Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T11:03:25.130Z Has data issue: false hasContentIssue false

An introduction to proofs of determinacy of long games

from TUTORIALS

Published online by Cambridge University Press:  31 March 2017

Matthias Baaz
Affiliation:
Technische Universität Wien, Austria
Sy-David Friedman
Affiliation:
Universität Wien, Austria
Jan Krajíček
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Abstract. We present the basic methods used in proofs of determinacy of long games, and apply these methods to games of continuously coded length.

From the dawn of time women and men have aspired upward. The development of determinacy proofs is no exception to this general rule. There has been a steady search for higher forms of determinacy, beginning with the results of Gale–Stewart [2] on closed length ω games and continuing to this day. Notable landmarks in this quest include proofs of Borel determinacy in Martin [5]; analytic determinacy in Martin [4]; projective determinacy in Martin–Steel [8]; and ADL(R) in Woodin [17]. Those papers consider length ω games with payoff sets of increasing complexity. One could equivalently fix the complexity of the payoff and consider games of increasing length. Such “long games” form the topic of this paper.

Long games form a natural hierarchy, the hierarchy of increasing length. This hierarchy can be divided into four categories: games of length less than ω · ω; games of fixed countable length; games of variable countable length; and games of length ω1.

Games in the first category can be reduced to standard games of length ω, at the price of increasing payoff complexity. The extra complexity only involves finitely many real quantifiers. Thus the determinacy of games of length less than ω · ω, with analytic payoff say, is the same as projective determinacy.

Games in the second category can be reduced to combinations of standard games of length ω, with increased payoff complexity, and some additional strength assumptions. The first instance of this is given in Blass [1]. The techniques presented there can be used to prove the determinacy of length ω ·ω games on natural numbers, with analytic payoff say, from ADL(R) + “R# exists.” In another, choiceless reduction to standard games, Martin and Woodin independently showed that AD + “all sets of reals admit scales” implies that all games in the second category are determined.

It is in the third category that the methods presented here begin to yield new determinacy principles. (The one previously known determinacy proof for games in the third category is a theorem of Steel [16], which applies to games of the kind described in Remark 1.1.)

Neeman [15] concentrates on third category games.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Andreas, Blass, Equivalence of two strong forms of determinacy, Proceedings of the American Mathematical Society, vol. 52 (1975), pp. 373–376.Google Scholar
[2] David, Gale and Frank M., Stewart, Infinite games with perfect information, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, 1953, pp. 245–266.
[3] Akihiro, Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer- Verlag, Berlin, 1994.
[4] Donald, A.Martin, Measurable cardinals and analytic games, FundamentaMathematicae, vol. 66 (1970), pp. 287–291.Google Scholar
[5] Donald, A.Martin, Borel determinacy, Annals of Mathematics, vol. 102 (1975), pp. 363–371.Google Scholar
[6] Donald, A.Martin, The real game quantifier propagates scales, Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, 1983, pp. 157–171.
[7] Donald, A.Martin, A purely inductive proof of Borel determinacy, Proceedings of Symposia in Pure Mathematics, vol. 42 (1985), pp. 303–308.
[8] Donald A., Martin and John, Steel, A proof of projective determinacy, Journal of the American Mathematical Society, vol. 2 (1989), no. 1, pp. 71–125.Google Scholar
[9] Donald A., Martin, Iteration trees, Journal of the AmericanMathematical Society, vol. 7 (1994), no. 1, pp. 1–73.
[10] Yiannis, Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North Holland Publishing Company, Amsterdam-New York, 1980.
[11] Yiannis, Moschovakis, Scales on coinductive sets, Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, 1983, pp. 77–85.
[12] Itay, Neeman, Optimal proofs of determinacy, The Bulletin of Symbolic Logic, vol. 1 (1995), no. 3, pp. 327–339.Google Scholar
[13] Yiannis, Moschovakis, Inner models in the region of a Woodin limit of Woodin cardinals, Annals of Pure and Applied Logic, vol. 116 (2002), pp. 67–155.Google Scholar
[14] Yiannis, Moschovakis, Optimal proofs of determinacy II, Journal of Mathematical Logic, vol. 2 (2002), no. 2, pp. 227–260.Google Scholar
[15] Yiannis, Moschovakis, Long games, in preparation.
[16] John, Steel, Long games, Cabal seminar 81–85, Lecture Notes in Mathematics, vol. 1333, Springer-Verlag, 1988, pp. 56–97.
[17] W., Hugh Woodin, unpublished work.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×