Book contents
- Frontmatter
- Contents
- Contributing Authors
- Preface to the Third Edition
- Preface to the First Edition
- SECTION I PATHOPHYSIOLOGY OF PEDIATRIC LIVER DISEASE
- SECTION II CHOLESTATIC LIVER DISEASES
- SECTION III HEPATITIS AND IMMUNE DISORDERS
- SECTION IV METABOLIC LIVER DISEASE
- 22 Laboratory Diagnosis of Inborn Errors of Metabolism
- 23 α1-Antitrypsin Deficiency
- 24 Cystic Fibrosis Liver Disease
- 25 Inborn Errors of Carbohydrate Metabolism
- 26 Copper Metabolism and Copper Storage Disorders
- 27 Iron Storage Disorders
- 28 Heme Biosynthesis and the Porphyrias
- 29 Tyrosinemia
- 30 The Liver in Lysosomal Storage Diseases
- 31 Disorders of Bile Acid Synthesis and Metabolism: A Metabolic Basis for Liver Disease
- 32 Inborn Errors of Mitochondrial Fatty Acid Oxidation
- 33 Mitochondrial Hepatopathies
- 34 Nonalcoholic Fatty Liver Disease
- 35 Peroxisomal Diseases
- 36 Urea Cycle Disorders
- SECTION V OTHER CONDITIONS AND ISSUES IN PEDIATRIC HEPATOLOGY
- Index
- Plate section
- References
29 - Tyrosinemia
from SECTION IV - METABOLIC LIVER DISEASE
Published online by Cambridge University Press: 18 December 2009
- Frontmatter
- Contents
- Contributing Authors
- Preface to the Third Edition
- Preface to the First Edition
- SECTION I PATHOPHYSIOLOGY OF PEDIATRIC LIVER DISEASE
- SECTION II CHOLESTATIC LIVER DISEASES
- SECTION III HEPATITIS AND IMMUNE DISORDERS
- SECTION IV METABOLIC LIVER DISEASE
- 22 Laboratory Diagnosis of Inborn Errors of Metabolism
- 23 α1-Antitrypsin Deficiency
- 24 Cystic Fibrosis Liver Disease
- 25 Inborn Errors of Carbohydrate Metabolism
- 26 Copper Metabolism and Copper Storage Disorders
- 27 Iron Storage Disorders
- 28 Heme Biosynthesis and the Porphyrias
- 29 Tyrosinemia
- 30 The Liver in Lysosomal Storage Diseases
- 31 Disorders of Bile Acid Synthesis and Metabolism: A Metabolic Basis for Liver Disease
- 32 Inborn Errors of Mitochondrial Fatty Acid Oxidation
- 33 Mitochondrial Hepatopathies
- 34 Nonalcoholic Fatty Liver Disease
- 35 Peroxisomal Diseases
- 36 Urea Cycle Disorders
- SECTION V OTHER CONDITIONS AND ISSUES IN PEDIATRIC HEPATOLOGY
- Index
- Plate section
- References
Summary
Hepatorenal tyrosinemia is a fascinating inborn error of metabolism that can affect numerous organs, particularly the liver, kidneys, and peripheral nerves. The first report of a patient with elevated blood tyrosine was by Medes in 1932 [1]. Patients with a more typical clinical and biochemical picture of tyrosinemia were then described in the late 1950s [2–5]. Since then, more than 500 patients have been reported in the literature [6–8] or enrolled in the International NTBC [2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione] Trial. Previously, almost all patients died in infancy and early childhood, and only isolated case reports described affected adults. In the 50 years since the description of tyrosinemia [3], the course of the disease has been improved successively by the introduction of diet therapy, neonatal screening, and hepatic transplantation. The advent of liver and kidney transplantation as a definitive treatment [7–11] revolutionized the outcome. Recently, the availability of NTBC, a chemical now designated as nitisinone and commercialized as Orfadin (Swedish Orphan International AB), has provided hope for a nonsurgical solution for some patients. On a fundamental level, tyrosinemia raises questions in hepatology, biochemical and population genetics, cell biology, oncology, and public health.
PATHOPHYSIOLOGY
Tyrosinemia is caused by a deficiency of fumarylacetoacetate hydrolase (FAH; enzyme [EC] 3.7.1.2), the last enzyme of tyrosine degradation (Figure 29.1A). The site of the primary metabolic block in tyrosinemia was elegantly deduced by Lindblad et al. in 1977 [12] and subsequently confirmed enzymatically by several investigators [13–15].
- Type
- Chapter
- Information
- Liver Disease in Children , pp. 694 - 713Publisher: Cambridge University PressPrint publication year: 2007