from Section IV - Metabolic Liver Disease
Published online by Cambridge University Press: 19 January 2021
Mitochondrial fatty acid β-oxidation (FAO) is an essential component of energy production and homeostasis in humans. During periods of limited glucose supply, FAO in the liver provides energy for hepatic function and the acetyl-CoA substrate needed for hepatocytes to synthesize and release ketone bodies into circulation. Ketone bodies provide an alternative energy substrate for peripheral tissues when glucose supply is limited. Other tissues such as skeletal and cardiac muscle rely on FAO for energy production. The oxidation of fatty acids can provide up to 80% of the energy requirements for cardiac and skeletal muscle while sparing glucose for use by the brain and CNS during moderate exercise, fasting, or illness. Disorders in the ability to use fatty acids for energy production manifest during periods of increased energy demands or reduced caloric intake.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.