Published online by Cambridge University Press: 31 March 2017
Abstract. A set A is Martin-Lof random iff the class ﹛A﹜ does not have measure 0. A set A is PA-complete if one can compute relative to A a consistent and complete extension of Peano Arithmetic. It is shown that every Martin-Lof random set either permits to solve the halting problem K or is not PA-complete. This result implies a negative answer to the question of Ambos-Spies and Kucera whether there is a Martin-Lof random set not above K which is also PA-complete.
Introduction. Gacs [3] and Kucera [7, 8] showed that every set can be computed relative to a Martin-Lof random set. In particular, for every set B there is a Martin-Lof random set A such that where K is the halting problem. A can even be chosen such that the reduction from B to A is a weak truth-table reduction, Merkle and Mihailovic [12] give a simplified proof for this fact.
A natural question is whether it is necessary to go up to the degree of in order to find the random set A. Martin-L of random sets can be found below every set which is PA-complete, so there are Martin-Lof random sets in low and in hyperimmune-free Turing degrees. A set A is called PA-complete if one can compute relative to A a complete and consistent extension of the set of first-order formulas provable in Peano Arithmetic. An easier and equivalent definition of being PA-complete is to say that given any partial-recursive and ﹛0, 1﹜-valued function, one can compute relative to A a total extension Ψ of. One can of course choose Ψ such that also Ψ is ﹛0, 1﹜-valued.
Extending all possible ﹛0, 1﹜-valued partial-recursive functions is as difficult as to compute a ﹛0, 1﹜-valued DNR function. A diagonally nonrecursive (DNR) function f satisfies whenever is defined.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.