David L. Denlinger
Affiliation:
Ohio State University
Richard E. Lee, Jr
Affiliation:
Miami University
Get access

Summary

Introduction: extremes in the terrestrial environment

This chapter is concerned with the life-history features of terrestrial invertebrates inhabiting the cold regions of the world. It predominantly focuses on the Antarctic continent and the Arctic elements of the large northern continents, also drawing parallels with the alpine regions of the world's major mountain ranges. To human perception, these polar and montane regions of the planet are clearly challenging regions in which to live. They face environmental stresses that operate on a range of timescales, for example from chronic exposure to low temperature, high winds, freezing, or desiccation, to extreme or short-term acute events. At northern or southern latitudes beyond the polar circles, the sun remains permanently below the horizon for a period of days to months, depending on latitude, each winter, inevitably imposing considerable seasonality on organisms and ecosystems.

Focusing simply on temperature, in the absence of solar-energy input, terrestrial habitats of both regions face comparable extremely low air temperatures during winter. But the two regions are far from identical, with the Antarctic also enduring much lower typical summer temperatures than those of the Arctic (Convey, 1996a; Danks, 1999); hence lack of available energy provides a major constraint on biological activity here. However, the biological impacts of temperature are not well described simply by standard meteorological measures of mean air temperature, and scales and patterns of physical and temporal variation are also important.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2002). Metabolic cold adaptation in insects: a large-scale perspective. Functional Ecology 16, 332–338.CrossRefGoogle Scholar
Andrássy, I. (1998). Nematodes in the sixth continent. Journal of Nematode Systematics and Morphology 1, 107–186.Google Scholar
Arnold, R. J. and Convey, P. (1998). The life history of the diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: Dytiscidae), on sub-Antarctic South Georgia. Polar Biology 20, 153–160.CrossRefGoogle Scholar
Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London, Series B 357, 849–862.CrossRefGoogle ScholarPubMed
Bale, J. S., Hodkinson, I. D., Block, W., Webb, N. R., Coulson, S. J. and Strathdee, A. T. (1997). Life history strategies of Arctic terrestrial arthropods. In The Ecology of Arctic Environments, ed. Woodin, S. J. and Marquis, , M. British Ecological Society Special Publication No. 13, Oxford: Blackwell, pp. 137–165.Google Scholar
Bale, J. S., Worland, M. R., and Block, W. (2001). Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. Journal of Insect Physiology 47, 1161–1167.CrossRefGoogle ScholarPubMed
Barendse, J. and Chown, S. L. (2000). The biology of Bothrometopus elongatus (Coleoptera, Curculionidae) in a mid-altitude fellfield on sub-Antarctic Marion Island. Polar Biology 23, 346–351.CrossRefGoogle Scholar
Barendse, J. and Chown, S. L. (2001). Abundance and seasonality of mid-altitude fellfield arthropods from Marion Island. Polar Biology 24, 73–82.CrossRefGoogle Scholar
Bellido, A. and Cancela da Fonseca, J. P. (1988). Spatio-temporal organization of the oribatid mite community in a littoral turf of the Kerguelen archipelago. Pedobiologia 31, 239–246.Google Scholar
Bennett, V. A., Kukal, O., and Lee, R. E. (2000). Seasonal metabolic depression and mitochondrial degradation in Arctic woollybear caterpillars, Gynaephora groenlandica. American Zoologist 40, 942.Google Scholar
Bergstrom, D., Hodgson, D. A. and Convey, P. (2006). The physical setting of the Antarctic. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L.Dordrecht: Springer, pp. 15–33.CrossRefGoogle Scholar
Bertolani, R. (2001). Evolution of the reproductive mechanisms in tardigrades – a review. Zoologischer Anzeiger 240, 247–252.CrossRefGoogle Scholar
Block, W. (1990). Cold tolerance of insects and other arthropods. Philosophical Transactions of the Royal Society of London, Series B 326, 613–633.CrossRefGoogle Scholar
Block, W. (1996). Cold or drought – the lesser of two evils for terrestrial arthropods?European Journal of Entomology 93, 325–339.Google Scholar
Block, W., Burn, A. J. and Richard, K. J. (1984). An insect introduction to the maritime Antarctic. Biological Journal of the Linnean Society 23, 33–39.CrossRefGoogle Scholar
Brown, C. L., Bale, J. S. and Walters, K. F.A. (2004). Freezing induces a loss of freeze tolerance in an overwintering insect. Proceedings of the Royal Society, Series B 271, 1507–1511.CrossRefGoogle Scholar
Caldwell, M. M., Björn, L. O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Teramura, A. H. and Tevini, M. (1998). Effects of increased solar radiation on terrestrial ecosystems. Journal of Phytochemistry and Photobiology B: Biology 46, 40–52.CrossRefGoogle Scholar
Callaghan, T. V. and Jonasson, S. (1995). Arctic terrestrial ecosystems and environmental change. Philosophical Transactions of the Royal Society of London, Series A 352, 259–276.CrossRefGoogle Scholar
Cannon, R. J.C. and Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews 63, 23–77.CrossRefGoogle Scholar
Chen, C.-P., Denlinger, D. L. and Lee, R. E. (1987). Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology 60, 297–304.CrossRefGoogle Scholar
Chown, S. L. (1992). A preliminary analysis of weevil assemblages in the sub-Antarctic: local and regional patterns. Journal of Biogeography 19, 87–98.CrossRefGoogle Scholar
Chown, S. L. and Convey, P. (2007). Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society of London, Series B 362, 2307–2331.CrossRefGoogle ScholarPubMed
Chown, S. L., Greenslade, P. and Marshall, D. J. (2006). Terrestrial invertebrates of Heard Island. In Heard Island: Southern Ocean Sentinel, ed. Green, K. and Woehler, E. J.Chipping Norton: Surrey & Beatty, pp. 91–104.Google Scholar
Chown, S. L. and Klok, C. J. (2003). Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455.CrossRefGoogle Scholar
Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.CrossRefGoogle Scholar
Chown, S. L. and Scholtz, C. H. (1989). Biology and ecology of the Dusmoecetes Jeannel (Col. Curculionidae) species complex on Marion Island. Oecologia 80, 93–99.CrossRefGoogle Scholar
Convey, P. (1994). Growth and survival strategy of the Antarctic miteAlaskozetes antarcticus. Ecography 17, 97–107.CrossRefGoogle Scholar
Convey, P. (1996a). Overwintering strategies of terrestrial invertebrates in Antarctica – the significance of flexibility in extremely seasonal environments. European Journal of Entomology 93, 489–505.Google Scholar
Convey, P. (1996b). The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews 71, 191–225.CrossRefGoogle Scholar
Convey, P. (1997). How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions?Journal of Thermal Biology 22, 429–440.CrossRefGoogle Scholar
Convey, P. (1998). Latitudinal variation in allocation to reproduction by the Antarctic oribatid mite, Alaskozetes antarcticus. Applied Soil Ecology 9, 93–99.CrossRefGoogle Scholar
Convey, P. (2000). How does cold constrain life cycles of terrestrial plants and animals?Cryo-Letters 21, 73–82.Google ScholarPubMed
Convey, P. (2001a). Terrestrial ecosystem response to climate changes in the Antarctic. In “Fingerprints” of Climate Change – Adapted Behaviour and Shifting Species Ranges, ed. Walther, G.-R., Burga, C. A., and Edwards, P. J.New York: Kluwer, pp. 17–42.CrossRefGoogle Scholar
Convey, P. (2001b). Antarctic ecosystems. In Encyclopedia of Biodiversity, ed. Levin, , San, S. A.Diego: Academic Press, vol. 1, pp. 171–184.Google Scholar
Convey, P. (2006). Antarctic climate change and its influences on terrestrial ecosystems. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H.L.Dordrecht: Springer, pp. 253–272.CrossRefGoogle Scholar
Convey, P. (2007). Antarctic ecosystems. In Encyclopedia of Biodiversity, 2nd (online) edition, ed. Levin, S. A.San Diego: Elsevier. doi:10.1016/B0–12–226865–2/00014–6.Google Scholar
Convey, P. and Block, W. (1996). Antarctic Diptera: ecology, physiology and distribution. European Journal of Entomology 93, 1–13.Google Scholar
Convey, P., Chown, S. L., Wasley, J. and Bergstrom, D. M. (2006a). Life history traits. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L.Dordrecht: Springer, pp. 101–127.CrossRefGoogle Scholar
Convey, P., Frenot, Y., Gremmen, N. and Bergstrom, D. M. (2006b). Biological invasions. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L.Dordrecht: Springer, pp. 193–220.CrossRefGoogle Scholar
Convey, P. and McInnes, S. J. (2005). Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica. Ecology 86, 519–527.CrossRefGoogle Scholar
Convey, P., Scott, D. and Fraser, W. R. (2003). Biophysical and habitat changes in response to climate alteration in the Arctic and Antarctic. In Climate Change and Biodiversity: Synergistic Impacts, ed. Lovejoy, T. E. and Hannah, L.Arlington, VA: Conservation International, Center for Applied Biodiversity Science. Advances in Applied Biodioversity Science 4, 79–84.Google Scholar
Coulson, S. J. (2007). The terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa 1448, 41–58.Google Scholar
Crafford, J. E. (1986). A case study of an alien invertebrate (Limnophyes pusillus, Diptera, Chironomidae) introduced on Marion Island: selective advantages. South African Journal of Antarctic Research 16, 115–117.Google Scholar
Crafford, J. E., Scholtz, C. H. and Chown, S. L. (1986). The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. South African Journal of Antarctic Research 16, 41–84.Google Scholar
Danks, H. V. (1981). Arctic Arthropods, a Review of Systematics and Ecology with Particular Reference to the North American Fauna. Ottowa: Entomological Society of Canada.Google Scholar
Danks, H. V. (1992). Long life cycles in insects. Canadian Entomologist 124, 167–187.CrossRefGoogle Scholar
Danks, H. V. (1999). Life cycles in polar arthropods – flexible or programmed?European Journal of Entomology 96, 83–102.Google Scholar
Danks, H. V. (2004). Seasonal adaptations in Arctic insects. Integrative & Comparative Biology 44, 85–94.CrossRefGoogle ScholarPubMed
Danks, H. V. (2005). Key themes in the study of seasonal adaptations in insects I. Patterns of cold hardiness. Applied Entomology and Zoology 40, 199–211.CrossRefGoogle Scholar
Davies, L. (1987). Long adult life, low reproduction and competition in two sub-Antarctic carabid beetles. Ecological Entomology 12, 149–162.CrossRefGoogle Scholar
Davis, R. C. (1981). Structure and function of two Antarctic moss communities. Ecological Monographs 5, 125–143.CrossRefGoogle Scholar
Delettre, Y. R. and Tréhen, P. (1977). Introduction à la dynamique des populations de Limnophyes pusillus Eaton dans les sols des Iles Australes Antarctiques Françaises. Ecological Bulletins 25, 80–89.Google Scholar
Duckhouse, D. A. (1985). Psychodidae (Diptera, Nematocera) of the subantarctic islands with observations on the incidence of parthenogenesis. International Journal of Entomology 27, 173–184.Google Scholar
Elnitsky, M. A., Hayward, S. A.L, Rinehart, J. P., Denlinger, D. L. and Lee, E. E. (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology 211, 524–530.CrossRefGoogle ScholarPubMed
Farman, J. C., Gardiner, B. G. and Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/Nox interaction. Nature 315, 207–210.CrossRefGoogle Scholar
Fogg, G., Thomas, D. N., Convey, P., Fritsen, C., Gilli, J.-M., Gradinger, R., Laybourne-Parry, J., Reid, K. and Walton, D. W.H. (2008). The Biology of Polar Habitats. Oxford: Oxford University Press.Google Scholar
Freckman, D. W. and Virginia, R. A. (1997). Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369.CrossRefGoogle Scholar
Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M. and Bergstrom, D. (2005). Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews 80, 45–72.CrossRefGoogle ScholarPubMed
Gaines, S. D. and Denny, M. W. (1993). The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692.CrossRefGoogle Scholar
Gillespie, M., Hodkinson, I. D., Cooper, E. J., Bird, I and Jonsdottir, I. S. (2007). Life history and host-plant relationships of the rare endemic Arctic aphid Acyrthosiphon calvulus in a changing environment. Entomologia Experimentalis et Applicata 123, 229–237.CrossRefGoogle Scholar
Greenslade, P. J. M. (1983). Adversity selection and the habitat templet. American Naturalist 122, 352–365.CrossRefGoogle Scholar
Gressitt, J. L. (ed.). (1970). Subantarctic entomology, particularly of South Georgia and Heard Island. Pacific Insects Monograph 23, 374.
Grime, J. P. (1988). The C-S-R model of primary plant strategies – origins, implications and tests. In Population Dynamics, ed. Anderson, R. M., Turner, B. D. and Taylor, L. R.Oxford: Blackwell, pp. 123–139.Google Scholar
Heal, O. W. and Ineson, P. (1984). Carbon and energy flow in terrestrial ecosystems: relevance to the microflora. In Current Perspectives in Microbial Ecology, ed. Klug, M. J. and Reddy, C. A.Washington DC: American Society for Microbiology, pp. 394–404.Google Scholar
Hennion, F., Huiskes, A., Robinson, S. and Convey, P. (2006). Physiological traits of organisms in a changing environment. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M, Convey, P. and Huiskes, A. H. L.Dordrecht: Springer, pp. 129–159.CrossRefGoogle Scholar
Hodkinson, I. D. (2005a). Adaptations of invertebrates to terrestrial Arctic environments. Det Konelige Norske Videnskabers Selskab, Skrifter, 45 pp.Google Scholar
Hodkinson, I. D. (2005b). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80, 489–513.CrossRefGoogle ScholarPubMed
Hodkinson, I. D, Coulson, , , S. J., Harrison, , , J. A. and Webb, , , N. R. (2001). What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic – some counter intuitive ideas on community assembly. Oikos 95, 349–352.CrossRefGoogle Scholar
Hodkinson, I. D., Webb, N. R., Bale, J. S., Block, W., Coulson, S. J. and Strathdee, A. T. (1998). Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arctic and Alpine Research 30, 306–313.CrossRefGoogle Scholar
Hodkinson, I. D., Webb, N. R., Bale, J. S. and Block, W. (1999). Hydrology, water availability and tundra ecosystem function in a changing climate: the need for a closer integration of ideas?Global Change Biology 5, 359–369.CrossRefGoogle Scholar
Hodkinson, I. D., Webb, N. R. and Coulson, S. J. (2002). Primary community assembly on land – the missing stages: why are the heterotrophic organisms always there first?Journal of Ecology 90, 569–577.CrossRefGoogle Scholar
Hodkinson, I. D. and Wookey, P. A. (1999). Functional ecology of soil organisms in tundra ecosystems: towards the future. Applied Soil Ecology 11, 111–126.CrossRefGoogle Scholar
Hogg, I. D., Cary, S. C., Convey, P., Newsham, K., O'Donnell, T., Adams, B. J., Aislabie, J., Frati, F. F., Stevens, M. I. and Wall, D. H. (2006). Biotic interactions in Antarctic terrestrial ecosystems: are they a factor?Soil Biology and Biochemistry 38, 3035–3040.CrossRefGoogle Scholar
Holmstrup, M. and Sømme, L. (1998). Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. Journal of Comparative Physiology series B 168, 197–203.CrossRefGoogle Scholar
Kennedy, A. D. (1993). Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research 25, 308–315.CrossRefGoogle Scholar
Kevan, P. G. and Kukal, O. (1993). A balanced life table for Gynaephora groenlandica (Lepidoptera, Lymantriidae), a long-lived High Arctic insect, and implications for the stability of its populations. Canadian Journal of Zoology 71, 1699–1701.CrossRefGoogle Scholar
Kukal, O., Duman, J. G. and Serianni, S. (1989). Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. Journal of Comparative Physiology B 158, 661–671.CrossRefGoogle ScholarPubMed
Lawton, J. H. (1999). Are there general laws in ecology?Oikos 84, 177–192.CrossRefGoogle Scholar
Leather, S. R., Walters, K. F.A. and Bale, J. S. (1993). The Ecology of Insect Overwintering. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lee, R. E., Elnitsky, M. A., Rinehart, J. P., Hayward, S. A. L., Sandro, L. H. and Denlinger, D. L. (2006). Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Journal of Experimental Biology 209, 399–406.CrossRefGoogle ScholarPubMed
Levin, D. B., Danks, H. V. and Barber, S. A. (2003). Variations in mitochondrial DNA and gene transcription in freezing tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology 12, 281–289.CrossRefGoogle Scholar
Lister, A. (1984). Studies on the Antarctic Terrestrial Mite Gamasellus racovitzai. PhD thesis, University of York.Google Scholar
Lister, A., Block, W. and Usher, M. B. (1988). Arthropod predation in an Antarctic terrestrial community. Journal of Animal Ecology 57, 957–971.CrossRefGoogle Scholar
Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E. and Denlinger, D. L. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxidedismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology 38, 796– 804.CrossRefGoogle Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton: Princeton University Press.Google Scholar
McDonald, J. R., Bale, J. S. and Walters, K. F.A. (1997). Rapid cold hardening in the western flower thrips Frankliniella occidentalis. Journal of Insect Physiology 43, 759–766.CrossRefGoogle Scholar
McDonald, J. R., Head, J., Bale, J. S. and Walters, K. F.A. (2000). Cold tolerance, overwintering and establishment potential of Thrips palmi. Physiological Entomology 25, 159–166.CrossRefGoogle Scholar
Moorhead, D. L., Wall, D. H., Virginia, R. A. and Parsons, A. N. (2002). Distribution and life-cycle of Scottnema lindsayae (Nematoda) in Antarctic soils: a modeling analysis of temperature responses. Polar Biology 25, 118–125.CrossRefGoogle Scholar
Norton, R. A. (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In Ecological and Evolutionary Analyses of Life-History Patterns, ed. Houck, M.New York: Chapman & Hall, pp. 99–135.Google Scholar
Panikov, N. S. (1995). Microbial Growth Kinetics. London: Chapman & Hall.Google Scholar
Peck, L. S., Convey, P. and Barnes, D. K. A. (2006). Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews 81, 75–109.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. and Wikelski, M. (2002). The physiology/life-history nexus. Trends in Ecology and Evolution 17, 462–468.CrossRefGoogle Scholar
Rinehart, J. P., Hayward, S. A. L., Elnitsky, M. A., Sandro, L. H., Lee, R. E. and Denlinger, D. L. (2006). Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proceedings of the National Academy of Sciences, USA 103, 14227–14227.CrossRefGoogle Scholar
Ring, R. A. and Danks, H. V. (1994). Desiccation and cryoprotection: overlapping adaptations. Cryo-Letters 15, 181–190.Google Scholar
Rozema, J. (ed.) (1999). Stratospheric Ozone Depletion, the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Leiden: Backhuys.
Simon, J.-C., Bonhomme, J., Blackman, R. L. and Hulle, M. (2008). Winged morph of the high arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae): abundance, reproductive status, and ecological significance. Canadian Entomologist 140, 385–387.CrossRefGoogle Scholar
Sinclair, B. J. (2001). Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 93, 286–293.CrossRefGoogle Scholar
Sinclair, B. J. and Chown, S. L. (2005a). Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Journal of Experimental Biology 208, 869–879.CrossRefGoogle Scholar
Sinclair, B. J. and Chown, S. L. (2005b). Caterpillars benefit from thermal ecosystem engineering by Wandering Albatrosses on sub-Antarctic Marion Island, Biology Letters, doi: 10.1098/rsbl.(2005).0384.CrossRef
Sinclair, B. J., Vernon, P., Klok, C. J. and Chown, S. L. (2003a). Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution 18, 257–262.CrossRefGoogle Scholar
Sinclair, B. J., Klok, C. J., Scott, M. B., Terblanche, J. S. and Chown, S. L. (2003b). Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology 49, 1049–1061.CrossRefGoogle ScholarPubMed
Smith, R. I. L. (1984). Terrestrial plant biology of the sub-Antarctic and Antarctic. In Antarctic Ecology, ed. Laws, R. M.London: Academic Press, pp. 61–162.Google Scholar
Smith, R. I. L. (1988). Recording bryophyte microclimate in remote and severe environments. In Methods in Bryology, ed. Glime, J. M.Nichnan: Hattori Botanical Laboratory.Google Scholar
Sømme, L. (1986). Ecology of Cryptopygus sverdrupi (Insecta: Collembola) from, Dronning Maud Land, Antarctica. Polar Biology 6, 179–184.CrossRefGoogle Scholar
Sømme, L. (1989). Adaptations of terrestrial arthropods to the alpine environment. Biological Reviews 64, 367–407.CrossRefGoogle Scholar
Sømme, L. (1995). Invertebrates in Hot and Cold Arid Environments. Berlin: Springer.CrossRefGoogle Scholar
Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies. Journal of Animal Ecology 46, 337–365.CrossRefGoogle Scholar
Southwood, T. R. E. (1988). Tactics, strategies and templets. Oikos 52, 3–18.CrossRefGoogle Scholar
Søvik, G. and Leinaas, H. P. (2003). Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acari, Oribatida) from Svalbard. Polar Biology 26, 500–508.CrossRefGoogle Scholar
Søvik, G., Leinaas, H. P., Ims, R. A. and Solhoy, T. (2003). Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari, Oribatida) on the High Arctic archipelago of Svalbard. Pedobiologia 47, 257–271.CrossRefGoogle Scholar
Strathdee, A. T., Bale, J. S., Block, W. C., Coulson, S. J., Hodkinson, I. D. and Webb, N. R. (1993a). Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Oecologia 96, 457–465.CrossRefGoogle ScholarPubMed
Strathdee, A. T., Bale, J. S., Block, W. C., Webb, N. R., Hodkinson, I. D. and Coulson, S. J. (1993b). Extreme adaptive life cycle in a High Arctic aphid, Acyrthosiphon svalbardicum. Ecological Entomology 18, 254–258.CrossRefGoogle Scholar
Strathdee, A. T., Bale, J. S., Strathdee, F. C., Block, W., Coulson, S. J., Hodkinson, I. D. and Webb, N. R. (1995). Climatic severity and the response to warming of Arctic aphids. Global Change Biology 1, 23–28.CrossRefGoogle Scholar
Sugg, P., Edwards, J. S. and Baust, J. (1983). Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecological Entomology 8, 105–113.CrossRefGoogle Scholar
Usher, M. B., Block, W. and Jumeau, P. J. A. M. (1989). Predation by arthropods in an Antarctic terrestrial community. In University Research in Antarctica (Antarctic Special Topic), ed. Heywood, R. B.Cambridge: British Antarctic Survey, pp. 123–129.Google Scholar
Vasseur, D. A. and Yodzis, P. (2004). The color of environmental noise. Ecology 85, 1146–1152.CrossRefGoogle Scholar
Walther, G.-R., Post, E., Convey, P., Parmesan, C., Menzel, M., Beebee, T. J.C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.CrossRefGoogle ScholarPubMed
West, C. (1982). Life histories of three species of sub-Antarctic oribatid mite. Pedobiologia 23, 59–67.Google Scholar
Worland, M. R. and Convey, P. (2001). Rapid cold hardening in Antarctic microarthropods. Functional Ecology 15, 515–525.CrossRefGoogle Scholar
Worland, M. R. and Convey, P. (2008). The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology 54, 1281–1285.CrossRefGoogle ScholarPubMed
Worland, M. R., Grubor-Lajsic, G. and Montiel, P. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44, 211–219.CrossRefGoogle Scholar
Worland, M. R. and Lukesová, A. (2000). The effect of feeding on specific soil algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biology 23, 766–774.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×