Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T22:38:38.210Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  21 July 2022

Claudio Zannoni
Affiliation:
University of Bologna, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abascal, J. L. F. and Lago, S. 1985. A unified treatment of the equation of state of hard linear bodies. J. Mol. Liq., 30, 133137.CrossRefGoogle Scholar
Abascal, J. L. F. and Vega, C. 2005. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys., 123, 234505.CrossRefGoogle ScholarPubMed
Abragam, A. 1961. The Principles of Nuclear Magnetism. Oxford: Oxford University Press.Google Scholar
Abraham, F. F. 1986. Computational statistical mechanics methodology, applications and supercomputing. Adv. Phys., 35, 1111.Google Scholar
Abraham, M., Hess, B., van der Spoel, D., Lindahl, E. and development team, GROMACS. 2014. GROMACS User Manual Version 5. 0. 4.Google Scholar
Abramowitz, M. and Stegun, I. A. (eds.). 1965. Handbook of Mathematical Functions. New York: Dover.Google Scholar
Acharya, B. R., Primak, A. and Kumar, S. 2004. Biaxial nematic phase in bent-core thermotropic mesogens. Phys. Rev. Lett., 92, 145506.CrossRefGoogle ScholarPubMed
Adam, C. J., Clark, S. J., Ackland, G. J. and Crain, J. 1997. Conformation-dependent dipoles of liquid crystal molecules and fragments from first principles. Phys. Rev. E, 55, 56415649.CrossRefGoogle Scholar
Adams, D. J., Luckhurst, G. R. and Phippen, R. W. 1987. Computer simulation studies of anisotropic systems. XVII. The Gay-Berne model nematogen. Mol. Phys., 61, 15751580.CrossRefGoogle Scholar
Adlem, K., Copic, M., Luckhurst, G. R., et al. 2013. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants. Phys. Rev. E, 88, 022503.CrossRefGoogle ScholarPubMed
Afghah, S., Selinger, R. L. B. and Selinger, J. V. 2018. Visualising the crossover between 3D and 2D topological defects in nematic liquid crystals. Liq. Cryst., 45, 111.CrossRefGoogle Scholar
Agarwal, U. and Escobedo, F. A. 2011. Mesophase behaviour of polyhedral particles. Nat. Mater., 10, 230235.CrossRefGoogle ScholarPubMed
Alder, B. J. and Wainwright, T. E. 1957. Phase transition for a hard sphere system. J. Chem. Phys., 27, 12081209.Google Scholar
Allara, D. L. 2005. A perspective on surfaces and interfaces. Nature, 437, 638639.Google Scholar
Allen, M. P. 1984. A molecular dynamics simulation study of octopoles in the field of a planar surface. Mol. Phys., 52, 717732.CrossRefGoogle Scholar
Allen, M. P. 2019. Molecular simulation of liquid crystals. Mol. Phys., 117, 23912417.Google Scholar
Allen, M. P. and Masters, A. 1993. Čomputer simulation of a twisted nematic liquid crystal. Mol. Phys., 79, 277289.CrossRefGoogle Scholar
Allen, M. P. and Tildesley, D. J. 2017. Computer Simulation of Liquids. 2nd ed. Oxford: Oxford University Press.CrossRefGoogle Scholar
Allen, M. P. and Warren, M. A. 1997. Simulation of structure and dynamics near the isotropic-nematic transition. Phys. Rev. Lett., 78, 12911294.Google Scholar
Allen, M. P., Frenkel, D. and Talbot, J. 1989. Molecular dynamics simulation using hard particles. Computer Phys. Rep., 9, 301353.CrossRefGoogle Scholar
Allen, M. P., Evans, G. T., Frenkel, D. and Mulder, B. M. 1993. Hard convex body fluids. Adv. Chem. Phys., 86, 1166.Google Scholar
Allen, M. P., Camp, P. J., Mason, C. P., Evans, G. T. and Masters, A. J. 1996a. Viscosities of isotropic hard particle fluids. J. Chem. Phys., 105, 1117511182.Google Scholar
Allen, M. P., Warren, M. A., Wilson, M. R., Sauron, A. and Smith, W. 1996b. Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals. J. Chem. Phys., 105, 28502858.CrossRefGoogle Scholar
Allender, D. W. and Doane, J. W. 1978. Biaxial order parameters in liquid crystals: Their meaning and determination with nuclear quadrupole resonance. Phys. Rev. A, 17, 11771180.Google Scholar
Allinger, N. L. 1977. Conformational analysis. 130. MM2. Hydrocarbon force field utilizing V1 and V2 torsional terms. J. Amer. Chem. Soc., 99, 81278134.CrossRefGoogle Scholar
Allinger, N. L. and Lii, J. H. 1987. Benzene, aromatic rings, Van der Waals molecules, and crystals of aromatic-molecules in molecular mechanics (MM3). J. Comput. Chem., 8, 11461153.CrossRefGoogle Scholar
Allinger, N. L., Chen, K. S. and Lii, J. H. 1996. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem., 17, 642668.3.0.CO;2-U>CrossRefGoogle Scholar
Allinger, N. L., Yuh, Y. H. and Lii, J. H. 1989. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Amer. Chem. Soc., 111, 85518566.Google Scholar
Allinger, N. L., Tribble, M. T., Miller, M. A. and Wertz, D. H. 1971. Conformational analysis. 69. Improved force field for calculation of structures and energies of hydrocarbons. J. Amer. Chem. Soc., 93, 16371648.CrossRefGoogle Scholar
Aloe, R., Chidichimo, G. and Golemme, A. 1991. Molecular reorientation in PDLC films monitored by 2H-NMR: electric field induced reorientation mechanism and optical properties. Mol. Cryst. Liq. Cryst., 203, 924.Google Scholar
Als-Nielsen, J. and McMorrow, D. 2011. Elements of Modern X-ray Physics. 2nd ed. Chichester: Wiley.CrossRefGoogle Scholar
Altmann, S. L. 1977. Induced Representations in Crystals and Molecules: Point, Space and Nonrigid Molecule Groups. London: Academic Press.Google Scholar
Altmann, S. L. 2005. Rotations, Quaternions, and Double Groups. New York: Dover.Google Scholar
Ambrozic, M., Formoso, P., Golemme, A. and Žumer, S. 1997. Anchoring and droplet deformation in polymer dispersed liquid crystals: NMR study in an electric field. Phys. Rev. E, 56, 18251832.CrossRefGoogle Scholar
Amovilli, C., Cacelli, I., Campanile, S. and Prampolini, G. 2002. Calculation of the intermolecular energy of large molecules by a fragmentation scheme: application to the 4-n-pentyl-4′-cyanobiphenyl (5CB) dimer. J. Chem. Phys., 117, 30033012.CrossRefGoogle Scholar
Andersen, H. C. 1980. Molecular dynamics at constant pressure and/or temperature. J. Chem. Phys., 72, 23842393.CrossRefGoogle Scholar
Andersen, H. C. 1983. RATTLE-a velocity version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys., 52, 2434.CrossRefGoogle Scholar
Andersen, H. C., Chandler, D. and Weeks, J. D. 1976. Roles of repulsive and attractive forces in liquids: The equilibrium theory of classical fluids. Adv. Chem. Phys., 34, 105155.Google Scholar
Anderson, J. C., Leaver, K. D., Rawlings, R. D. and Alexander, J. M. 1990. Materials Science. London: Chapman and Hall.CrossRefGoogle Scholar
Anderson, P. W. 1954. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. Japan, 9, 316339.CrossRefGoogle Scholar
Anderson, P. W. 1981. Some general thoughts about broken symmetry. In Boccara, N. (ed.), Symmetries and Broken Symmetries in Condensed Matter Physics, Paris: IDSET, pp. 1120.Google Scholar
Andrienko, D. and Allen, M. P. 2002. Theory and simulation of the nematic zenithal anchoring coefficient. Phys. Rev. E, 65, 021704.CrossRefGoogle ScholarPubMed
Andrienko, D., Germano, G. and Allen, M. P. 2001. Computer simulation of topological defects around a colloidal particle or droplet dispersed in a nematic host. Phys. Rev. E, 63, 041701.CrossRefGoogle ScholarPubMed
Anezo, C., de Vries, A. H., Holtje, H. D., Tieleman, D. P. and Marrink, S. J. 2003. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B, 107, 94249433.CrossRefGoogle Scholar
Anisimov, M. A. 1987. Universality of the critical dynamics and the nature of the nematic-isotropic phase transition. Mol. Cryst. Liq. Cryst., 146, 435461.CrossRefGoogle Scholar
Arcioni, A., Tarroni, R. and Zannoni, C. 1988. Fluorescence Depolarization in liquid crystals. In Samorì, B. and Thulstrup, E. (eds.), Polarized Spectroscopy of Ordered Systems. Dordrecht: Kluwer, pp. 421453.CrossRefGoogle Scholar
Arcioni, A., Bertinelli, F., Tarroni, R. and Zannoni, C. 1987. Time resolved Fluorescence Depolarization in a nematic liquid crystal. Mol. Phys., 61, 11611181.CrossRefGoogle Scholar
Arcioni, A., Bertinelli, F., Tarroni, R. and Zannoni, C. 1990. A Fluorescence Depolarization study of the order and dynamics of 1,8-diphenyloctatetraene in a nematic liquid crystal. Chem. Phys., 143, 259270.CrossRefGoogle Scholar
Arfken, G. B. and Weber, H. J. 1995. Mathematical Methods for Physicists. San Diego, CA: Academic Press.Google Scholar
Arnold, A. and Holm, C. 2005. MMM1D: a method for calculating electrostatic interactions in 1D periodic geometries. J. Chem. Phys., 123, 144103.CrossRefGoogle Scholar
Arunan, E., Desiraju, G. R., Klein, R. A., et al. 2011. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem., 83, 16371641.CrossRefGoogle Scholar
Ashcroft, N. W. and Mermin, N. D. 1976. Solid State Physics. New York: Harcourt.Google Scholar
Atkins, P. W. 1978. Physical Chemistry. Oxford: Oxford University Press.Google Scholar
Atkins, P. W. 1983. Molecular Quantum Mechanics. Oxford: Oxford University Press.Google Scholar
Attard, G. S., Beckmann, P. A., Emsley, J. W., Luckhurst, G. R. and Turner, D. L. 1982. Pretransitional behavior in nematic liquid crystals. A Nuclear Magnetic Resonance study. Mol. Phys., 45, 11251129.CrossRefGoogle Scholar
Attard, G. S., Glyde, J. C. and Goltner, C. G. 1995. Liquid crystalline phases as templates for the synthesis of mesoporous silica. Nature, 378, 366368.Google Scholar
Atwood, J. L., Barbour, L. J., Hardie, M. J. and Raston, C. 2001. Metal sulfonatocalix[4,5]arene complexes: bilayers, capsules, spheres, tubular arrays and beyond. Coord. Chem. Rev., 222, 332.CrossRefGoogle Scholar
Avogadro. An Open-Source Molecular Builder and Visualization Tool, http://avogadro.openmolecules.netGoogle Scholar
Axenov, K. V. and Laschat, S. 2011. Thermotropic ionic liquid crystals. Materials, 4, 206259.CrossRefGoogle ScholarPubMed
Ayton, G. and Patey, G. N. 1996. Ferroelectric order in model discotic nematic liquid crystals. Phys. Rev. Lett., 76, 239242.Google Scholar
Azzam, R. M. A. 1978. Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4 x 4 matrix calculus. JOSA, 68, 17561767.CrossRefGoogle Scholar
Bacchiocchi, C. and Zannoni, C. 1998. Directional energy transfer in columnar liquid crystals: a computer simulation study. Phys. Rev. E, 58, 32373244.Google Scholar
Bacchiocchi, C., Miglioli, I., Arcioni, A., et al. 2009. Order and dynamics inside H-PDLC nanodroplets. An ESR spin probe study. J. Phys. Chem. B, 113, 53915402.CrossRefGoogle ScholarPubMed
Baerends, E. J., Ziegler, T., Atkins, A. J., et al. 2021. ADF Manual. Amsterdam Modeling Suite 2021.1. Amsterdam: SCM.Google Scholar
Baggioli, A., Casalegno, M., Raos, G., et al. 2019. Atomistic simulation of phase transitions and charge mobility for the organic semiconductor Ph-BTBT-C10. Chem. Mater., 31, 70927103.CrossRefGoogle Scholar
Bahr, C. 1994. Influence of dimensionality and surface ordering on phase transitions: studies of freely-suspended liquid crystal films. Int. J. Mod. Phys. B, 8, 30513082.CrossRefGoogle Scholar
Bahturin, Y. 1993. Basic Structures of Modern Algebra. Dordrecht: Kluwer.CrossRefGoogle Scholar
Bailly-Reyre, A. and Diep, H. T. 2015. Phase transition of mobile Potts model for liquid crystals. Physics Procedia, 75, 557564.CrossRefGoogle Scholar
Baker, G. A. and Gammel, J. L. 1970. The Padé Approximant in Theoretical Physics. New York: Academic Press.Google Scholar
Baker, K. N., Fratini, A. V., Resch, T., et al. 1993. Crystal-structures, phase transitions and energy calculations of poly(p-phenylene) oligomers. Polymer, 34, 15711587.CrossRefGoogle Scholar
Bakhmutov, V. I. 2015. NMR Spectroscopy in Liquids and Solids. Boca Raton, FL: CRC Press.Google Scholar
Balescu, R. 1975. Equilibrium and NonEquilibrium Statistical Mechanics. New York: Wiley.Google Scholar
Ball, J. M. 2017. Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst., 647, 127.Google Scholar
Ball, J. M. and Majumdar, A. 2010. Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst., 525, 111.Google Scholar
BALLview. The BALL Website www.ballview.org/.Google Scholar
Bannister, N., Skelton, J., Kociok-Köhn, G., et al. 2019. Lattice vibrations of γ- and β -coronene from Raman microscopy and theory. Phys. Rev. Mater., 3, 125601.CrossRefGoogle Scholar
Barbero, G. and Barberi, R. 1983. Critical thickness of a hybrid aligned nematic liquid crystal cell. J. de Physique, 44, 609616.CrossRefGoogle Scholar
Barbero, G. and Evangelista, L. R. 2006. Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals. London: Taylor & Francis.Google Scholar
Barbero, G., Ferrero, C., Gunzel, T., Skacej, G. and Žumer, S. 1998. Surface-induced nematic ordering and the localization of a twisted distortion in a nematic cell. Phys. Rev. E, 58, 80248027.CrossRefGoogle Scholar
Barboy, B. and Gelbart, W. M. 1979. Series representation of the equation of state for hard particle fluids. J. Chem. Phys., 71, 30533062.Google Scholar
Barker, J. A. and Henderson, D. 1976. What is ‘liquid’? Understanding the states of matter. Rev. Mod. Phys., 48, 587671.CrossRefGoogle Scholar
Barker, J. A. and Watts, R. O. 1969. Structure of water; a Monte Carlo calculation. Chem. Phys. Lett., 3, 144145.CrossRefGoogle Scholar
Barois, P. 1992. Phase transitions in liquid crystals: introduction to phase transition theories. In Martellucci, S. and Chester, A. (eds.), Phase Transitions in Liquid Crystals. New York: Plenum Press, pp. 4166.CrossRefGoogle Scholar
Barois, P. 1999. Phase transition theories. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Physical Properties of Liquid Crystals. Weinheim: Wiley-VCH, pp. 179207.Google Scholar
Barojas, J., Levesque, D. and Quentrec, B. 1973. Simulation of diatomic homonuclear liquids. Phys. Rev. A, 7, 1092.CrossRefGoogle Scholar
Barry, E., Hensel, Z., Dogic, Z., Shribak, M. and Oldenbourg, R. 2006. Entropy-driven formation of a chiral liquid crystalline phase of helical filaments. Phys. Rev. Lett., 96, 018305.CrossRefGoogle ScholarPubMed
Bates, M. A. 1998. Planar anchoring at the smectic A-isotropic interface. A molecular dynamics simulation study. Chem. Phys. Lett., 288, 209215.CrossRefGoogle Scholar
Bates, M. A. and Luckhurst, G. R. 1996. Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay-Berne discotic at constant pressure. J. Chem. Phys., 104, 66966709.CrossRefGoogle Scholar
Bates, M. A. and Luckhurst, G. R. 1998. Computer simulation studies of anisotropic systems XXIX. Quadrupolar Gay-Berne discs and chemically induced liquid crystal phases. Liq. Cryst., 24, 229241.CrossRefGoogle Scholar
Bates, M. A. and Luckhurst, G. R. 1999a. Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay-Berne mesogen. J. Chem. Phys., 110, 70877108.CrossRefGoogle Scholar
Bates, M. A. and Luckhurst, G. R. 1999b. Computer simulation of liquid crystal phases formed by Gay-Berne mesogens. In Mingos, D. M. P. (ed.), Liquid Crystals I. Struct. Bond. Berlin: Springer, pp. 65138.Google Scholar
Bates, M. A. and Zannoni, C. 1997. A molecular dynamics simulation study of the nematic-isotropic interface of a Gay-Berne liquid crystal. Chem. Phys. Lett., 280, 4045.CrossRefGoogle Scholar
Bates, M. A., Skacej, G. and Zannoni, C. 2010. Defects and ordering in nematic coatings on uniaxial and biaxial colloids. Soft Matter, 6, 655663.CrossRefGoogle Scholar
Bauman, D., Zieba, A. and Mykowska, E. 2008. Orientational behaviour of some homologues of 4-n-pentyl-phenylthio-4’-n-alkoxybenzoate doped with dichroic dye. Opto-Electronics Review, 16, 244250.CrossRefGoogle Scholar
Bautista-Carbajal, G. and Odriozola, G. 2014. Phase diagram of two-dimensional hard ellipses. J. Chem. Phys., 140, 204502.Google Scholar
Bayly, C. I., Cieplak, P., Cornell, W. D. and Kollman, P. A. 1993. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges-the RESP model. J. Phys. Chem., 97, 1026910280.Google Scholar
Bechhoefer, J., Simon, A. J., Libchaber, A. and Oswald, P. 1989. Destabilization of a flat nematic-isotropic interface. Phys. Rev. A, 40, 20422056.CrossRefGoogle ScholarPubMed
Beckmann, P. A., Emsley, J. W., Luckhurst, G. R. and Turner, D. L. 1986. Nuclear spin-lattice relaxation rates in liquid crystals. Results for deuterons in specifically deuterated 4-n-pentyl-4’-cyanobiphenyl in both nematic and isotropic phases. Mol. Phys., 59, 97125.CrossRefGoogle Scholar
Bedolla, E., Padierna, L. C. and Castaneda-Priego, R. 2021. Machine learning for condensed matter physics. J. Phys. Cond. Matter, 33, 053001.Google Scholar
Beljonne, D., Cornil, J., Muccioli, L., et al. 2011. Electronic processes at organic-organic interfaces: insight from modeling and implications for opto-electronic devices. Chem. Mater., 23, 591609.CrossRefGoogle Scholar
Bellec, A., Riedel, D., Dujardin, G., et al. 2009. Electronic properties of the n-doped hydrogenated silicon (100) surface and dehydrogenated structures at 5 K. Phys. Rev. B, 80, 245434.CrossRefGoogle Scholar
Belli, S., Dussi, S., Dijkstra, M. and van Roij, R. 2014. Density functional theory for chiral nematic liquid crystals. Phys. Rev. E, 90, 020503.CrossRefGoogle ScholarPubMed
Bellini, T., Cerbino, R. and Zanchetta, G. 2012. DNA-based soft phases. Topics. Curr. Chem., 318, 22579.Google Scholar
Bellini, T., Radzihovsky, L., Toner, J. and Clark, N. A. 2001. Universality and scaling in the disordering of a smectic liquid crystal. Science, 294, 10741079.CrossRefGoogle ScholarPubMed
Ben-Reuven, A. and Gershon, N. D. 1969. Light scattering by orientational fluctuations in liquids. J. Chem. Phys., 51, 893902.CrossRefGoogle Scholar
Benning, S., Kitzerow, H. S., Bock, H. and Achard, M. F. 2000. Fluorescent columnar liquid crystalline 3, 4, 9, 10-tetra-(n-alkoxycarbonyl)-perylenes. Liq. Cryst., 27, 901906.CrossRefGoogle Scholar
Berardi, R. and Zannoni, C. 2000. Do thermotropic biaxial nematics exist? A Monte Carlo study of biaxial Gay-Berne particles. J. Chem. Phys., 113, 59715979.CrossRefGoogle Scholar
Berardi, R. and Zannoni, C. 2015. Computer simulations of biaxial nematics. In Luckhurst, G. R. and Sluckin, T. J. (eds.), Biaxial Nematic Liquid Crystals. Theory, Simulation and Experiment. Chichester: Wiley, pp. 153184.CrossRefGoogle Scholar
Berardi, R., Emerson, A. P. J. and Zannoni, C. 1993. Monte Carlo investigations of a Gay-Berne liquid crystal. J. Chem. Soc. Faraday Trans., 89, 40694078.Google Scholar
Berardi, R., Cecchini, M. and Zannoni, C. 2003a. A Monte Carlo study of the chiral columnar organizations of dissymmetric discotic mesogens. J. Chem. Phys., 119, 99339946.Google Scholar
Berardi, R., Fava, C. and Zannoni, C. 1998a. A Gay-Berne potential for dissimilar biaxial particles. Chem. Phys. Lett., 297, 814.CrossRefGoogle Scholar
Berardi, R., Fava, C. and Zannoni, C. 1995. A generalized Gay-Berne intermolecular potential for biaxial particles. Chem. Phys. Lett., 236, 462468.CrossRefGoogle Scholar
Berardi, R., Fehervari, M. and Zannoni, C. 1999. A Monte Carlo simulation study of associated liquid crystals. Mol. Phys., 97, 11731184.Google Scholar
Berardi, R., Muccioli, L. and Zannoni, C. 2004a. Can nematic transitions be predicted by atomistic simulations? A computational study of the odd-even effect. Chem. Phys. Chem., 104111.Google Scholar
Berardi, R., Muccioli, L. and Zannoni, C. 2008a. Field response and switching times in biaxial nematics. J. Chem. Phys., 128, 024905.CrossRefGoogle ScholarPubMed
Berardi, R., Orlandi, S. and Zannoni, C. 1996a. Antiphase structures in polar smectic liquid crystals and their molecular origin. Chem. Phys. Lett., 261, 357362.Google Scholar
Berardi, R., Orlandi, S. and Zannoni, C. 2003b. Molecular dipoles and tilted smectic formation: a Monte Carlo study. Phys. Rev. E, 67, 041708.CrossRefGoogle ScholarPubMed
Berardi, R., Ricci, M. and Zannoni, C. 2001. Ferroelectric nematic and smectic liquid crystals from tapered molecules. ChemPhysChem, 2, 443447.Google Scholar
Berardi, R., Ricci, M. and Zannoni, C. 2004b. Ferroelectric and structured phases from polar tapered mesogens. Ferroelectrics, 309, 312.Google Scholar
Berardi, R., Spinozzi, F. and Zannoni, C. 1992. Maximum Entropy internal order approach to the study of intermolecular rotations in liquid crystals. J. Chem. Soc. Faraday Trans., 88, 18631873.CrossRefGoogle Scholar
Berardi, R., Spinozzi, F. and Zannoni, C. 1994. The rotational-conformational distribution of 2,2′-bithienyl in liquid crystals. Liq. Cryst., 16, 381397.CrossRefGoogle Scholar
Berardi, R., Spinozzi, F. and Zannoni, C. 1996b. The conformations of alkyl chains in fluids. A maximum entropy approach. Chem. Phys. Lett., 260, 633638.CrossRefGoogle Scholar
Berardi, R., Spinozzi, F. and Zannoni, C. 1996c. A new maximum entropy conformational analysis of biphenyl in liquid crystal solution. Mol. Cryst. Liq. Cryst. A, 290, 245253.Google Scholar
Berardi, R., Spinozzi, F. and Zannoni, C. 1998b. A multitechnique maximum entropy approach to the determination of the orientation and conformation of flexible molecules in solution. J. Chem. Phys., 109, 37423759.CrossRefGoogle Scholar
Berardi, R., Kuball, H. G., Memmer, R. and Zannoni, C. 1998c. Chiral induction in nematics. A computer simulation study. J. Chem. Soc. Faraday Trans., 94, 12291234.CrossRefGoogle Scholar
Berardi, R., Lintuvuori, J. S., Wilson, M. R. and Zannoni, C. 2011. Phase diagram of the uniaxial and biaxial soft-core Gay-Berne model. J. Chem. Phys., 135, 134119.CrossRefGoogle ScholarPubMed
Berardi, R., Zannoni, C., Lintuvuori, J. S. and Wilson, M. R. 2009. A soft-core Gay-Berne model for the simulation of liquid crystals by Hamiltonian replica exchange. J. Chem. Phys., 131, 174107.CrossRefGoogle ScholarPubMed
Berardi, R., Micheletti, D., Muccioli, L., Ricci, M. and Zannoni, C. 2004c. A computer simulation study of the influence of a liquid crystal medium on polymerization. J. Chem. Phys., 121, 91239130.CrossRefGoogle ScholarPubMed
Berardi, R., Muccioli, L., Orlandi, S., Ricci, M. and Zannoni, C. 2008b. Computer simulations of biaxial nematics. J. Phys. Condens. Matter, 20, 463101116.CrossRefGoogle ScholarPubMed
Berardi, R., Muccioli, L., Orlandi, S., Ricci, M. and Zannoni, C. 2004d. Mimicking electrostatic interactions with a set of effective charges: a genetic algorithm. Chem. Phys. Lett., 389, 373378.CrossRefGoogle Scholar
Berardi, R., Orlandi, S., Photinos, D. J., Vanakaras, A. G. and Zannoni, C. 2002. Dipole strength effects on the polymorphism in smectic A mesophases. Phys. Chem. Chem. Phys., 4, 770777.Google Scholar
Berardi, R., Cainelli, G., Galletti, P., et al. 2005. Can the π-facial selectivity of solvation be predicted by atomistic simulation? J. Amer. Chem. Soc., 127, 1069910706.CrossRefGoogle ScholarPubMed
Berendsen, H. J. C. 2007. Simulating the Physical World. Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics. Cambridge: Cambridge University Press.Google Scholar
Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P. 1987. The missing term in effective pair potentials. J. Phys. Chem., 91, 62696271.CrossRefGoogle Scholar
Berendsen, H. J. C., van der Spoel, D. and van Drunen, R. 1995. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 91, 4356.Google Scholar
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. and Hermans, J. 1981. Interaction models of water in relation to protein hydration. In Pullman, B. (ed.), Intermolecular Forces. Dordrecht: Reidel, pp. 331342.Google Scholar
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Di Nola, A. and Haak, J. R. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81, 36843690.CrossRefGoogle Scholar
Berggren, E. and Zannoni, C. 1995. Rotational diffusion of biaxial probes in biaxial liquid crystal phases. Mol. Phys., 85, 299333.CrossRefGoogle Scholar
Berggren, E., Tarroni, R. and Zannoni, C. 1993. Rotational diffusion of uniaxial probes in biaxial liquid crystal phases. J. Chem. Phys., 99, 61806200.CrossRefGoogle Scholar
Berggren, E., Zannoni, C., Chiccoli, C., Pasini, P. and Semeria, F. 1992. Monte Carlo study of the molecular organization in model nematic droplets. Field effects. Chem. Phys. Lett., 197, 224230.CrossRefGoogle Scholar
Berggren, E., Zannoni, C., Chiccoli, C., Pasini, P. and Semeria, F. 1994a. Computer simulations of nematic droplets with bipolar boundary-conditions. Phys. Rev. E, 50, 29292939.CrossRefGoogle ScholarPubMed
Berggren, E., Zannoni, C., Chiccoli, C., Pasini, P. and Semeria, F. 1994b. Monte Carlo study of the effect of an applied-field on the molecular-organization of polymer dispersed liquid crystal droplets. Phys. Rev. E, 49, 614622.CrossRefGoogle ScholarPubMed
Berggren, E., Zannoni, C., Chiccoli, C., Pasini, P. and Semeria, F. 1995. A Monte Carlo simulation of a Twisted Nematic liquid crystal display. Int. J. Mod. Phys. C, 6, 135141.CrossRefGoogle Scholar
Berlman, I. B. 1971. Handbook of Fluorescence Spectra of Aromatic Molecules. 2nd ed. New York: Academic Press.Google Scholar
Bernassau, J. M., Black, E. P. and Grant, D. M. 1982. Molecular motion in anisotropic medium. I. The effect of the dipolar interaction on nuclear spin relaxation. J. Chem. Phys., 76, 253256.CrossRefGoogle Scholar
Berne, B. J. 1971. Time-dependent properties of condensed media. In Henderson, D. (ed.), Physical Chemistry. An Advanced Treatise. Liquid State, vol. 8B. New York: Academic Press, pp. 539716.Google Scholar
Berne, B. J. and Pechukas, P. 1972. Gaussian model potentials for molecular-interactions. J. Chem. Phys., 56, 42134216.CrossRefGoogle Scholar
Berne, B. J. and Pecora, R. 2000. Dynamic Light Scattering. New York: Dover.Google Scholar
Bernstein, J. 2007. Polymorphism in Molecular Crystals. Oxford: Oxford University Press.CrossRefGoogle Scholar
Berreman, D. W. 1972. Solid surface shape and alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett., 28, 16831686.CrossRefGoogle Scholar
Besler, B. H., Merz, K. M. Jr and Kollman, P. A. 1990. Atomic charges derived from semiempirical methods. J. Comput. Chem., 11, 431439.CrossRefGoogle Scholar
Betten, J. 1987. Irreducible invariants of 4th-order tensors. Math. Model., 8, 2933.Google Scholar
Bhethanabotla, V. R. and Steele, W. 1987. A comparison of hard-body models for axially-symmetric molecules. Mol. Phys., 60, 249251.CrossRefGoogle Scholar
Bi, C. K., Yang, L., Duan, Y. L. and Shi, Y. 2019. A survey on visualization of tensor field. J. Visualization, 22, 641660.CrossRefGoogle Scholar
Biggins, J. S., Warner, M. and Bhattacharya, K. 2009. Supersoft elasticity in polydomain nematic elastomers. Phys. Rev. Lett., 103, 037802.CrossRefGoogle ScholarPubMed
Biggins, J. S., Warner, M. and Bhattacharya, K. 2012. Elasticity of polydomain liquid crystal elastomers. J. Mech. Phys. Solids, 60, 573590.CrossRefGoogle Scholar
Biltonen, R. L. and Lichtenberg, D. 1993. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem. Phys. Lipids, 64, 129142.CrossRefGoogle Scholar
Binder, K. 1976. Monte Carlo investigations of phase transitions and critical phenomena. In Domb, C. and Green, M. S. (eds.), Phase Transitions and Critical Phenomena, vol. 5B. London: Academic Press, pp. 1105.Google Scholar
Binder, K. 1987. Theory of first order phase transitions. Rep. Progr. Phys., 50, 783859.CrossRefGoogle Scholar
Binder, K. (ed.). 1995. Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford: Oxford University Press.CrossRefGoogle Scholar
Binnemans, K. 2005. Ionic liquid crystals. Chem. Rev., 105, 41484204.Google Scholar
Bird, R. B., Armstrong, R. C. and Hassager, D. 1971. Dynamics of Polymeric Liquids. New York: Wiley.Google Scholar
Birgeneau, R. J., Garland, C. W., Kasting, G. B. and Ocko, B. M. 1981. Critical behavior near the nematic-smectic-A transition in butyloxybenzylidene octylaniline (4O.8). Phys. Rev. A, 24, 26242634.CrossRefGoogle Scholar
Birkhoff, G. and Mac Lane, S. 1997. A Survey of Modern Algebra. Wellesley, MA: A. K. Peters.Google Scholar
Biscari, P., Calderer, M. C. and Terentjev, E. M. 2007. Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions. Phys. Rev. E, 75, 051707.Google Scholar
Biscarini, F., Zannoni, C., Chiccoli, C. and Pasini, P. 1991. Head tail asymmetry and ferroelectricity in uniaxial liquid crystals. Model calculations. Mol. Phys., 73, 439461.CrossRefGoogle Scholar
Biscarini, F., Chiccoli, C., Pasini, P., Semeria, F. and Zannoni, C. 1995. Phase diagram and orientational order in a biaxial lattice model – a Monte Carlo study. Phys. Rev. Lett., 75, 18031806.Google Scholar
Bisi, F., Luckhurst, G. R. and Virga, E. G. 2008. Dominant biaxial quadrupolar contribution to the nematic potential of mean torque. Phys. Rev. E, 78, 021710.Google Scholar
Bisi, F., Romano, S. and Virga, E. G. 2007. Uniaxial rebound at the nematic biaxial transition. Phys. Rev. E, 75, 0417051.CrossRefGoogle ScholarPubMed
Bisoyi, H. K. and Kumar, S. 2010. Discotic nematic liquid crystals: science and technology. Chem. Soc. Rev., 39, 26485.CrossRefGoogle ScholarPubMed
Blachnik, N., Kneppe, H. and Schneider, F. 2000. Cotton-Mouton constants and pretransitional phenomena in the isotropic phase of liquid crystals. Liq. Cryst., 27, 12191227.Google Scholar
Blinc, R., O’Reilly, D. E., Peterson, E. M., Lahajnar, G. and Levstek, I. 1968. Proton spin-lattice relaxation study of the liquid crystal transition in p-anisaldazine. Solid State Comm., 6, 839841.CrossRefGoogle Scholar
Blinc, R., Burgar, M., Luzar, M., et al. 1974. Anisotropy of self-diffusion in smectic-A and smectic-C phases. Phys. Rev. Lett., 33, 11921195.CrossRefGoogle Scholar
Blinov, L. M. 1998. On the way to polar achiral liquid crystals. Liq. Cryst., 24, 143152.CrossRefGoogle Scholar
Blinov, L. M. 2011. Structure and Properties of Liquid Crystals. Berlin: Springer.Google Scholar
Blinov, L. M., Kabayenkov, A. Y. and Sonin, A. A. 1989. Experimental studies of the anchoring energy of nematic liquid crystals. Invited Lecture. Liq. Cryst., 5, 645661.CrossRefGoogle Scholar
Blum, L. 1972. Invariant expansion. 2. Ornstein-Zernike equation for nonspherical molecules and an extended solution to mean spherical model. J. Chem. Phys., 57, 18621869.CrossRefGoogle Scholar
Blum, L. and Torruella, A. J. 1972. Invariant expansion for 2-body correlations – Thermodynamic functions, scattering, and Ornstein-Zernike equation. J. Chem. Phys., 56, 303310.Google Scholar
Blumstein, A. 1978. Mesomorphic Order in Polymers and Polymerization in Liquid Crystalline Media. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Blumstein, A. 1985. Polymeric Liquid Crystals. New York: Plenum Press.CrossRefGoogle Scholar
Blunk, D., Bongartz, N., Stubenrauch, C. and Gartner, V. 2009. Syntheses, amphitropic liquid crystallinity, and surface activity of new inositol-based amphiphiles. Langmuir, 25, 78727878.CrossRefGoogle ScholarPubMed
Boden, N. 1990. Self-assembly and self-organisation in fluids. Chem. Britain, 26, 344348.Google Scholar
Boden, N., Bushby, R. J. and Hardy, C. 1985. New mesophases formed by water soluble discoidal amphiphiles. J. de Physique Lett., 46, 325328.CrossRefGoogle Scholar
Boden, N., Bushby, R. J., Ferris, L., Hardy, C. and Sixl, F. 1986. Designing new lyotropic amphiphilic mesogens to optimize the stability of nematic phases. Liq. Cryst., 1, 109125.CrossRefGoogle Scholar
Bolhuis, P. and Frenkel, D. 1997. Tracing the phase boundaries of hard spherocylinders. J. Chem. Phys., 106, 666687.Google Scholar
Bondi, A. 1964. van der Waals volumes and radii. J. Phys. Chem., 68, 441451.CrossRefGoogle Scholar
Bonomi, M., Branduardi, D., Bussi, G., et al. 2009. PLUMED: a portable plugin for free energy calculations with molecular dynamics. Comput. Phys. Comm., 180, 19611972.CrossRefGoogle Scholar
Borshch, V., Kim, Y. K., Xiang, J., et al. 2013. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun., 4, 2635.CrossRefGoogle ScholarPubMed
Bose, T. K. and Saha, J. 2012. Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions. Phys. Rev. E, 86, 050701.Google Scholar
Boselli, L., Lopez, H., Zhang, W., et al. 2020. Classification and biological identity of complex nano shapes. Commun. Mater., 1, 35.CrossRefGoogle Scholar
Böttcher, C. J. F. and Bordewijk, P. 1978. Theory of Electric Polarization. vol. 2. Dielectrics in Time Dependent Fields. Amsterdam: Elsevier.Google Scholar
Böttcher, C. J. F., van Belle, O. C., Bordewijk, P. and Rip, A. 1973. Theory of Electric Polarization. vol. 1, Dielectrics in Static Fields. 2nd ed. Amsterdam: Elsevier.Google Scholar
Böttcher, T., Elliott, H. L. and Clardy, J. 2016. Dynamics of snake-like swarming behavior of vibrio alginolyticus. Biophys. J., 110, 98192.Google Scholar
Boublik, T. 1975. Hard convex body equation of state. J. Chem. Phys., 63, 40844084.Google Scholar
Boublik, T. and Nezbeda, I. 1986. PVT behaviour of hard body fluids. Theory and experiment. Collect. Czechoslov. Chem. Commun., 51, 23012432.CrossRefGoogle Scholar
Bower, D. I. 1981. Orientation distribution functions for uniaxially oriented polymers. J. Polym. Sci. B, 19, 93107.Google Scholar
Bower, D. I. 1982. Orientation distribution functions for biaxially oriented polymers. Polymer, 23, 12511255.Google Scholar
Bowers, K. J., Chow, D. E., Xu, H., et al. 2006. Scalable algorithms for Molecular Dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06).Google Scholar
Boyd, N. J. and Wilson, M. R. 2015. Optimization of the GAFF force field to describe liquid crystal molecules: the path to a dramatic improvement in transition temperature predictions. Phys. Chem. Chem. Phys., 17, 2485124865.Google Scholar
Boyd, N. J. and Wilson, M. R. 2018. Validating an optimized GAFF force field for liquid crystals: TNI predictions for bent-core mesogens and the first atomistic predictions of a dark conglomerate phase. Phys. Chem. Chem. Phys., 20, 14851496.Google Scholar
Bracewell, R. N. 2000. The Fourier Transform and Its Applications. 3rd ed. Boston, MA: McGraw Hill.Google Scholar
Braun, B., Hohla, M. and Kohler, J. 1999. Liquid crystal modeling: Electrostatic and van der Waals interaction energies for molecular building blocks from benzene to cholesterol. Int. J. Mod. Phys. C, 10, 455468.Google Scholar
Brédas, J.-L. and Marder, S. R. (eds.). 2016. The WSPC Reference on Organic Electronics: Organic Semiconductors. Singapore: World Scientific.Google Scholar
Breneman, C. M. and Wiberg, K. B. 1990. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem., 11, 361373.CrossRefGoogle Scholar
Briels, W. J. 1980. An expansion of the intermolecular energy in a complete set of symmetry-adapted functionsconvergence of the series for methane-methane and adamantane-adamantane interactions. J. Chem. Phys., 73, 18501861.CrossRefGoogle Scholar
Brink, D. M. and Satchler, G. R. 1968. Angular Momentum. Oxford: Oxford University Press.Google Scholar
Brochard, F. 1977. Nematic fluids: some easy demonstration experiments. Contemp. Phys., 18, 247264.Google Scholar
Brock, J. D., Birgeneau, R. J., Litster, J. D. and Aharony, A. 1989. Hexatic ordering in liquid crystal films. Contemp. Phys., 30, 321335.Google Scholar
Brock, J. D., Aharony, A., Birgeneau, R. J., et al. 1986. Orientational and positional order in a tilted hexatic liquid crystal phase. Phys. Rev. Lett., 57, 98101.Google Scholar
Broer, D. J., Finkelmann, H. and Kondo, K. 1988. In-situ photopolymerization of an oriented liquid crystalline acrylate. Makromol. Chem., 189, 185194.Google Scholar
Broer, D. J, Hikmet, R. A. M. and Challa, G. 1989. In-situ photopolymerization of oriented liquid crystalline acrylates, 4. Influence of a lateral methyl substituent on monomer and oriented polymer network properties of a mesogenic diacrylate. Macromolec. Chem Phys., 190, 32013215.CrossRefGoogle Scholar
Brommel, F., Kramer, D. and Finkelmann, H. 2012. Preparation of liquid crystalline elastomers. Adv. Polym. Sci., 250, 148.CrossRefGoogle Scholar
Brommel, F., Stille, W., Finkelmann, H. and Hoffmann, A. 2011. Molecular dynamics and biaxiality of nematic polymers and elastomers. Soft Matter, 7, 23872401.CrossRefGoogle Scholar
Brooks, B. R., Bruccoleri, R. E., Olafson, D. J., et al. 1983. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 4, 187217.Google Scholar
Brooks, B. R., Brooks, C. L. III, Mackerell, A. D., et al. 2009. CHARMM: the biomolecular simulation program. J. Comput. Chem., 30, 15451614.Google Scholar
Brown, G. H. and Wolken, J. J. 1979. Liquid Crystals and Biological Structures. New York: Academic Press.Google Scholar
Brown, J. T., Allen, M. P., Martin del Rio, E. and de Miguel, E. 1998a. Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys. Rev. E, 57, 66856699.CrossRefGoogle Scholar
Brown, K. R., Bonnell, D. A. and Sun, S. T. 1998b. Atomic force microscopy of mechanically rubbed and optically buffed polyimide films. Liq. Cryst., 25, 597601.Google Scholar
Brown, R. G. and Ciftan, M. 1996. High-precision evaluation of the static exponents of the classical Heisenberg ferromagnet. Phys. Rev. Lett., 76, 13521355.CrossRefGoogle ScholarPubMed
Bruce, C. D., Berkowitz, M. L., Perera, L. and Forbes, M. D. E. 2002. Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J. Phys. Chem. B, 106, 37883793.Google Scholar
Bucak, S., Cenker, C., Nasir, I., Olsson, U. and Zackrisson, M. 2009. Peptide nanotube nematic phase. Langmuir, 25, 42624265.CrossRefGoogle ScholarPubMed
Buckingham, A. D. 1967a. Angular correlation in liquids. Faraday Discuss., 43, 205211.Google Scholar
Buckingham, A. D. 1967b. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys., 12, 107142.Google Scholar
Buckingham, R. A. 1938. The classical equation of state of gaseous helium, neon and argon. Proc. Roy. Soc. (London) A, 168, 264283.Google Scholar
Budzien, J., Raphael, C., Ediger, M. D. and de Pablo, J. J. 2002. Segmental dynamics in a blend of alkanes: Nuclear Magnetic Resonance experiments and molecular dynamics simulation. J. Chem. Phys., 116, 82098217.Google Scholar
Buining, P. A., Philipse, A. P. and Lekkerkerker, H. N. W. 1994. Phase-behavior of aqueous dispersions of colloidal boehmite rods. Langmuir, 10, 21062114.Google Scholar
Bunning, T. J., Natarajan, L. V., Tondiglia, V. P. and Sutherland, R. L. 2000. Holographic polymer-dispersed liquid crystals (H-PDLCS). Annu. Rev. Mater. Sci., 30, 83115.Google Scholar
Burnell, E. E. and de Lange, C. A. 1998. Prediction from molecular shape of solute orientational order in liquid crystals. Chem. Rev., 98, 23592387.Google Scholar
Burnell, E. E. and de Lange, C. A. 2003. NMR of Ordered Liquids. Dordrecht: Springer.CrossRefGoogle Scholar
Burnett, L. J. and Muller, B. H. 1971. Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: C2D6, C4D10, C6D14. J. Chem. Phys., 55, 58295831.CrossRefGoogle Scholar
Buscaglia, M., Lombardo, G., Cavalli, L., Barberi, R. and Bellini, T. 2010. Elastic anisotropy at a glance: the optical signature of disclination lines. Soft Matter, 6, 54345442.CrossRefGoogle Scholar
Bushby, R. J. and Lozman, O. R. 2002. Discotic liquid crystals 25 years on. Curr. Opin. Colloid Interface Sci., 7, 343354.Google Scholar
Busselez, R., Cerclier, C. V., Ndao, M., et al. 2014. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation. J. Chem. Phys., 141, 15.Google Scholar
Cacelli, I., Prampolini, G. and Tani, A. 2005. Atomistic simulation of a nematogen using a force field derived from quantum chemical calculations. J. Phys. Chem. B, 109, 35313538.Google Scholar
Cacelli, I., De Gaetani, L., Prampolini, G. and Tani, A. 2007. Liquid crystal properties of the n-alkyl-cyanobiphenyl series from atomistic simulations with ab initio derived force fields. J. Phys. Chem. B, 111, 21302137.Google Scholar
Cacelli, I., Cinacchi, G., Geloni, C., Prampolini, G. and Tani, A. 2003. Computer simulation of p-phenyls with interaction potentials from ab-initio calculations. Mol. Cryst. Liq. Cryst., 395, 171182.Google Scholar
Callan-Jones, A. C., Pelcovits, R. A., Slavin, V. A., et al. 2006. Simulation and visualization of topological defects in nematic liquid crystals. Phys. Rev. E, 74, 061701.CrossRefGoogle ScholarPubMed
Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. and Shelley, M. 2004. Fast liquid crystal elastomer swims into the dark. Nat. Mater., 3, 307310.CrossRefGoogle ScholarPubMed
Camp, P. J., Mason, C. P., Allen, M. P., Khare, A. A. and Kofke, D. A. 1996. The isotropic-nematic phase transition in uniaxial hard ellipsoid fluids: coexistence data and the approach to the Onsager limit. J. Chem. Phys., 105, 28372849.Google Scholar
Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. and Vicari, E. 2001. Critical behavior of the three-dimensional XY universality class. Phys. Rev. B, 63, 144520.Google Scholar
Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. and Vicari, E. 2002. Critical exponents and equation of state of the three-dimensional Heisenberg universality class. Phys. Rev. B, 65, 214503.Google Scholar
Caneda-Guzman, E., Moreno-Razo, J. A., Diaz-Herrera, E. and Sambriski, E. J. 2014. Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal. Mol. Phys., 112, 11491159.Google Scholar
Cao, W., Munoz, A., Palffy-Muhoray, P. and Taheri, B. 2002. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater., 1, 111113.Google Scholar
Caprion, D., Bellier-Castella, L. and Ryckaert, J.-P. 2003. Influence of shape and energy anisotropies on the phase diagram of discotic molecules. Phys. Rev. E, 67, 8.CrossRefGoogle ScholarPubMed
Carbone, G. and Rosenblatt, C. 2005. Polar anchoring strength of a tilted nematic: confirmation of the dual easy axis model. Phys. Rev. Lett., 94, 057802.Google Scholar
Carbone, G., Lombardo, G., Barberi, R., Muševič, I. and Tkalec, U. 2009. Mechanically induced biaxial transition in a nanoconfined nematic liquid crystal with a topological defect. Phys. Rev. Lett., 103, 167801.Google Scholar
Care, C. M. and Cleaver, D. J. 2005. Computer simulations of liquid crystals. Rep. Progr. Phys., 1, 26652700.CrossRefGoogle Scholar
Carnahan, N. F. and Starling, K. E. 1969. Equation of state for nonattracting rigid spheres. J. Chem. Phys., 51, 635636.Google Scholar
Caspar, D. L. D. 1964. Assembly and stability of the tobacco mosaic virus particle. In Anfinsen, C. B., Anson, M. L. and Edsall, J. T. (eds.), Advances in Protein Chemistry, vol. 18. New York: Academic Press, pp. 37121.Google Scholar
Catalano, D., Forte, C., Veracini, C. A. and Zannoni, C. 1983. Orientational ordering of some non-cylindrically symmetric solutes in nematic solvents. Israel J. Chemistry, 23, 283289.CrossRefGoogle Scholar
Catalano, D., Di Bari, L., Veracini, C. A., Shilstone, G. N. and Zannoni, C. 1991. A maximum-entropy analysis of the problem of the rotameric distribution for substituted biphenyls studied by proton Nuclear Magnetic Resonance spectroscopy in nematic liquid crystals. J. Chem. Phys., 94, 39283935.CrossRefGoogle Scholar
Cerutti, D. S., Duke, R. E., Darden, T. A. and Lybrand, T. P. 2009. Staggered Mesh Ewald: an extension of the Smooth Particle-Mesh Ewald method adding great versatility. J. Chem. Theory Comput., 5, 23222338.Google Scholar
Cestari, M., Diez-Berart, S., Dunmur, D. A., et al. 2011. Phase behavior and properties of the liquid crystal dimer 1″, 7″-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys. Rev. E, 84, 031704.Google Scholar
Chaikin, P. M. and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chaikin, P. M., Donev, A., Man, W., Stillinger, F. H. and Torquato, S. 2006. Some observations on the random packing of hard ellipsoids. Ind. Eng. Chem. Res., 45, 69606965.Google Scholar
Chakrabarti, D. and Bagchi, B. 2009. Dynamics of thermotropic liquid crystals across the isotropic-nematic transition and their similarity with glassy relaxation in supercooled liquids. Adv. Chem. Phys., 141, 249319.Google Scholar
Chakrabarty, S., Chakrabarti, D. and Bagchi, B. 2006. Power law relaxation and glassy dynamics in Lebwohl-Lasher model near the isotropic-nematic phase transition. Phys. Rev. E, 73, 061706.CrossRefGoogle ScholarPubMed
Chalam, M. K., Gubbins, K. E., de Miguel, E. and Rull, L. F. 1991. A molecular simulation of a liquid crystal model: bulk and confined fluid. Molec. Simul., 7, 357385.Google Scholar
Chami, F. and Wilson, M. R. 2010. Molecular order in a chromonic liquid crystal: a molecular simulation study of the anionic azo dye Sunset Yellow. J. Amer. Chem. Soc., 132, 77947802.Google Scholar
Chan, H., Demortiere, A., Vukovic, L., Kral, P. and Petit, C. 2012. Colloidal nanocube supercrystals stabilized by multipolar Coulombic coupling. ACS Nano, 6, 42034213.Google Scholar
Chandler, D., Weeks, J. D. and Andersen, H. C. 1983. van der Waals picture of liquids, solids, and phase transformations. Science, 220, 787794.Google Scholar
Chandrasekhar, S. 1982. Liquid crystals of disklike molecules. In Brown, G. H. (ed.), Advances in Liquid Crystals, vol. 5. New York: Academic Press, pp. 4778.Google Scholar
Chandrasekhar, S. 1988. Recent developments in the physics of liquid crystals. Contemp. Phys., 29, 527558.Google Scholar
Chandrasekhar, S. 1992. Liquid Crystals. 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chandrasekhar, S. 1993. Discotic liquid crystals. A brief review. Liq. Cryst., 14, 314.Google Scholar
Chang, S. S. 1983. Heat-capacity and thermodynamic properties of para-terphenyl: study of order-disorder transition by automated high-resolution adiabatic calorimetry. J. Chem. Phys., 79, 62296236.CrossRefGoogle Scholar
Chao, C. Y., Maclennan, J. E., Pang, J. Z., Hui, S. W. and Ho, J. T. 1998. Phase behavior of liquid crystal films exhibiting the surface smectic-L phase. Phys. Rev. E, 57, 67576760.Google Scholar
Chapman, D. 1975. Phase transitions and fluidity characteristics of lipids and cell-membranes. Q.Rev. Biophys., 8, 185235.Google Scholar
Charvolin, J. and Hendrikx, Y. 1985. Amphiphilic molecules in lyotropic liquid crystals and micellar phases. In Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 449472.Google Scholar
Chatelain, P. 1943. Orientation of liquid crystals. Bull. Soc. Franc. Miner, 66, 105.Google Scholar
Chen, D., Porada, J. H., Hooper, J. B., et al. 2013. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc. Nat. Acad. Sci. USA, 110, 1593115936.Google Scholar
Chen, G. P., Takezoe, H. and Fukuda, A. 1989. Determination of Ki (i = 1 — 3) and μj (j = 2 — 6) in 5CB by observing the angular dependence of Rayleigh line spectral widths. Liq. Cryst., 5, 341347.CrossRefGoogle Scholar
Chen, K., Ferrenberg, A. M. and Landau, D. P. 1993. Static critical behavior of three-dimensional classical Heisenberg models: A high-resolution Monte Carlo study. Phys. Rev. B, 48, 32493256.Google Scholar
Chen, X., Korblova, E., Dong, D., et al. 2020. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc. Nat. Acad. Sci. USA, 117, 1402114031.Google Scholar
Chen, Y., Ma, P. and Gui, S. 2014. Cubic and hexagonal liquid crystals as drug delivery systems. Biomed. Res. Int., 2014, 815981.Google Scholar
Cheung, D. L., Clark, S. J. and Wilson, M. R. 2002. Parametrization and validation for a force field for liquid-crystal forming molecules. Phys. Rev. E, 65, 051709.Google Scholar
Chiarelli, P., Faetti, S. and Fronzoni, L. 1983. Structural transition at the free-surface of the nematic liquid crystals MBBA and EBBA. J. de Physique, 44, 10611067.CrossRefGoogle Scholar
Chiccoli, C., Pasini, P. and Zannoni, C. 1987. A Monte Carlo simulation of the inhomogeneous Lebwohl-Lasher lattice model. Liq. Cryst., 2, 3954.Google Scholar
Chiccoli, C., Pasini, P. and Zannoni, C. 1988a. Can Monte Carlo detect the absence of ordering in a model liquid crystal? Liq. Cryst., 3, 363368.Google Scholar
Chiccoli, C., Pasini, P. and Zannoni, C. 1988b. A Monte Carlo investigation of the planar Lebwohl-Lasher lattice model. Physica A, 148, 298311.Google Scholar
Chiccoli, C., Pasini, P. and Zannoni, C. 1999a. Hybridly aligned liquid crystal films. A Monte Carlo study of molecular organization and thermodynamics. Mol. Cryst. Liq. Cryst., 336, 123131.Google Scholar
Chiccoli, C., Pasini, P. and Zannoni, C. 2010. Elastic anisotropy and anchoring effects on the textures of nematic films with random planar surface alignment. Mol. Cryst. Liq. Cryst., 516, 111.Google Scholar
Chiccoli, C., Lavrentovich, O. D., Pasini, P. and Zannoni, C. 1997. Monte Carlo simulations of stable point defects in hybrid nematic films. Phys. Rev. Lett., 79, 44014404.CrossRefGoogle Scholar
Chiccoli, C., Pasini, P., Biscarini, F. and Zannoni, C. 1988c. The P4 model and its orientational phase transition. Mol. Phys., 65, 15051524.CrossRefGoogle Scholar
Chiccoli, C., Pasini, P., Guzzetti, S. and Zannoni, C. 1998. A Monte Carlo simulation of an in-plane switching liquid crystal display. Int. J. Mod. Phys. C, 9, 409419.Google Scholar
Chiccoli, C., Pasini, P., Semeria, F. and Zannoni, C. 1990. A computer simulation of nematic droplets with radial boundary conditions. Phys. Lett. A, 150, 311314.Google Scholar
Chiccoli, C., Pasini, P., Semeria, F. and Zannoni, C. 1992. Computer simulations of nematic droplets with toroidal boundary-conditions. Mol. Cryst. Liq. Cryst., 221, 1928.Google Scholar
Chiccoli, C., Pasini, P., Semeria, F. and Zannoni, C. 1993. An application of Cluster Monte Carlo method to the Heisenberg model. Int. J. Mod. Phys. C, 4, 10411048.Google Scholar
Chiccoli, C., Pasini, P., Sarlah, A., Zannoni, C. and Žumer, S. 2003. Structures and transitions in thin hybrid nematic films: a Monte Carlo study. Phys. Rev. E, 67, 050703(R).Google Scholar
Chiccoli, C., Pasini, P., Semeria, F., Sluckin, T. J. and Zannoni, C. 1995. Monte Carlo simulation of the hedgehog defect core in spin systems. J. de Physique II, 5, 427436.CrossRefGoogle Scholar
Chiccoli, C., Pasini, P., Skacej, G., Zannoni, C. and Žumer, S. 1999b. NMR spectra from Monte Carlo simulations of polymer dispersed liquid crystals. Phys. Rev. E, 60, 42194225.Google Scholar
Chiccoli, C., Pasini, P., Skacej, G., Zannoni, C. and Žumer, S. 2000. Dynamical and field effects in polymer-dispersed liquid crystals: Monte Carlo simulations of NMR spectra. Phys. Rev. E, 62, 37663774.Google Scholar
Chiccoli, C., Pasini, P., Škacej, G., Žumer, S. and Zannoni, C. 2005. Lattice spin models of polymer-dispersed liquid crystals. In Pasini, P., Zannoni, C. and Žumer, S. (eds.), Computer Simulations of Liquid Crystals and Polymers. Dordrecht: Kluwer, pp. 125.Google Scholar
Chiccoli, C., Pasini, P., Skacej, G., Zannoni, C. and Žumer, S. 2013. Chirality transfer from helical nanostructures to nematics: a Monte Carlo study. Mol. Cryst. Liq. Cryst., 576, 151156.CrossRefGoogle Scholar
Chiccoli, C., Feruli, I., Lavrentovich, O. D., et al. 2002. Topological defects in schlieren textures of biaxial and uniaxial nematics. Phys. Rev. E, 66, 0307011.Google Scholar
Chiccoli, C., Pasini, P., Zannoni, C., et al. 2019. From point to filament defects in hybrid nematic films. Sci. Rep., 9, 17941.Google Scholar
Chilaya, G. S. and Lisetski, L. N. 1986. Cholesteric liquid crystals – physical-properties and molecular-statistical theories. Mol. Cryst. Liq. Cryst., 140, 243286.Google Scholar
Chirlian, L. E. and Francl, M. M. 1987. Atomic charges derived from electrostatic potentials: a detailed study. J. Comput. Chem., 8, 894905.CrossRefGoogle Scholar
Chirtoc, I., Chirtoc, M., Glorieux, C. and Thoen, J. 2004. Determination of the order parameter and its critical exponent for nCB (n = 5–8) liquid crystals from refractive index data. Liq. Cryst., 31, 229240.Google Scholar
Chmielewski, A. G. 1986. Viscosities coefficients of some nematic liquid crystals. Mol. Cryst. Liq. Cryst., 132, 339352.Google Scholar
Chu, K. C. and McMillan, W. L. 1977. Unified Landau theory for nematic, smectic A, and smectic C phases of liquid crystals. Phys. Rev. A, 15, 11811187.Google Scholar
Chuang, T. J. and Eisenthal, K. B. 1972. Theory of Fluorescence Depolarization by anisotropic rotational diffusion. J. Chem. Phys., 57, 50945097.Google Scholar
Chun, B. J., Choi, J. I. and Jang, S. S. 2015. Molecular dynamics simulation study of sodium dodecyl sulfate micelle: water penetration and sodium dodecyl sulfate dissociation. Colloids Surf. A, 474, 3643.Google Scholar
Ciccotti, G. and Ryckaert, J.-P. 1986. Molecular dynamics simulation of rigid molecules. Computer Phys. Reports, 4, 345392.CrossRefGoogle Scholar
Cifelli, M., Cinacchi, G. and De Gaetani, L. 2006. Smectic order parameters from diffusion data. J. Chem. Phys., 125, 164912.CrossRefGoogle ScholarPubMed
Cifelli, M., Domenici, V., Dvinskikh, S. V., Veracini, C. A. and Zimmermann, H. 2012. Translational self-diffusion in the smectic phases of ferroelectric liquid crystals: an overview. Phase Transit., 85, 861871.Google Scholar
Cinacchi, G. and Schmid, F. 2002. Density functional for anisotropic fluids. J. Phys. Cond. Matter, 14, 1222312234.CrossRefGoogle Scholar
Cinacchi, G., Colle, R. and Tani, A. 2004. Atomistic molecular dynamics simulation of hex-akis(pentyloxy)triphenylene: structure and translational dynamics of its columnar state. J. Phys. Chem. B, 108, 79697977.CrossRefGoogle Scholar
Cinacchi, G., De Gaetani, L. and Tani, A. 2005. Numerical study of a calamitic liquid crystal model: phase behavior and structure. Phys. Rev. E, 71, 031703.Google Scholar
Cladis, P. E. and Kleman, M. 1972. Non-singular disclinations of strength s =+1 in nematics. J. de Physique, 33, 591598.Google Scholar
Cladis, P. E., Bogardus, R. K., Daniels, W. B. and Taylor, G. N. 1977. High-pressure investigation of reentrant nematic-bilayer-smectic-A transition. Phys. Rev. Lett., 39, 720723.Google Scholar
Clark, M. G. 1976. Algebraic derivation of the free energy of a distorted nematic liquid crystal. Mol. Phys., 31, 12871289.Google Scholar
Clark, S. J. 2001. Measurements and calculation of dipole moments, quadrupole moments and polarizabilities of mesogenic molecules. In Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals: Nematics, vol. 25. London: INSPEC, IEE, pp. 113124.Google Scholar
Clark, S. J., Adam, C. J., Ackland, G. J., White, J. and Crain, J. 1997. Properties of liquid crystal molecules from first principles computer simulation. Liq. Cryst., 22, 469475.CrossRefGoogle Scholar
Cleaver, D. J. and Allen, M. P. 1991. Computer simulations of the elastic properties of liquid crystals. Phys. Rev. A, 43, 19181931.CrossRefGoogle ScholarPubMed
Cleaver, D. J., Care, C. M., Allen, M. P. and Neal, M. P. 1996. Extension and generalization of the Gay-Berne potential. Phys. Rev. E, 54, 559567.Google Scholar
Coates, D. and Gray, G. W. 1973. Synthesis ofa cholesterogen with Hydrogen-Deuterium asymmetry. Mol. Cryst. Liq. Cryst., 24, 163177.Google Scholar
Cognard, J. 1984. The anisotropy of the surface tension of polar liquids: the case of liquid crystals. J. Adhes., 17, 123134.Google Scholar
Cole, K. S. and Cole, R. H. 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys., 9, 341351.Google Scholar
Coleman, D. A., Fernsler, J., Chattham, N., et al. 2003. Polarization modulated smectic liquid crystal phases. Science, 301, 12041211.Google Scholar
Coles, H. J. and Jennings, B. R. 1978. Optical and electrical Kerr Effect in 4-n-pentyl-4′-cyanobiphenyl. Mol. Phys., 36, 16611673.Google Scholar
Coles, H. J. and Pivnenko, M. N. 2005. Liquid crystal ‘Blue phases’ with a wide temperature range. Nature, 436, 9971000.CrossRefGoogle ScholarPubMed
Collings, P. J. 1990. Liquid Crystals: Nature’s Delicate Phase of Matter. Bristol: Adam Hilger.Google Scholar
Collings, P. J. and Hird, M. 1997. Introduction to Liquid Crystals. London: Taylor & Francis.Google Scholar
Collyer, A. A. 1990. Lyotropic liquid crystal polymers for engineering applications. Mater. Sci. Tech., 6, 981992.Google Scholar
Cometti, G., Dalcanale, E., Duvosel, A. and Levelut, A. M. 1992. A new, conformationally mobile macrocyclic core for bowl-shaped columnar liquid crystals. Liq. Cryst., 11, 93.Google Scholar
Conradi, M., Ravnik, M., Bele, M., et al. 2009. Janus nematic colloids. Soft Matter, 5, 39053912.Google Scholar
Conti, S., DeSimone, A. and Dolzmann, G. 2002. Semisoft elasticity and director reorientation in stretched sheets of nematic elastomer. Phys. Rev. E, 66, 061710.CrossRefGoogle Scholar
Cook, M. J. and Wilson, M. R. 2001a. Development of an all-atom force field for the simulation of liquid crystal molecules in condensed phases (LCFF). Mol. Cryst. Liq. Cryst., 357, 149165.Google Scholar
Cook, M. J. and Wilson, M. R. 2001b. The first thousand-molecule simulation of a mesogen at the fully atomistic level. Mol. Cryst. Liq. Cryst., 363, 181193.Google Scholar
Corbett, D. and Warner, M. 2009. Deformation and rotations of free nematic elastomers in response to electric fields. Soft Matter, 5, 14331439.Google Scholar
Cornell, W. D., Cieplak, P., Bayly, C. I., et al. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Amer. Chem. Soc., 117, 51795197.CrossRefGoogle Scholar
Costigan, S. C., Booth, P. J. and Templer, R. H. 2000. Estimations of lipid bilayer geometry in fluid lamellar phases. Biochim. Biophys. Acta 1468, 4154.Google Scholar
Cotton, F. A. 1990. Chemical Applications of Group Theory. 3rd ed. New York: Wiley.Google Scholar
Coveney, P. V. and Wan, S. 2016. On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys., 18, 3023630240.Google Scholar
Cox, J. S. G., Woodard, G. D. and McCrone, W. C. 1971. Solid state chemistry of cromolyn sodium (disodium cromoglycate). J. Pharmaceut. Sci., 60, 14581465.Google Scholar
Cramer, C. J. 2004. Essentials of Computational Chemistry. Theories and Models. New York: Wiley.Google Scholar
Crawford, G. P. and Žumer, S. 1995. Saddle-splay elasticity in nematic liquid crystals. Int. J. Mod. Phys. B, 9, 24692514.CrossRefGoogle Scholar
Crawford, G. P. and Žumer, S. (eds.). 1996. Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks. London: Taylor & Francis.Google Scholar
Crawford, G. P., Ondris Crawford, R., Žumer, S. and Doane, J. W. 1993. Anchoring and orientational wetting transitions of confined liquid crystals. Phys. Rev. Lett., 70, 18381841.Google Scholar
Cristinziano, P. L. and Lelj, F. 2007. Atomistic simulation of discotic liquid crystals: Transition from isotropic to columnar phase example. J. Chem. Phys., 127, 134506.Google Scholar
Crooker, P. P. 1983. The cholesteric blue phase – a progress report. Mol. Cryst. Liq. Cryst., 98, 3145.Google Scholar
Crooker, P. P. 2001. Blue Phases. In Kitzerow, H. S. and Bahr, C. (eds.), Chirality in Liquid Crystals. Berlin: Springer, pp. 186222.Google Scholar
Croxton, C. A. 1975. Introduction to Liquid State Physics. London: Wiley.Google Scholar
Cruz-Chu, E. R., Aksimentiev, A. and Schulten, K. 2006. Water-silica force field for simulating nanodevices. J. Phys. Chem. B, 110, 2149721508.Google Scholar
Cuetos, A., Ilnytskyi, J. M. and Wilson, M. R. 2002. Rotational viscosities of Gay-Berne mesogens. Mol. Phys., 100, 38393845.Google Scholar
Cuetos, A., Dennison, M., Masters, A. and Patti, A. 2017. Phase behaviour of hard board-like particles. Soft Matter, 13, 47204732.Google Scholar
Cummins, P. G., Dunmur, D. A. and Laidler, D. A. 1975. Dielectric properties of nematic 4,4′-n- pentylcyanobiphenyl. Mol. Cryst. Liq. Cryst., 30, 109121.Google Scholar
Cygan, R. T., Liang, J.-J. and Kalinichev, A. G. 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B, 108, 12551266.CrossRefGoogle Scholar
Da Como, E., De Angelis, F., Snaith, H. and Walker, A. B. 2016. Unconventional Thin Film Photovoltaics. London: Royal Society of Chemistry.Google Scholar
Damasceno, P. F., Engel, M. and Glotzer, S. C. 2012. Predictive self assembly of polyhedra into complex structures. Science, 337, 453457.Google Scholar
Darden, T., York, D. and Pedersen, L. 1993. Particle Mesh Ewald: an N log(N) method for Ewald sums in large systems. J. Chem. Phys., 98, 1008910092.CrossRefGoogle Scholar
Dash, D. and Wu, X. L. 1997. A shear-induced instability in freely suspended smectic-A liquid crystal films. Phys. Rev. Lett., 79, 14831486.CrossRefGoogle Scholar
Davidson, P. and Gabriel, J.-C. P. 2005. Mineral liquid crystals. Curr. Opin. Colloid Interface Sci., 9, 377383.Google Scholar
De Gaetani, L., Prampolini, G. and Tani, A. 2006. Modeling a liquid crystal dynamics by atomistic simulation with an ab initio derived Force Field. J. Phys. Chem. B, 110, 28472854.CrossRefGoogle ScholarPubMed
de Gennes, P. G. 1971. Short range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst., 12, 193214.Google Scholar
de Gennes, P. G. 1972. An analogy between superconductors and smectics A. Solid State Comm., 10, 753756.Google Scholar
de Gennes, P. G. 1974. The Physics of Liquid Crystals. Oxford: Oxford University Press.Google Scholar
de Gennes, P. G. 1975. Réflexions sur un type de polymères nématiques (Some reflections about a type of nematic liquid crystal polymers). C. R. Acad. Sc. Paris, 281, 101103.Google Scholar
de Gennes, P. G. 1977. Polymeric liquid crystals: Frank elasticity and light scattering. Mol. Cryst. Liq. Cryst., 34, 177182.Google Scholar
de Gennes, P. G. and Pincus, P. A. 1970. Pair correlations in a ferromagnetic colloid. Physik Kondens. Mater., 11, 189198.Google Scholar
de Gennes, P. G. and Prost, J. 1993. The Physics of Liquid Crystals. Oxford: Oxford University Press.Google Scholar
de Gennes, P. G., Hebert, M. and Kant, R. 1997. Artificial muscles based on nematic gels. Macromol. Symp., 113, 3949.CrossRefGoogle Scholar
de Jeu, W. H. 1973. First and second-order nematic-smectic A phase transitions in the series of di-n-alkyl azoxybenzenes. Solid State Comm., 13, 15211523.CrossRefGoogle Scholar
de Jeu, W. H. 1981. Physical properties of liquid crystalline materials in relation to their applications. Mol. Cryst. Liq. Cryst., 63, 83109.Google Scholar
de Jeu, W. H. (ed.). 2012. Liquid Crystal Elastomers: Materials and Applications. Adv. Polym. Sci., vol. 250. Heidelberg: Springer.Google Scholar
de Jeu, W. H. and Ostrovskii, B. I. 2012. Order and disorder in Liquid-Crystalline Elastomers. In de Jeu, W. H. (ed.), Liquid Crystal Elastomers: Materials and Applications. Adv. Polym. Sci., vol. 250, Heidelberg: Springer, 187234.Google Scholar
de Jeu, W. H., Ostrovskii, B. I. and Shalaginov, A. N. 2003. Structure and fluctuations of smectic membranes. Rev. Mod. Phys., 75, 181235.Google Scholar
de Leeuw, S. W., Perram, J. W. and Smith, E. R. 1980a. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. Roy. Soc. London A, 373, 2756.Google Scholar
de Leeuw, S. W., Perram, J. W. and Smith, E. R. 1980b. Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions. Proc. Roy. Soc. London A, 373, 5766.Google Scholar
De Luca, A., Barna, V., Atherton, T. J., et al. 2008. Optical nanotomography of anisotropic fluids. Nat. Phys., 4, 869872.Google Scholar
De Matteis, G. and Romano, S. 2009. Mesogenic lattice models with partly antinematic interactions producing uniaxial nematic phases. Phys. Rev. E, 80, 031702.Google Scholar
De Matteis, G., Romano, S. and Virga, E. G. 2005. Bifurcation analysis and computer simulation of biaxial liquid crystals. Phys. Rev. E, 72, 041706.Google Scholar
De Michele, C., Schilling, R. and Sciortino, F. 2007. Dynamics of uniaxial hard ellipsoids. Phys. Rev. Lett., 98.Google Scholar
de Miguel, E. 2002. Reexamining the phase diagram of the Gay-Berne fluid. Mol. Phys., 100, 24492459.CrossRefGoogle Scholar
de Miguel, E. and Martin Del Rio, E. 1999. Simulation of nematic free surfaces. Int. J. Mod. Phys. C, 10, 431433.Google Scholar
de Miguel, E. and Vega, C. 2002. The global phase diagram of the Gay-Berne model. J. Chem. Phys., 117, 63136322.Google Scholar
de Miguel, E., Rull, L. F. and Gubbins, K. E. 1992. Dynamics of the Gay-Berne fluid. Phys. Rev. A, 45, 38133822.Google Scholar
de Miguel, E., Martin Del Rio, E., Brown, J. T. and Allen, M. P. 1996. Effect of the attractive interactions on the phase behavior of the Gay-Berne liquid crystal model. J. Chem. Phys., 105, 42344249.Google Scholar
de Miguel, E., Rull, L. F., Chalam, M. K. and Gubbins, K. E. 1990. Liquid-vapor coexistence of the Gay-Berne fluid by Gibbs-Ensemble simulation. Mol. Phys., 71, 12231231.Google Scholar
de Miguel, E., Rull, L. F., Chalam, M. K. and Gubbins, K. E. 1991. Liquid crystal phase diagram of the Gay-Berne fluid. Mol. Phys., 74, 405424.Google Scholar
De Raedt, H. and De Raedt, B. 1983. Applications of the generalized Trotter formula. Phys. Rev. A, 28, 3575.Google Scholar
De Santo, P. 2016. SICL conference. 3rd Italy-Brazil Workshop on Liquid Crystals, Portonovo, 19–21 June.Google Scholar
de Souza, R. F., Zaccheroni, S., Ricci, M. and Zannoni, C. 2022. Dynamic self-assembly of active particles in liquid crystals. J. Mol. Liq., 352, 118692.Google Scholar
de Vries, A. H., Mark, A. E. and Marrink, S. J. 2004. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Amer. Chem. Soc., 126, 44884489.Google Scholar
de Vries, A. H., Yefimov, S., Mark, A. E. and Marrink, S. J. 2005. Molecular structure of the lecithin ripple phase. Proc. Nat. Acad. Sci. USA, 102, 53925396.Google Scholar
Deamer, D. W. 2010. From ‘banghasomes’ to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J., 24, 130810.Google Scholar
Delafuente, M. R., Jubindo, M. A. P., Zubia, J., Iglesias, T. P. and Seoane, A. 1994. Low and high-frequency Dielectric-Spectroscopy on a liquid crystal with the phase sequence N*-SA-Sc*. Liq. Cryst., 16, 10511063.Google Scholar
Della Valle, R. G. and Andersen, H. C. 1992. Molecular dynamics simulation of silica liquid and glass. J. Chem. Phys., 97, 26822689.Google Scholar
Demus, D. 1989. One hundred years of liquid crystal chemistry: thermotropic liquid crystals with conventional and unconventional molecular structure. Liq. Cryst., 5, 75110.CrossRefGoogle Scholar
Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.). 1998. Handbook of Liquid Crystals. Low Molecular Weight Liquid Crystals I. Weinheim: Wiley-VCH.Google Scholar
den Boer, W. 2005. Active Matrix Liquid Crystal Displays. Fundamentals and Applications. Amsterdam: Elsevier.Google Scholar
Denham, J. Y., Luckhurst, G. R., Zannoni, C. and Lewis, J. W. 1980. Computer-simulation studies of anisotropic systems.3. Two-dimensional nematic liquid crystals. Mol. Cryst. Liq. Cryst., 60, 185205.Google Scholar
Dennery, P. and Krzywicki, A. 1969. Mathematics for Physicists. New York: Harper & Row.Google Scholar
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P. 1985. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Amer. Chem. Soc., 107, 39023909.Google Scholar
Dickson, C. J., Rosso, L., Betz, R. M., Walker, R. C. and Gould, I. R. 2012. GAFFlipid: a General AMBER force field for the accurate molecular dynamics simulation of phospholipid. Soft Matter, 8, 96179627.CrossRefGoogle Scholar
Dickson, C. J., Madej, B. D., Skjevik, A. A., et al. 2014. Lipid14: the AMBER Lipid force field. J. Chem. Theory Comput., 10, 865879.Google Scholar
Dierking, I. 2003. Textures of Liquid Crystals. New York: Wiley.Google Scholar
Dill, K. A. and Bromberg, S. 2011. Molecular Driving Forces: Statistical Thermodynamics in Chemistry, Physics, Biology, and Nanoscience. 2nd ed. New York: Garland Science.Google Scholar
Dingemans, T. J., Murthy, N. S. and Samulski, E. T. 2001. Javelin-, hockey stick-, and boomerang-shaped liquid crystals. Structural variations on p-quinquephenyl. J. Phys. Chem. B, 105, 88458860.Google Scholar
Dingemans, T. J., Madsen, L. A., Zafiropoulos, N. A., Lin, W. B. and Samulski, E. T. 2006. Uniaxial and biaxial nematic liquid crystals. Phil. Trans. Roy. Soc. A, 364, 26812696.Google Scholar
Dirac, P. A. M. 1929. Quantum mechanics of many-electron systems. Proc. Roy. Soc. A 123, 714733.Google Scholar
Dirac, P. A. M. 1958. The Principles of Quantum Mechanics. 4th ed. Oxford: Clarendon Press.Google Scholar
Diroll, B. T., Greybush, N. J., Kagan, C. R. and Murray, C. B. 2015. Smectic nanorod superlattices assembled on liquid subphases: structure, orientation, defects, and optical polarization. Chem. Mater., 27, 29983008.Google Scholar
Doane, J. W. 1985a. Determination of biaxial structures in lyotropic materials by DNMR. In Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 413420.Google Scholar
Doane, J. W. 1985b. Phase biaxiality in cholesteric and blue phases. In Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 421429.Google Scholar
Doane, J. W. 1990. Polymer dispersed liquid crystal displays. In Bahadur, B. (ed.), Liquid Crystal Applications and Uses, vol. 1. Singapore: Word Scientific, pp. 362396.Google Scholar
Dogic, Z. and Fraden, S. 1997. Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett., 78, 24172420.Google Scholar
Dogic, Z. and Fraden, S. 2000. Cholesteric phase in virus suspensions. Langmuir, 16, 78207824.Google Scholar
Dogic, Z. and Fraden, S. 2006. Ordered phases of filamentous viruses. Curr. Opin. Colloid Interface Sci., 11, 4755.CrossRefGoogle Scholar
Doi, M. 2003. OCTA (Open computational Tool for advanced material technology). Macromol. Symp., 195, 101107.CrossRefGoogle Scholar
Domenici, V., Geppi, M., Veracini, C. A. and Zakharov, A. V. 2005. Molecular dynamics in the smectic A and C* phases in a long-chain ferroelectric liquid crystal: H-2 NMR, dielectric properties, and a theoretical treatment. J. Phys. Chem. B, 109, 1836918377.CrossRefGoogle Scholar
Donald, A. M. and Windle, A. H. 1992. Liquid Crystalline Polymers. Cambridge: Cambridge University Press.Google Scholar
Donev, A., Stillinger, F. H., Chaikin, P. M. and Torquato, S. 2004a. Unusually dense crystal packings of ellipsoids. Phys. Rev. Lett., 92, 255506.Google Scholar
Donev, A., Cisse, I., Sachs, D., et al. 2004b. Improving the density of jammed disordered packings using ellipsoids. Science, 303, 990993.Google Scholar
Dong, R. Y. 1997. Nuclear Magnetic Resonance of Liquid Crystals. New York: Springer.Google Scholar
Dong, R. Y. 2016. Recent NMR Studies of Thermotropic Liquid Crystals. Ann. Reports NMR Spectroscopy, 87, 41174.Google Scholar
Dong, R. Y. and Shen, X. 1996. Rotational diffusion of asymmetric molecules in liquid crystals: a global analysis of deuteron relaxation data. J. Chem. Phys., 105, 21062111.Google Scholar
Dong, R. Y., Emsley, J. W. and Hamilton, K. 1989. Orientational order and dynamics of molecules in the nematic phase of 4-trans-(4-trans-n-propylcyclohexyl)cyclohexanenitrile. Liq. Cryst., 5, 10191031.Google Scholar
Donnio, B. and Bruce, D. W. 1999. Metallomesogens. Struct. Bond., 95, 194247.Google Scholar
Donnio, B., Wermter, H. and Finkelmann, H. 2000. Simple and versatile synthetic route for the preparation of main-chain, liquid crystalline elastomers. Macromolecules, 33, 77247729.Google Scholar
Doucet, J., Levelut, A. M. and Lambert, M. 1973. Long and short range order in the crystalline and smectic B phases of terephthal-bis-butylaniline (TBBA). Mol. Cryst. Liq. Cryst., 24, 317329.Google Scholar
Douliez, J. P., Bechinger, B., Davis, J. H. and Dufourc, E. J. 1996. C-C bond order parameters from 2H and 13C solid-state NMR. J. Phys. Chem., 100, 1708317086.Google Scholar
Dozov, I. 2001. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys. Lett., 56, 247253.Google Scholar
Dozov, I. and Penchev, I. I. 1980. Effect of the rotational depolarization in fluorescent measurements of the nematic order parameters. J. Lumin., 22, 6978.Google Scholar
Dozov, I., Kirov, N. and Fontana, M. P. 1984. Determination of reorientational correlation functions in ordered fluids: IR absorption spectroscopy. J. Chem. Phys., 81, 25852590.Google Scholar
Dozov, I., Kirov, N. and Petroff, B. 1987. Molecular biaxiality and reorientational correlation functions in nematic phases. Theory. Phys. Rev. A, 36, 28702878.Google Scholar
Dreher, R., Meier, G. and Saupe, A. 1971. Selective reflection by cholesteric liquid crystals. Mol. Cryst. Liq. Cryst., 13, 1726.Google Scholar
Drzaic, P. 1988. A new director alignment for droplets of nematic liquid crystal with low bend-to-splay ratio. Mol. Cryst. Liq. Cryst., 154, 289306.Google Scholar
Drzaic, P. and Drzaic, P. S. 2011. Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals. Liq. Cryst., 33, 12811296.Google Scholar
Drzaic, P. S. 1995. Liquid Crystal Dispersions. Singapore: World Scientific.Google Scholar
Du, J. and Cormack, A. N. 2005. Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces. J. Amer. Ceramic Soc., 88, 25322539.Google Scholar
Dubois, E., Perzynski, R., Boue, F. and Cabuil, V. 2000. Liquid-gas transitions in charged colloidal dispersions: small-angle neutron scattering coupled with phase diagrams of magnetic fluids. Langmuir, 16, 56175625.CrossRefGoogle Scholar
Dubois-Violette, E. and Pansu, B. 1988. Frustration and related topology of blue phases. Mol. Cryst. Liq. Cryst., 165, 151182.Google Scholar
Dunmur, D. A. 2001. Measurements of bulk elastic constants of nematics. In Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals: Nematics. London: INSPEC-IEE, pp. 216229.Google Scholar
Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.). 2001. Physical Properties of Liquid Crystals: Nematics. London: INSPEC-IEE.Google Scholar
Dussi, S., Belli, S., van Roij, R. and Dijkstra, M. 2015. Cholesterics of colloidal helices: predicting the macroscopic pitch from the particle shape and thermodynamic state. J. Chem. Phys., 142, 074905.Google Scholar
Dvinskikh, S. V. and Furó, I. 2001. Anisotropic self-diffusion in the nematic phase of a thermotropic liquid crystal by 1H-spin-echo Nuclear Magnetic Resonance. J. Chem. Phys., 115, 19461950.Google Scholar
Dvinskikh, S. V. and Furó, I. 2012. Anisotropic self-diffusion in nematic, smectic-A, and reentrant nematic phases. Phys. Rev. E, 86, 031704.Google Scholar
Eargle, J., Wright, D. and Luthey-Schulten, Z. 2006. Multiple alignment of protein structures and sequences for VMD. Bioinformatics, 22, 504506.Google Scholar
Eastman, P., Friedrichs, M. S., Chodera, J. D., et al. 2013. OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput., 9, 461469.Google Scholar
Ebbens, S., Tu, M. H., Howse, J. R. and Golestanian, R. 2012. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E, 85, 020401.CrossRefGoogle ScholarPubMed
Edmonds, A. R. 1960. Angular Momentum in Quantum Mechanics. 2nd ed. Princeton, NJ: Princeton University Press.Google Scholar
Edwardes, D. 1892. Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Q. J. Math, 26, 68.Google Scholar
Edwards, D. J., Jones, J. W., Lozman, O., et al. 2008. Chromonic liquid crystal formation by Edicol Sunset Yellow. J. Phys. Chem. B, 112, 1462814636.Google Scholar
Egberts, E. and Berendsen, H. J. C. 1988. Molecular-dynamics simulation of a smectic liquid crystal with atomic detail. J. Chem. Phys., 89, 37183732.CrossRefGoogle Scholar
Eggers, D. F., Gregory, N. W., Halsey, G. D. and Rabinovitch, B. S. 1964. Physical Chemistry. New York: Wiley.Google Scholar
Eichhorn, H., Bruce, D. W. and Wöhrle, D. 1998. Amphitropic mesomorphic phthalocyanines – a new approach to highly ordered layers. Adv. Mater., 10, 419422.Google Scholar
Ellena, J. F., Dominey, R. N. and Cafiso, D. S. 1987. Molecular dynamics in sodium dodecyl sulfate micelles elucidated using carbon-13 and proton spin-lattice relaxation, carbon-13 spin-spin relaxation, and proton nuclear Overhauser effect spectroscopy. J. Phys. Chem., 91, 131137.Google Scholar
Emerson, A. P. J., Luckhurst, G. R. and Whatling, S. G. 1994. Computer-simulation studies of anisotropic systems 23. The Gay-Berne discogen. Mol. Phys., 82, 113.Google Scholar
Emerson, A. P. J., Faetti, S. and Zannoni, C. 1997. Monte Carlo simulation of the nematic-vapour interface for a Gay-Berne liquid crystal. Chem. Phys. Lett., 271, 241246.Google Scholar
Emsley, J. W. (ed.). 1985. Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel.Google Scholar
Emsley, J. W. and Lindon, J. C. 1975. NMR Spectroscopy Using Liquid Crystal Solvents. Oxford: Pergamon Press.Google Scholar
Emsley, J. W., Luckhurst, G. R. and Stockley, C. P. 1981. The deuterium and proton-(deuterium) NMR-spectra of the partially deuteriated nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl. Mol. Phys., 44, 565580.CrossRefGoogle Scholar
Emsley, J. W., Fung, B. M., Heaton, N. J. and Luckhurst, G. R. 1987. The potential of mean torque for flexible mesogenic molecules. Determination of the interaction parameters from carbon-hydrogen dipolar couplings for 4-n-alkyl-4′-cyanobiphenyls. J. Chem. Phys., 87, 30993103.Google Scholar
Emsley, J. W., Luckhurst, G. R., Palke, W. E. and Tildesley, D. J. 1992. Computer simulation studies of the dependence on density of the orientational order in nematic liquid crystals. Liq. Cryst., 11, 519530.Google Scholar
Emsley, J. W., Wallington, I. D., Catalano, D., et al. 1993. Comparison of the Maximum-Entropy and Additive Potential methods for obtaining rotational potentials from the NMR spectra of samples dissolved in liquid crystalline solvents -the case of 4-nitro-1-(β,β,β-trifluoroethoxy)benzene. J. Phys. Chem., 97, 65186523.Google Scholar
Endo, N., Matsumoto, T., Kikuchi, H. and Kimura, M. 2016. Study of polymer-stabilised blue phase liquid crystal on a single substrate. Liq. Cryst., 43, 6676.Google Scholar
Ennari, J., Hamara, J. and Sundholm, F. 1997. Vibrational spectra as experimental probes for molecular models of ion-conducting polyether systems. Polymer, 38, 37333744.Google Scholar
Eppenga, R. and Frenkel, D. 1984. Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol. Phys., 52, 13031334.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. 1953. Bateman Manuscript Project. Higher Transcendental Functions. vol. 1. New York: McGraw-Hill.Google Scholar
Ericksen, J. L. 1966. Inequalities in liquid crystal theory. Phys. Fluids, 9, 1205.Google Scholar
Ernst, R. R., Bodenhausen, G. and Wokaun, A. 1991. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Oxford University Press.Google Scholar
Erpenbeck, J. J. and Wood, W. W. 1977. Molecular dynamics techniques for hard-core systems. In Berne, B J. (ed.), Statistical Mechanics B: Time Dependent Processes. New York: Plenum Press, pp. 140.Google Scholar
Escobedo, F. A. 2014. Engineering entropy in soft matter: the bad, the ugly and the good. Soft Matter, 10, 83888400.CrossRefGoogle ScholarPubMed
Essmann, U., Perera, L., Berkowitz, M. L., et al. 1995. A Smooth Particle mesh Ewald method. J. Chem. Phys., 103, 85778593.CrossRefGoogle Scholar
Evangelista, L. R. and Ponti, S. 1995. Intrinsic part of the surface energy for nematics in a pseudo-molecular approach: comparison with experimental results. Phys. Lett. A, 197, 5562.Google Scholar
Evans, D. J. 1977. Representation of orientation space. Mol. Phys., 34, 317325.Google Scholar
Evans, D. J. and Murad, S. 1977. Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Mol. Phys., 34, 327331.CrossRefGoogle Scholar
Evans, D. J. and Murad, S. 1989. Thermal conductivity in molecular fluids. Mol. Phys., 68, 12191223.Google Scholar
Everaers, R. and Ejtehadi, M. R. 2003. Interaction potentials for soft and hard ellipsoids. Phys. Rev. E, 67, 041710.CrossRefGoogle ScholarPubMed
Fabbri, U. and Zannoni, C. 1986. Monte Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition. Mol. Phys., 58, 763788.Google Scholar
Faber, T. E. 1980. A continuum theory of disorder in nematic liquid crystals. 4. Application to lattice models. Proc. Roy. Soc. London A, 370, 509521.Google Scholar
Fano, U. 1957. Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys., 29, 7493.Google Scholar
Fatuzzo, E. and Mason, P. R. 1967. A theory of dielectric relaxation in polar liquids. Proc. Phys. Soc., 90, 741750.Google Scholar
Favre-Nicolin, V. and Cerny, R. 2004. A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z. Kristallogr., 219, 847856.Google Scholar
Favre-Nicolin, V. and Cerny, R. 2007. FOX: a friendly tool to solve nonmolecular structures from powder diffraction. Z. Kristallogr., 222, 105113.Google Scholar
Feller, S. E., Zhang, Y., Pastor, R. W. and Brooks, B. R. 1995. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys., 103, 46134621.Google Scholar
Feng, X. L., Marcon, V., Pisula, W., et al. 2009. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater., 8, 421426.Google Scholar
Ferrarini, A., Luckhurst, G. R., Nordio, P. L. and Roskilly, S. J. 1994. Prediction of the transitional properties of liquid crystal dimers. A molecular field calculation based on the surface tensor parametrization. J. Chem. Phys., 100, 14601469.Google Scholar
Ferrarini, A., Moro, G. J., Nordio, P. L. and Luckhurst, G. R. 1992. A shape model for molecular ordering in nematics. Mol. Phys., 77, 115.CrossRefGoogle Scholar
Ferrario, M. and Ryckaert, J.-P. 1985. Constant pressure-constant temperature molecular dynamics for rigid and partially rigid molecular systems. Mol. Phys., 54, 587603.Google Scholar
Ferrenberg, A. M. and Swendsen, R. H. 1988. New Monte Carlo technique for studying phase-transitions. Phys. Rev. Lett., 61, 26352638.Google Scholar
Feynman, R. P., Leighton, R. and Sands, M. 1963. The Feynman Lectures on Physics. Mechanics, Radiation, Heat. Reading: Addison-Wesley.Google Scholar
Figueirinhas, J. L., Cruz, C., Filip, D., et al. 2005. Deuterium NMR investigation of the biaxial nematic phase in an organosiloxane tetrapode. Phys. Rev. Lett., 94, 107802.Google Scholar
Figuereido Neto, A. and Salinas, S. R. A. 2005. The Physics of Lyotropic Liquid Crystals. Phase Transitions and Structural Properties. Oxford: Oxford University Press.Google Scholar
Fincham, D. and Heyes, D. M. 1985. Recent advances in molecular dynamics computer simulation. Adv. Chem. Phys., 63, 493575.Google Scholar
Findenegg, G. H., Jähnert, S., Akcakayiran, D. and Schreiber, A. 2008. Freezing and melting of water confined in silica nanopores. ChemPhysChem, 9, 26512659.CrossRefGoogle ScholarPubMed
Finkelmann, H. 1982. Synthesis, structure and properties of liquid crystalline side chain polymers. In Ciferri, A., Krigbaum, W. R. and Meyer, R. (eds.), Polymer Liquid Crystals. New York: Academic Press, pp. 3562.Google Scholar
Finkelmann, H. and Rehage, G. 1984. Liquid crystal side-chain polymers. Adv. Polym. Sci., 60-1, 97172.Google Scholar
Finkelmann, H., Kundler, I., Terentjev, E. M. and Warner, M. 1997. Critical stripe-domain instability of nematic elastomers. J. Phys. II France, 7, 10591069.Google Scholar
Finkenzeller, U., Geelhaar, T., Weber, G. and Pohl, L. 1989. Liquid crystalline reference compounds. Liq. Cryst., 5, 313321.Google Scholar
Fiore, A., Mastria, R., Lupo, M. G., et al. 2009. Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J. Amer. Chem. Soc., 131, 22742282.Google Scholar
Fiori, F. and Spinozzi, F. 2010. X-Rays and Neutrons Scattering. In Rustichelli, F., Skrzypek, J. and Albertini, G. (ed.), Innovative Technological Materials : Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling. Heidelberg: Springer, pp. 2138.Google Scholar
Fisher, M. E. 1972. Phase transitions, symmetry and dimensionality. In Conn, G. K. T. and Fowler, G. N. (eds.), Essays in Physics, vol. 4, pp. 4389. New York: Academic Press, pp. 43–89.Google Scholar
Fisz, J. J. 1987. Symmetry simplifications in the description of molecular order and reorientational dynamics in uniaxial molecular systems. 1. Symmetry constraints on the joint probability-distribution function. Chem. Phys., 114, 165185.Google Scholar
Flory, P. J. 1953. Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press.Google Scholar
Flory, P. J. 1956. Phase equilibria in solutions of rod-like particles. Proc. Roy. Soc. A, 234, 7389.Google Scholar
Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. New York: Wiley.Google Scholar
Flury, B. N. and Constantine, G. 1985. Algorithm AS 211: the FG diagonalization algorithm. J. Roy. Stat. Soc C, 34, 177183.Google Scholar
Flury, B. N. and Gautschi, W. 1986. An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM J. Sci. Stat. Comput., 7, 169184.Google Scholar
Flyvbjerg, H. and Petersen, H. G. 1989. Error estimates on averages of correlated data. J. Chem. Phys., 91, 461466.Google Scholar
Foley, J. D. and Van Dam, A. 1982. Fundamentals of Interactive Computer Graphics. Reading: Addison-Wesley.Google Scholar
Fong, C., Le, T. and Drummond, C. J. 2012. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem. Soc. Rev., 41, 12971322.Google Scholar
Fontana, M. P., Rosi, B., Kirov, N. and Dozov, I. 1986. Molecular orientational motions in liquid crystals: a study by Raman and infrared band-shape analysis. Phys. Rev. A, 33, 41324142.Google Scholar
Fontes, E., Heiney, P. A. and de Jeu, W. H. 1988. Liquid crystalline and helical order in a discotic mesophase. Phys. Rev. Lett., 61, 12021205.Google Scholar
Forster, D. 1974. Microscopic theory of flow alignment in nematic liquid crystals. Phys. Rev. Lett., 32, 11611164.Google Scholar
Forster, D. 1975. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. New York: Addison-Wesley.Google Scholar
Forsyth, P. A., Marcelja, S., Mitchell, D. J. and Ninham, B. W. 1978. Ordering in colloidal systems. Adv. Colloid Interface Sci., 9, 3760.Google Scholar
Fraden, S., Maret, G. and Caspar, D. L. D. 1993. Angular-correlations and the isotropic-nematic phase-transition in suspensions of Tobacco Mosaic-Virus. Phys. Rev. E, 48, 28162837.Google Scholar
Francescangeli, O., Stanic, V., Gobbi, L., et al. 2003. Structure of self-assembled liposome-DNA-metal complexes. Phys. Rev. E, 67, 011904.Google Scholar
Francescangeli, O., Stanic, V., Torgova, S. I., et al. 2009. Ferroelectric response and induced biaxiality in the nematic phase of a bent-core mesogen. Adv. Funct. Mater., 19, 25922600.Google Scholar
Frank, F. C. 1958. Liquid crystals. On the theory of liquid crystals. Faraday Discuss., 25, 1928.Google Scholar
Freed, J. H. 1964. Anisotropic rotational diffusion and Electron Spin Resonance linewidths. J. Chem. Phys., 41, 20772083.Google Scholar
Freed, J. H., Nayeem, A. and Rananavare, S. B. 1994. ESR and slow motions in liquid crystals. In Luckhurst, G. R. and Veracini, C. A. (eds.), The Molecular Dynamics of Liquid Crystals, vol. 431. Dordrecht: Kluwer, pp. 365402.Google Scholar
Freiser, M. J. 1970. Ordered states of a nematic liquid. Phys. Rev. Lett., 24, 10411043.Google Scholar
Frenkel, D. 1986. Free energy computation and first-order phase transitions. In Ciccotti, G. and Hoover, W. G. (eds.), Molecular Dynamics Simulation of Statistical-Mechanical Systems. Proceedings of the International School of Physics ‘Enrico Fermi’, Varenna. Amsterdam: North-Holland, pp. 151188.Google Scholar
Frenkel, D. 1987. Computer-simulation of hard-core models for liquid crystals. Mol. Phys., 60, 120.Google Scholar
Frenkel, D. and Mulder, B. M. 1985. The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations. Mol. Phys., 55, 11711192.CrossRefGoogle Scholar
Frenkel, D. and Smit, B. 2002. Understanding Molecular Simulations. From Algorithms to Applications. San Diego, CA: Academic Press.Google Scholar
Frezza, E., Ferrarini, A., Kolli, H. B., Giacometti, A. and Cinacchi, G. 2013. The isotropic-to-nematic phase transition in hard helices: theory and simulation. J. Chem. Phys., 138, 164906.Google Scholar
Friedli, S. and Velenik, Y. 2017. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge: Cambridge University Press.Google Scholar
Friedman, H. L. 1985. A Course in Statistical Mechanics. New York: Prentice Hall.Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Salvador, P., Dannenberg, J. J., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S. and Pople, J. A. 2002. Gaussian 98 (Revision A. 11. 3). Pittsburgh, PA: Gaussian, Inc.Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B. and Ortiz, J. V. 2009. Gaussian 09 Revision D. 01. Wallingford, CT: Gaussian, Inc.Google Scholar
Fukuda, J., Yoneya, M. and Yokoyama, H. 2002. Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach. Phys. Rev. E, 65, 041709.Google Scholar
Fukuda, J., Yoneya, M. and Yokoyama, H. 2007. Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined. Phys. Rev. Lett., 99, 139902.Google Scholar
Fukunaga, A., Urayama, K., Koelsch, P. and Takigawa, T. 2009. Electrically driven director-rotation of swollen nematic elastomers as revealed by polarized Fourier transform infrared spectroscopy. Phys. Rev. E, 79, 051702.Google Scholar
Fukunaga, A., Urayama, K., Takigawa, T., DeSimone, A. and Teresi, L. 2008. Dynamics of electro-optomechanical effects in swollen nematic elastomers. Macromolecules, 41, 93899396.Google Scholar
Fukunishi, H., Watanabe, O. and Takada, S. 2002. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J. Chem. Phys., 116, 90589067.Google Scholar
Fuller, G. J., Luckhurst, G. R. and Zannoni, C. 1985. Computer simulation studies of anisotropic systems.11. 2nd-rank and 4th-rank molecular-interactions. Chem. Phys., 92, 105115.Google Scholar
Fung, B. M., Afzal, J., Foss, T. L. and Chau, M. H. 1986. Nematic ordering of 4-n-alkyl-4′-cyanobiphenyls studied by carbon-13 NMR with off-magic angle spinning. J. Chem. Phys., 85, 48084814.Google Scholar
Futrelle, R. P. and McGinty, D. J. 1971. Calculation of spectra and correlation-functions from molecular dynamics data using Fast Fourier Transform. Chem. Phys. Lett., 12, 285287.Google Scholar
Gabriel, A. T., Meyer, T. and Germano, G. 2008. Molecular graphics of convex body fluids. J. Chem. Theory Comput., 4, 468476.Google Scholar
Gale, J. D. and Rohl, A. L. 2003. The General Utility Lattice Program (GULP). Molec. Simul., 29, 291341.Google Scholar
Gallo, P., Arnann-Winkel, K., Angell, C. A., et al. 2016. Water: a tale of two liquids. Chem. Rev., 116, 74637500.Google Scholar
Gamez, F. and Caro, C. 2015. The second virial coefficient for anisotropic square-well fluids. J. Mol. Liq., 208, 2126.Google Scholar
Ganzke, D., Wróbel, S. and Haase, W. 2004. Dielectric studies of bicyclohexylcarbonitrile nematogens with large negative dielectric anisotropy. Mol. Cryst. Liq. Cryst., 409, 323333.Google Scholar
Garland, C. W. 2001. Calorimetric studies. In Kumar, S. (ed.), Liquid Crystals. Experimental Study of Physical Properties and Phase Transitions. Cambridge: Cambridge University Press, pp. 240294.Google Scholar
Garland, C. W. and Nounesis, G. 1994. Critical-behavior at nematic-smectic A phase transitions. Phys. Rev. E, 49, 29642971.Google Scholar
Garland, C. W., Meichle, M., Ocko, B. M., et al. 1983. Critical behavior at the nematic-smectic-A transition in butyloxybenzylidene heptylaniline (4O.7). Phys. Rev. A, 27, 32343240.Google Scholar
Gasparoux, H. 1980. Carbonaceous mesophase and disk-like molecules. In Heppke, G. and Helfrich, W. (eds.), Liquid Crystals of One-and Two-Dimensional Order. Berlin: Springer, pp. 373382.Google Scholar
Gavezzotti, A. 1997. Theoretical Aspects and Computer Modeling of the Molecular Solid State. New York: Wiley.Google Scholar
Gay, J. G. and Berne, B. J. 1981. Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys., 74, 33163319.Google Scholar
Gear, C. V. 1971. Numerical Initial Value Problems in Ordinary Differential Equation. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Gearba, R. I., Lehmann, M., Levin, J., et al. 2003. Tailoring discotic mesophases: columnar order enforced with hydrogen bonds. Adv. Mater., 15, 16141618.Google Scholar
Geary, J. M., Goodby, J. W., Kmetz, A. R. and Patel, J. S. 1987. The mechanism of polymer alignment of liquid crystal materials. J. Appl. Phys., 62, 41004108.Google Scholar
Gelbart, W. M. and Ben-Shaul, A. 1996. The ‘new’ science of ‘complex fluids’. J. Phys. Chem., 100, 1316913189.Google Scholar
Gelbart, W. M. and Gelbart, A. 1977. Effective one-body potentials for orientationally anisotropic fluids. Mol. Phys., 33, 13871398.Google Scholar
Gell-Mann, M. 1956. The interpretation of the new particles as displaced charge multiplets. Il Nuovo Cimento, 4, 848868.Google Scholar
Giamberini, M., Cerruti, P., Ambrogi, V., et al. 2005. Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 2. Mechanical characterization. Polymer, 46, 91139125.Google Scholar
Gibbs, J. W. 1902. Elementary Principles in Statistical Mechanics. New York: Charles Scribners Sons.Google Scholar
Gilli, G. and Gilli, P. 2009. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford: Oxford University Press.Google Scholar
Giordano, M., Leporini, D., Martinelli, M., et al. 1982. Electron resonance investigation of a cholesteric mesophase induced by a chiral probe. J. Chem. Soc. Faraday Trans.2, 78, 307316.Google Scholar
Girard, P. R. 1984. The quaternion group and modern physics. Eur. J. Phys., 5, 25.Google Scholar
Glarum, S. H. 1960. Dielectric relaxation of polar liquids. J. Chem. Phys., 33, 13711375.Google Scholar
Glasser, L. 2002. Equations of state and phase diagrams. J. Chem. Educ., 79, 874.Google Scholar
Gleim, W. and Finkelmann, H. 1989. Side chain liquid crystal elastomers. In McArdle, C. B. (ed.), Side Chain Liquid Crystal Polymers. Glasgow: Blackie and Son, pp. 287308.Google Scholar
Glotzer, S. C., Solomon, M. J. and Kotov, N. A. 2004. Self-assembly: from nanoscale to microscale colloids. AIChE Journal, 50, 29782985.Google Scholar
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading: Addison-Wesley.Google Scholar
Goldfarb, D., Belsky, I., Luz, Z. and Zimmermann, H. 1983a. Axial-biaxial phase transition in discotic liquid crystals, studied by deuterium NMR. J. Chem. Phys., 79, 62036213.Google Scholar
Goldfarb, D., Poupko, R., Luz, Z. and Zimmermann, H. 1983b. Deuterium NMR of biaxial discotic liquid crystals. J. Chem. Phys., 79, 40354047.Google Scholar
Goldstein, A. N., Echer, C. M. and Alivisatos, A. P. 1992. Melting in semiconductor nanocrystals. Science, 256, 14251427.Google Scholar
Goldstein, H. 1980. Classical Mechanics. Reading: Addison-Wesley.Google Scholar
Goldstein, H., Poole, C. P. Jr and Safko, J. L. 2001. Classical Mechanics. 3rd ed. Reading: Addison-Wesley.Google Scholar
Golemme, A., Žumer, S., Allender, D. W. and Doane, J. W. 1988a. Continuous nematic-isotropic transition in submicron-size liquid crystal droplets. Phys. Rev. Lett., 61, 29372940.Google Scholar
Golemme, A., Žumer, S., Doane, J. W. and Neubert, M. E. 1988b. Deuterium NMR of polymer dispersed liquid crystals. Phys. Rev. A, 37, 559569.Google Scholar
Goodby, J. W. and Gray, G. W. 1979. Classification of smectic polymorphic phases. Mol. Cryst. Liq. Cryst., 49, 217223.Google Scholar
Goodby, J. W. and Gray, G. W. 1999. Guide to nomenclature and classification of liquid crystals. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Physical Properties of Liquid Crystals. Weinheim: Wiley-VCH, pp. 1724.Google Scholar
Goodby, J. W., Waugh, M. A., Stein, S. M., et al. 1989. Characterization of a new helical smectic liquid crystal. Nature, 337, 449452.Google Scholar
Goossens, K., Nockemann, P., Driesen, K., et al. 2008. Imidazolium ionic liquid crystals with pendant mesogenic groups. Chem. Mater., 20, 157168.Google Scholar
Goossens, W. J. A. 1971. Molecular theory of cholesteric phase and of twisting power of optically active molecules in a nematic liquid crystal. Mol. Cryst. Liq. Cryst., 12, 237244.Google Scholar
Goossens, W. J. A. 1987. The smectic A-smectic C phase transition – a molecular statistical theory. Europhys. Lett., 3, 341346.Google Scholar
Gordon, R. G. 1968. Correlation functions for molecular motion. Adv. Mag. Res., 3, 142.Google Scholar
Gordon, R. G. and Messenger, T. 1972. Magnetic resonance line shapes in slowly tumbling molecules. In Muus, L. T. and Atkins, P. W. (eds.), Electron Spin Relaxation in Liquids. New York: Plenum Press, pp. 341382.Google Scholar
Gorkunov, M. V., Osipov, M. A., Lagerwall, J. and Giesselmann, F. 2007. Order-disorder molecular model of the smectic-A-smectic-C phase transition in materials with conventional and anomalously weak layer contraction. Phys. Rev. E, 76, 051706.Google Scholar
Gottlob, A. P. and Hasenbusch, M. 1993. Critical behavior of the 3D XY-model – a Monte Carlo study. Physica A, 201, 593613.Google Scholar
Govers, E. and Vertogen, G. 1984. Elastic continuum theory of biaxial nematics. Phys. Rev. A, 30, 19982000.Google Scholar
Gowda, A. and Kumar, S. 2018. Recent advances in discotic liquid crystal-assisted nanoparticles. Materials, 11, 382.Google Scholar
Grabert, H. 1982. Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Berlin: Springer-Verlag.Google Scholar
Graham, C., Imrie, D. A. and Raab, R. E. 1998. Measurement of the electric quadrupole moments of CO2, CO, N2, Cl2 and BF3. Mol. Phys., 93, 4956.Google Scholar
Gramsbergen, E. F., Longa, L. and de Jeu, W. H. 1986a. Landau theory of the nematic-isotropic phase transition. Phys. Rep., 135, 195257.Google Scholar
Gramsbergen, E., Hoving, H., de Jeu, W.H., Praefcke, K. and Kohne, B., 1986b. X-ray investigation of discotic mesophases of alkylthio substituted triphenylenes. Liq. Cryst., 1, 397400.Google Scholar
Gray, C. G. and Gubbins, K. E. 1984. Theory of Molecular Fluids. vol. 1. Fundamentals. Oxford: Clarendon Press.Google Scholar
Gray, G. W. 1962. Molecular Structure and the Properties of Liquid Crystals. London: Academic Press.Google Scholar
Gray, G. W. 1979. Liquid crystals and molecular structure: nematics and cholesterics. In Luckhurst, G. R. and Gray, G. W. (eds.), The Molecular Physics of Liquid Crystals. London: Academic Press, pp. 129.Google Scholar
Gray, G. W. 1987. Thermotropic Liquid Crystals. New York: Wiley.Google Scholar
Gray, G. W. and Goodby, J. 1984. Smectic Liquid Crystals. Textures and Structures. Glasgow: Leonard Hill.Google Scholar
Gray, G. W. and Harrison, K. J. 1971. Molecular theories and structure. Some effects of molecular structural change on liquid crystalline properties. Symp. Faraday Soc., 5, 5467.Google Scholar
Gray, G. W., Harrison, K. J. and Nash, J. A. 1973. New family of nematic liquid crystals for displays. Electron. Lett., 9, 130131.Google Scholar
Gray, G. W., Hird, M., Lacey, D. and Toyne, K. J. 1989. The synthesis and transition-temperatures of some 4,4″-dialkyl-1,1′-4′, 1″ -terphenyl and 4,4″-alkoxyalkyl-1,1′-4′, 1″-terphenyl with 2,3-difluoro or 2′, 3′-difluoro substituents and of their biphenyl analogs. J. Chem. Soc. Perkin Trans. 2, 20412053.Google Scholar
Greer, A. L. 2000. Too hot to melt. Nature, 404, 1345.Google Scholar
Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G. and Holmes, A. B. 2009. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev., 109, 8971091.Google Scholar
Group d’Etude des Cristaux Liquides, Orsay. 1969. Dynamics of fluctuations in nematic liquid crystals. J. Chem. Phys., 51, 816822.Google Scholar
Gruhn, T. and Hess, S. 1996. Monte Carlo simulation of the director field of a nematic liquid crystal with three elastic coefficients. Z. Naturforsch. A, 51, 19.CrossRefGoogle Scholar
Guggenheim, E. A. 1945. The principle of corresponding states. J. Chem. Phys., 13, 253261.Google Scholar
Guha, R., Howard, M. T., Hutchison, G. R., et al. 2006. The Blue Obelisk – interoperability in chemical informatics. J. Chem. Inf. Model., 46, 991998.Google Scholar
Guillon, D. 1999. Columnar order in thermotropic mesophases. Struct. Bond., 95, 4182.Google Scholar
Guillon, D. 2000. Molecular engineering for ferroelectricity in liquid crystals. Adv. Chem. Phys., 113, 149.Google Scholar
Guinier, A. 1994. X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies. New York: Dover.Google Scholar
Gurtovenko, A. A., Patra, M., Karttunen, M. and Vattulainen, I. 2004. Cationic DMPC/DMTAP lipid bilayers: molecular dynamics study. Biophys. J., 86, 34613472.Google Scholar
Hagen, M. H. J., Meijer, E. J., Mooij, G. C. A. M., Frenkel, D. and Lekkerkerker, H. N. W. 1993. Does fullerene C60 have a liquid phase? Nature, 365, 425431.Google Scholar
Hahn, O., Delle Site, L. and Kremer, K. 2001. Simulation of polymer melts: from spherical to ellipsoidal beads. Macromol. Theory Simul., 10, 288303.Google Scholar
Hait, D. and Head-Gordon, M. 2018. How accurate is Density Functional Theory at predicting dipole moments? An assessment using a new database of 200 benchmark values. J. Chem. Theory Comput., 14, 19691981.Google Scholar
Haller, I. 1975. Thermodynamic and static properties of liquid crystals. Progr. Solid State Chem., 10, 103118.Google Scholar
Halperin, B. I. and Nelson, D. R. 1978. Theory of two-dimensional melting. Phys. Rev. Lett., 41, 121.Google Scholar
Hamaker, H. C. 1937. The London-van der Waals attraction between spherical particles. Physica, 4, 10581072.Google Scholar
Hammersley, J. M. and Handscomb, D. C. 1965. Monte Carlo Methods. London: Methuen.Google Scholar
Hansen, J.-P. 1977. Correlation functions and their relationship with experiments. In Dupuy, J. and Dianoux, A. J. (eds.), Microscopic Structure and Dynamics of Liquids. New York: Plenum Press, pp. 168.Google Scholar
Hansen, J.-P. and McDonald, I. R. 2006. Theory of Simple Liquids. 3rd ed. Amsterdam: Academic Press.Google Scholar
Hanson, H., Dekker, A. J. and Van der Woude, F. 1977. Composition and temperature-dependence of pitch in cholesteric binary-mixtures. Mol. Cryst. Liq. Cryst., 42, 10251042.Google Scholar
Hanwell, M. D., Curtis, D. E., Lonie, D. C., et al. 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics, 4, 17.Google Scholar
Harasima, A. 1958. Molecular theory of surface tension. Adv. Chem. Phys., 1, 203237.Google Scholar
Hardouin, F., Sigaud, G., Achard, M. F., et al. 1995. SANS study of a semiflexible main chain liquid crystalline polyether. Macromolecules, 28, 54275433.Google Scholar
Harris, F. E. 2014. Mathematics for Physical Science and Engineering: Symbolic Computing Applications in Maple and Mathematica. Amsterdam: Elsevier.Google Scholar
Harvey, M. J., Giupponi, G. and De Fabritiis, G. 2009. ACEMD: Accelerating biomolecular dynamics in the microseconds time scale. J. Chem. Theory Comput., 5, 16321639.Google Scholar
Hasenbusch, M., Pinn, K. and Vinti, S. 1999. Critical exponents of the three-dimensional Ising universality class from finite-size scaling with standard and improved actions. Phys. Rev. B, 59, 1147111483.Google Scholar
Hashim, R., Sugimura, A., Minamikawa, H. and Heidelberg, T. 2012. Nature-like synthetic alkyl branched-chain glycolipids: a review on chemical structure and self-assembly properties. Liq. Cryst., 39, 117.Google Scholar
Hayashi, Y. and Matsumoto, K. 1994. X-ray photoelectron-spectroscopy analysis of buffed polyimide film. Nippon Kagaku Kaishi., 1994, 490492.Google Scholar
Hayes, B. 2013. First links in the Markov chain. Am. Sci., 101, 252.Google Scholar
Haynes, W. M., Lide, D. R. and Bruno, T. J. (eds.). 2014. CRC Handbook of Chemistry and Physics. 93rd ed. Boca Raton, FL: CRC Press.Google Scholar
Headen, T. F., Howard, C. A., Skipper, N. T., et al. 2010. Structure of π-π interactions in aromatic liquids. J. Amer. Chem. Soc., 132, 57355742.Google Scholar
Hedin, F., El Hage, K. and Meuwly, M. 2016. A toolkit to fit nonbonded parameters from and for condensed phase simulations. J. Chem. Inf. Model., 56, 147989.Google Scholar
Hegmann, T., Qi, H. and Marx, V. M. 2007. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym. Mater., 17, 483508.Google Scholar
Heinz, H., Paul, W. and Binder, K. 2005. Calculation of local pressure tensors in systems with many-body interactions. Phys. Rev. E, 72, 066704.Google Scholar
Hess, B., Bekker, H., Berendsen, H. J. C. and Fraaije, J. G. E. M. 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem., 18, 14631472.Google Scholar
Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E. 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 4, 435447.Google Scholar
Higaki, H., Urayama, K. and Takigawa, T. 2012. Memory and development of textures of polydomain nematic elastomers. Macromol. Chem. Phys., 213, 19071912.Google Scholar
Hilbers, C. W. and MacLean, C. 1972. NMR of molecules oriented in electric fields. In Diehl, P., Fluck, E. and Kosfeld, R. (eds.), NMR Basic Principles and Progress. Berlin: Springer-Verlag, pp. 152.Google Scholar
Hird, M. 2001. Relationship between molecular structure and transition temperatures for calamitic structures in nematics. In Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals: Nematics. London: INSPEC-IEE, pp. 316.Google Scholar
Hird, M. 2007. Fluorinated liquid crystals – properties and applications. Chem. Soc. Rev., 36, 20702095.Google Scholar
Hirschmann, H. and Reiffenrath, V. 1998. TN, STN displays. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Handbook of Liquid Crystals. Low Molecular Weight Liquid Crystals I, vol. 2A. Weinheim: Wiley-VCH, pp. 199229.Google Scholar
Hlawacek, G., Khokhar, F. S., van Gastel, R., Poelsema, B. and Teichert, C. 2011. Smooth growth of organic semiconductor films on graphene for high-efficiency electronics. Nanolett., 11, 333337.Google Scholar
Hobdell, J. and Windle, A. 1995. Topological point-defects in liquid crystalline polymers. Liq. Cryst., 19, 401407.Google Scholar
Hockney, R. W. 1989. Computer Simulation Using Particles. New York: McGraw-Hill.Google Scholar
Hofsäss, C., Lindahl, E. and Edholm, O. 2003. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys. J., 84, 21922206.Google Scholar
Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383386.Google Scholar
Holm, C. and Janke, W. 1993. Critical exponents of the classical three-dimensional Heisenberg model: a single–cluster Monte Carlo study. Phys. Rev. B, 48, 936950.Google Scholar
Holm, C. and Janke, W. 1997. Critical exponents of the classical Heisenberg ferromagnet. Phys. Rev. Lett., 78, 22652265.Google Scholar
Homer, J. and Mohammadi, M. S. 1987. Polyatomic London dispersion forces. J. Chem. Soc., Faraday Trans. II, 83, 19571974.Google Scholar
Hong, Q., Wu, T. X. and Wu, S. T. 2003. Optical wave propagation in a cholesteric liquid crystal using the finite element method. Liq. Cryst., 30, 367375.Google Scholar
Hoover, W. G. 1985. Canonical dynamics: equilibrium phase-space distributions. 31, 16951697.Google Scholar
Hoover, W. G., Ashurst, W. T. and Olness, R. J. 1974. 2-dimensional computer studies of crystal stability and fluid viscosity. J. Chem. Phys., 60, 40434047.Google Scholar
Horn, R. G. 1978. Refractive-indexes and order parameters of two liquid crystals. J. de Physique, 39, 105109.Google Scholar
Hornreich, R. M. 1985. Landau theory of the isotropic-nematic critical point. Phys. Lett. A, 109, 232234.Google Scholar
Horton, J. C., Donald, A. M. and Hill, A. 1990. Coexistence of 2 liquid crystalline phases in poly(gamma-benzyl-alpha,l-glutamate) solutions. Nature, 346, 4445.Google Scholar
Hoskins, R. F:. 2009. Delta Functions: An Introduction to Generalised Functions. 2nd ed. Chichester: Horwood.Google Scholar
Houssa, M., Oualid, A. and Rull, L. F. 1998a. Reaction field and Ewald summation study of mesophase formation in dipolar Gay-Berne model. Mol. Phys., 94, 439446.Google Scholar
Houssa, M., Rull, L. F. and McGrother, S. C. 1998b. Effect of dipolar interactions on the phase behavior of the Gay-Berne liquid crystal model. J. Chem. Phys., 109, 95299542.Google Scholar
Houssa, M., Rull, L. F. and McGrother, S. C. 1999. Dipolar Gay-Berne liquid crystals: a Monte Carlo study. Int. J. Mod. Phys. C, 10, 391401.Google Scholar
Houssa, M., Rull, L. F. and Romero-Enrique, J. M. 2009. Bilayered smectic phase polymorphism in the dipolar Gay-Berne liquid crystal model. J. Chem. Phys., 130, 154504.Google Scholar
Huang, C.-C., Baus, M. and Ryckaert, J.-P. 2015. On the calculation of the absolute grand potential of confined smectic-A phases. Mol. Phys., 113, 26432655.Google Scholar
Huang, C. C., Ramachandran, S. and Ryckaert, J.-P. 2014. Calculation of the absolute free energy of a smectic-A phase. Phys. Rev. E, 90, 12.Google Scholar
Hudson, S. A. and Maitlis, P. M. 1993. Calamitic metallomesogens: metal containing liquid crystals with rodlike shapes. Chem. Rev., 93, 861885.Google Scholar
Hudson, S. D. and Thomas, E. L. 1989. Frank elastic-constant anisotropy measured from transmission-electron-microscope images of disclinations. Phys. Rev. Lett., 62, 19931996.Google Scholar
Hughes, J. R., Luckhurst, G. R., Praefcke, K., Singer, D. and Tearle, W. M. 2003. Chemically-induced discotic liquid crystals. Structural studies with NMR spectroscopy. Mol. Cryst. Liq. Cryst., 396, 187225.Google Scholar
Hughes, Z. E., Stimson, L. M., Slim, H., et al. 2008. An investigation of soft-core potentials for the simulation of mesogenic molecules and molecules composed of rigid and flexible segments. Comp. Phys. Comm., 178, 724731.Google Scholar
Humpert, A. and Allen, M. P. 2015a. Elastic constants and dynamics in nematic liquid crystals. Mol. Phys., 113, 26802692.Google Scholar
Humpert, A. and Allen, M. P. 2015b. Propagating director bend fluctuations in nematic liquid crystals. Phys. Rev. Lett., 114, 028301.Google Scholar
Humphrey, W., Dalke, A. and Schulten, K. 1996. VMD – Visual molecular dynamics. J. Mol. Graph., 14, 3338.Google Scholar
Humphries, R. L., James, P. G. and Luckhurst, G. R. 1972. Molecular field treatment of nematic liquid crystals. J. Chem. Soc. Faraday Trans., 68, 10311044.Google Scholar
Huntress, W. T. 1970. The study of anisotropic rotation of molecules in liquids by NMR quadrupolar relaxation. Adv. Magn. Reson, 4, 137.Google Scholar
Hurd, A. J., Fraden, S., Lonberg, F. and Meyer, R. B. 1985. Field-induced transient periodic structures in nematic liquid crystals – the splay Frederiks transition. J. de Physique, 46, 905917.Google Scholar
Ibrahim, I. H. and Haase, W. 1976. Order parameter temperature-dependence of some nematic liquids related to magnetic and optical anisotropies. Z. Naturforschung. A, 31, 16441650.Google Scholar
Idé, J., Méreau, R., Ducasse, L., et al. 2014. Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Amer. Chem. Soc., 136, 29112920.Google Scholar
Irene, E. A. 2008. Surfaces, Interfaces, and Thin Films for Microlectronics. Hoboken, NJ: Wiley.Google Scholar
Irikura, K. K. 2019. Glossary of common terms and abbreviations in Quantum Chemistry. In Johnson, R. D. III (ed.), NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database N.101 Rel.20. https://cccbdb.nist.gov/glossary.aspGoogle Scholar
Irrgang, M. E., Engel, M., Schultz, A. J., Kofke, D. A. and Glotzer, S. C. 2017. Virial coefficients and equations of state for hard polyhedron fluids. Langmuir, 33, 1178811796.Google Scholar
Irvine, P. A., Wu, D. C. and Flory, P. J. 1984. Liquid crystalline transitions in homologous para-phenylenes and their mixtures. 1. Experimental results. J. Chem. Soc. Faraday Trans. I, 80, 17951806.Google Scholar
Irving, J. H. and Kirkwood, J. G. 1950. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys., 18, 817829.Google Scholar
Ishihara, S., Wakemoto, H., Nakazima, K. and Matsuo, Y. 1989. The effect of rubbed polymer-films on the liquid crystal alignment. Liq. Cryst., 4, 669675.Google Scholar
Ishikawa, K., Yoshikawa, K. and Okada, N. 1988. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B, 37, 5852.Google Scholar
Isihara, A. 1951. Theory of anisotropic colloidal solutions. J. Chem. Phys., 19, 11421147.Google Scholar
Israelachvili, J. 1992. Intermolecular and Surface Forces. New York: Academic Press.Google Scholar
Israelachvili, J. 2011. Intermolecular and Surface forces. 3rd ed. Waltham: Academic Press.Google Scholar
Jackson, N. E., Webb, M. A. and de Pablo, J. J. 2019. Recent advances in machine learning towards multiscale soft materials design. Curr. Opin. Chem. Eng., 23, 106114.Google Scholar
Jacobsen, J. P. and Pedersen, E. J. 1981. 1H and 2H NMR spectra of pyridine and pyridine-N-oxide in liquid crystalline phase. J. Magn. Res., 44, 101108.Google Scholar
Jadzyn, J. and Kedziora, P. 2006. Anisotropy of static electric permittivity and conductivity in some nematics and smectics A. Mol. Cryst. Liq. Cryst., 145, 1723.Google Scholar
Jákli, A., Bailey, C. and Harden, J. 2007. Physical properties of banana liquid crystals. In Ramamoorthy, A. (ed.), Thermotropic Liquid Crystals: Recent Advances. Dordrecht: Springer, pp. 5984.Google Scholar
Jákli, A., Lavrentovich, O. D. and Selinger, J. V. 2018. Physics of liquid crystals of bent-shaped molecules. Rev. Mod. Phys., 90, 045004.Google Scholar
Jämbeck, J. P. M. and Lyubartsev, A. P. 2012. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B, 116, 31643179.Google Scholar
Jang, W. G., Glaser, M. A., Park, C. S., Kim, K. H., Lansac, Y., and Clark, N. A. 2001. Evidence from infrared dichroism, X-ray diffraction, and atomistic computer simulation for a “zigzag” molecular shape in tilted smectic liquid crystal phases. Phys. Rev. E, 64, 051712.Google Scholar
Jansen, H. J. F., Vertogen, G. and Ypma, J. G. J. 1977. Monte Carlo calculation of nematic-isotropic phase transition. Mol. Cryst. Liq. Cryst., 38, 445453.Google Scholar
Jasz, A., Rak, A., Ladjanszki, I. and Cserey, G. 2020. Classical molecular dynamics on graphics processing unit architectures. Wiley Interdiscip. Rev. Comput. Mol. Sci., 10, e1444.Google Scholar
Jaynes, E. T. 1957a. Information theory and statistical mechanics I. Phys. Rev., 106, 620630.Google Scholar
Jaynes, E. T. 1957b. Information theory and statistical mechanics II. Phys. Rev., 108, 171190.Google Scholar
Jen, S., Clark, N. A., Pershan, P. S. and , B., Priestley, E. 1973. Raman-Scattering from a nematic liquid crystal – orientational statistics. Phys. Rev. Lett., 31, 15521556.Google Scholar
Jenkins, F. A. and White, H. E. 2001. Fundamentals of Optics. 4th ed. New York: McGraw-Hill.Google Scholar
Jenz, F., Osipov, M. A., Jagiella, S. and Giesselmann, F. 2016. Orientational distribution functions and order parameters in ‘de Vries’-type smectics: a simulation study. J. Chem. Phys., 145, 134901.Google Scholar
Jepsen, D. W. and Friedman, H. L. 1963. Cluster expansion methods for systems of polar molecules: some solvents and dielectric properties. J. Chem. Phys., 38, 846864.Google Scholar
Jérôme, B. 1991. Surface effects and anchoring in liquid crystals. Rep. Progr. Phys., 54, 391451.Google Scholar
Jiang, S. and Granick, S. 2012. Janus Particle Synthesis, Self-Assembly and Applications. Cambridge: Royal Society of Chemistry.Google Scholar
Jmol. An Open-Source Java Viewer for Chemical Structures In 3D. www.jmol.orgGoogle Scholar
John, B. S., Juhlin, C. and Escobedo, F. A. 2008. Phase behavior of colloidal hard perfect tetragonal parallelepipeds. J. Chem. Phys., 128, 044909.Google Scholar
Johnson, R. D. III. 2019. NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database N. 101, Rel. 20, August 2019. http://cccbdb.nist.gov/Google Scholar
Johnson, S. R. and Jurs, P. C. 1999. Prediction of the clearing temperatures of a series of liquid crystals from molecular structure. Chem. Mater., 11, 10071023.Google Scholar
Jones, R. C. 1948. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices. JOSA, 38, 671685.Google Scholar
Jönsson, B., Nilsson, P. G., Lindman, B., Guldbrand, L. and Wennerström, H. (eds.). 1984. Princip1es of Phase Equilibria in Surfactant-Water Systems. Surfactants in Solution. New York: Plenum Press.Google Scholar
Jorgensen, W. L. and Jenson, C. 1998. Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J. Comput. Chem., 19, 11791186.Google Scholar
Jorgensen, W. L. and Tirado-Rives, J. 1988. The OPLS potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Amer. Chem. Soc., 110, 16571666.Google Scholar
Jorgensen, W. L., Maxwell, D. S. and Tirado-Rives, J. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Amer. Chem. Soc., 118, 1122511236.Google Scholar
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79, 926935.Google Scholar
Joshi, A. A., Whitmer, J. K., Guzman, O., Abbott, N. L. and de Pablo, J. J. 2014. Measuring liquid crystal elastic constants with free energy perturbations. Soft Matter, 10, 882893.Google Scholar
Jozefowicz, W. and Longa, L. 2007. Frustration in smectic layers of polar Gay-Berne systems. Phys. Rev. E, 76, 011701.Google Scholar
Juszynska, E., Jasiurkowska, M., Massalska-Arodz, M., Takajo, D. and Inaba, A. 2011. Phase transition and structure studies of a liquid crystalline Schiff-base compound (4O.8). Mol. Cryst. Liq. Cryst., 540, 127134.Google Scholar
Kaafarani, B. R. 2011. Discotic liquid crystals for opto-electronic applications. Chem. Mater., 23, 378396.Google Scholar
Kabadi, V. N. and Steele, W. A. 1985. Molecular dynamics of fluids – the Gaussian Overlap model. Ber. Bunsen-Ges. Phys. Chem., 89, 29.Google Scholar
Kadanoff, L. P. 1966. Scaling laws for Ising models near TC. Physics, 2, 263272.Google Scholar
Kalkura, A. N., Shashidhar, R., Venkatesh, G. and Weissflog, W. 1982. High-pressure studies on polymorphic liquid crystals. Mol. Cryst. Liq. Cryst., 84, 275284.Google Scholar
Kamberaj, H., Low, R. J. and Neal, M. P. 2005. Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. J. Chem. Phys., 122, 224114.Google Scholar
Kamien, R. D. 1996. Liquids with chiral bond order. J. de Physique II, 6, 461475.Google Scholar
Kapernaum, N. and Giesselmann, F. 2008. Simple experimental assessment of smectic translational order parameters. Phys. Rev. E, 78, 062701.Google Scholar
Kaplan, J. I. and Drauglis, E. 1971. On the statistical theory of the nematic mesophase. Chem. Phys. Lett., 9, 645645.Google Scholar
Karahaliou, P. K., Vanakaras, A. G. and Photinos, D. J. 2002. Tilt order parameters, polarity, and inversion phenomena in smectic liquid crystals. Phys. Rev. E, 65, 031712.Google Scholar
Karahaliou, P. K., Vanakaras, A. G. and Photinos, D. J. 2009. Symmetries and alignment of biaxial nematic liquid crystals. J Chem. Phys., 131, 124516.Google Scholar
Karat, P. P. and Madhusudana, N. V. 1976. Elastic and optical-properties of some 4′-n-alkyl-4-cyanobiphenyls. Mol. Cryst. Liq. Cryst., 36, 5164.Google Scholar
Karjalainen, J., Lintuvuori, J., Telkki, V. V., Lantto, P. and Vaara, J. 2013. Constant-pressure simulations of Gay-Berne liquid crystalline phases in cylindrical nanocavities. Phys. Chem. Chem. Phys., 15, 1404714057.Google Scholar
Kaszynski, P., Pakhomov, S. and Tesh, K. F. 2001. Carborane-containing liquid crystals: synthesis and structural, conformational, thermal, and spectroscopic characterization of diheptyl and diheptynyl derivatives of p-carboranes. Inorg. Chem., 40, 66226631.Google Scholar
Kato, T. 1998. Hydrogen-bonded systems. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Handbook of Liquid Crystals. Low Molecular Weight Liquid Crystals II, vol. 2B. Weinheim: Wiley-VCH, pp. 969979.Google Scholar
Katriel, J., Kventsel, G. F., Luckhurst, G. R. and Sluckin, T. J. 1986. Free energies in the Landau and Molecular Field approaches. Liq. Cryst., 1, 337355.Google Scholar
Kats, E. I. and Monastyrsky, M. I. 1984. Ordering in discotic liquid crystals. J. de Physique, 45, 709714.Google Scholar
Keddie, J. L, Jones, R. A. L. and Cory, R. A. 1994. Size-dependent depression of the glass transition temperature in polymer films. EPL, 27, 5964.Google Scholar
Keith, C., Lehmann, A., Baumeister, U., Prehm, M. and Tschierske, C. 2010. Nematic phases of bent-core mesogens. Soft Matter, 6, 17041721.Google Scholar
Kestemont, E. and VanCraen, J. 1976. Computation of correlation functions in molecular dynamics experiments. J. Comput. Phys., 22, 451458.Google Scholar
Kestenbach, H.-J., Loos, J. and Petermann, J. 1999. Transcrystallization at the interface of polyethylene single-polymer composites. Mater. Res., 2, 261269.Google Scholar
Khakbaz, P. and Klauda, J. B. 2018. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochim. Biophys. Acta 1860, 14891501.Google Scholar
Khare, R. S., de Pablo, J. J. and Yethiraj, A. 1996. Rheology of confined polymer melts. Macromolecules, 29, 79107918.Google Scholar
Khokhlov, A. R. 1991. Theories based on the Onsager approach. In Ciferri, A. (ed.), Liquid Crystallinity in Polymers. Principles and Fundamental Properties. New York: VCH, pp. 97129.Google Scholar
Khoo, I. C. 2007. Liquid Crystals. 2nd ed. New York: Wiley.Google Scholar
Kielich, S. 1972. General molecular theory and electric field effects in isotropic dielectrics. In Davies, M. (ed.), Dielectric and Related Molecular Processes, vol. 1. London: The Chemical Society, pp. 192387.Google Scholar
Kihara, T. 1963. Convex molecules in gaseous and crystalline systems. Adv. Chem. Phys., 5, 147188.Google Scholar
Kihara, T. 1967. Intermolecular forces for polyatomic molecules. Progr. Theor. Phys. Suppl., 40, 177206.Google Scholar
Kikuchi, H. 2008. Liquid crystalline blue phases. Struct. Bond., 128, 99117.Google Scholar
Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. and Kajiyama, T. 2002. Polymer-stabilized liquid crystal blue phases. Nat. Mater., 1, 6468.Google Scholar
Kilian, A. 1993. Computer simulations of nematic droplets. Liq. Cryst., 14, 11891198.Google Scholar
Kilian, A, and Hess, S. 1989. Derivation and application of an algorithm for the numerical calculation of the local orientation of nematic liquid crystals. Z. Naturfors. A, 44, 693703.Google Scholar
Kim, D. G., Kim, Y. H., Shin, T. J., et al. 2017. Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment. Chem. Comm., 53, 82278230.Google Scholar
Kim, K. H. and Song, J. K. 2009. Technical evolution of liquid crystal displays. NPG Asia Materials, 1, 2936.Google Scholar
Kim, S., Thiessen, P. A., Bolton, E. E., et al. 2016. PubChem substance and compound databases. Nucleic Acids Res., 44, D1202-D1213.Google Scholar
Kipnis, A. Ya., Yavelow, B. E. and Rowlinson, J. S. 1996. van der Waals and Molecular Sciences. Oxford: Clarendon Press.Google Scholar
Kirkpatrick, J., Marcon, V., Nelson, J., Kremer, K. and Andrienko, D. 2007. Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys. Rev. Lett., 98.Google Scholar
Kirkpatrick, J., Marcon, V., Kremer, K., Nelson, J. and Andrienko, D. 2008. Columnar mesophases of hexabenzo-coronene derivatives. II. Charge carrier mobility. J. Chem. Phys., 129, 094506.Google Scholar
Kirov, N., Dozov, I. and Fontana, M. P. 1985. Determination of orientational correlation functions in ordered fluids: Raman scattering. J. Chem. Phys., 83, 52675276.Google Scholar
Kittel, C. 2005. Introduction to Solid State Physics. New York: Wiley.Google Scholar
Kitzerow, H. S. 1994. Polymer dispersed liquid crystals – from the nematic curvilinear aligned phase to ferroelectric-films. Liq. Cryst., 16, 131.Google Scholar
Kitzerow, H. S. and Bahr, C. (eds.). 2001. Chirality in Liquid Crystals. Berlin: Springer.Google Scholar
Klauda, J. B., Eldho, N. V., Gawrisch, K., Brooks, B. R. and Pastor, R. W. 2008. Collective and noncollective models of NMR relaxation in lipid vesicles and multilayers. J. Phys. Chem. B, 112, 59245929.Google Scholar
Klauda, J. B., Venable, R. M., Freites, J. A., et al. 2010. Update of the CHARMM All-Atom Additive force field for lipids: validation on six lipid types. J. Phys. Chem. B, 114, 78307843.Google Scholar
Kleman, M. 1982. Points, Lines and Walls: In Liquid Crystals, Magnetic Systems and Various Ordered Media. New York: Wiley.Google Scholar
Kleman, M. 1991. Defects and textures in liquid crystalline polymers. In Ciferri, A. (ed.), Liquid Crystallinity in Polymers. Principles and Fundamental Properties. New York: VCH, pp. 365394.Google Scholar
Kleman, M. and Lavrentovich, O. D. 2003. Soft Matter Physics. Berlin: Springer.Google Scholar
Kleman, M. and Lavrentovich, O. D. 2006. Topological point defects in nematic liquid crystals. Philos. Mag., 86, 41174137.Google Scholar
Knotts, T. A. IV, Rathore, N., Schwartz, D. C. and de Pablo, J. J. 2007. A coarse grain model for DNA. J. Chem. Phys., 126, 084901.Google Scholar
Knowles, J. K. 1998. Linear Vector Spaces and Cartesian Tensors. Oxford: Oxford University Press.Google Scholar
Knuth, D. E. 1998. The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. 3rd ed., Boston, MA.: Addison-Wesley.Google Scholar
Ko, S. W., Huang, S. H., Fuh, A. Y. G. and Lin, T. H. 2009. Fabrications of liquid crystal polarization converters and their applications. In Khoo, I. C. (ed.), SPIE, Liquid Crystals XIII, vol. 7414. Bellingham, WA: SPIE, 001006.Google Scholar
Kobashi, J., Yoshida, H. and Ozaki, M. 2016. Planar optics with patterned chiral liquid crystals. Nat. Photonics, 10, 389392.Google Scholar
Kohlrausch, R. 1854. Theorie des elektrischen rückstandes in der Leidener flasche. Annalen der Physik, 167, 179214.Google Scholar
Kolli, H. B., Frezza, E., Cinacchi, G., et al. 2014a. Communication: from rods to helices: evidence of a screw-like nematic phase. J. Chem. Phys., 140, 081101.Google Scholar
Kolli, H. B., Frezza, E., Cinacchi, G., et al. 2014b. Self-assembly of hard helices: a rich and unconventional polymorphism. Soft Matter, 10, 81718187.Google Scholar
Kosterlitz, J. M. and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 6, 11811203.Google Scholar
Kovshev, E. I., Blinov, L. M. and Titov, V. V. 1977. Thermotropic liquid crystals and their application. Russian Chem. Rev., 46, 395419.Google Scholar
Koynova, R. and Caffrey, M. 1998. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta, 1376, 91145.Google Scholar
Kralj, S., Žumer, S. and Allender, D. W. 1991. Nematic-isotropic phase-transition in a liquid crystal droplet. Phys. Rev. A, 43, 29432954.Google Scholar
Krentsel, T. A., Lavrentovich, O. D. and Kumar, S. 1997. In-situ X-ray measurements of light-controlled layer spacing in a smectic-A liquid crystal. Mol. Cryst. Liq.Cryst. A, 304, 463469.Google Scholar
Kubo, R. 1986. Brownian-motion and nonequilibrium statistical-mechanics. Science, 233, 330334.Google Scholar
Kucerka, N., Nagle, J. F., Sachs, J. N., et al. 2008. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J., 95, 23562367.Google Scholar
Kuijk, A., Byelov, D. V., Petukhov, A. V., van Blaaderen, A. and Imhof, A. 2012. Phase behavior of colloidal silica rods. Faraday Discuss., 159, 181199.Google Scholar
Kuiper, S., Norder, B., Jager, W. F., et al. 2011. Elucidation of the orientational order and the phase diagram of p-quinquephenyl. J. Phys. Chem. B, 115, 14161421.Google Scholar
Kukol, A. 2009. Lipid models for united-atom molecular dynamics simulations of proteins. J. Chem. Theory Comput., 5, 615626.Google Scholar
Kulkarni, C. V. 2012. Lipid crystallization: from self assembly to hierarchical and biological ordering. Nanoscale, 4, 577991.Google Scholar
Kumar, S. 2001. Structure: X-ray diffraction studies of liquid crystals. In Kumar, S. (ed.), Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions. Cambridge: Cambridge University Press, pp. 6594.Google Scholar
Kumar, S. 2002. Discotic liquid crystals for solar cells. Curr. Sci., 82, 256257.Google Scholar
Kumar, S. 2004. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq. Cryst., 31, 10371059.Google Scholar
Kumar, S. 2006. Self-organization of disk-like molecules: chemical aspects. Chem. Soc. Rev., 35, 83109.Google Scholar
Küpfer, J. and Finkelmann, H. 1991. Nematic liquid single crystal elastomers. Macromol. Chem. Rapid Commun., 12, 717726.Google Scholar
Kurdikar, D. L., Boots, H. M. J. and Peppas, N. A. 1995. Network formation by chain polymerization of liquid crystalline monomer: a first off-lattice Monte Carlo study. Macromolecules, 28, 56325637.Google Scholar
Kurik, M. V. and Lavrentovich, O. D. 1988. Defects in liquid crystals: homotopy theory and experimental studies. Physics-Uspekhi, 31, 196224.Google Scholar
Kushick, J. and Berne, B. J. 1973a. Role of attractive forces in self-diffusion in dense Lennard-Jones fluids. J. Chem. Phys., 59, 37323736.Google Scholar
Kushick, J. and Berne, B. J. 1973b. Methods for experimentally determining angular velocity relaxation in liquids. J. Chem. Phys., 59, 44864490.Google Scholar
Kushick, J. and Berne, B. J. 1977. Molecular dynamics methods: continuous potentials. In Berne, B. J. (ed.), Statistical mechanics B: Time Dependent Processes. New York: Plenum Press, pp. 4164.Google Scholar
Kventsel, G. F., Luckhurst, G. R. and Zewdie, H. B. 1985. A molecular field theory of smectic A liquid crystals – a simpler alternative to the McMillan theory. Mol. Phys., 56, 589610.Google Scholar
Kwak, C. H. and Kim, G. Y. 2016. Generalised descriptions on orientational order parameters and mean field theory for uniaxial and biaxial nematic liquid crystals. Liq. Cryst., 43, 3248.Google Scholar
Lagardere, L., Jolly, L. H., Lipparini, F., et al. 2018. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chemical Science, 9, 956972.Google Scholar
Lagarias, J. C. (ed.). 2011. The Kepler Conjecture: the Hales-Ferguson Proof by Thomas Hales, Samuel Ferguson. New York: Springer.Google Scholar
Lagerwall, J. and Giesselmann, F. 2006. Current topics in smectic liquid crystal research. ChemPhysChem, 7, 2045.Google Scholar
Lamarra, M., Muccioli, L., Orlandi, S. and Zannoni, C. 2012. Temperature dependence of charge mobility in model discotic liquid crystals. Phys. Chem. Chem. Phys., 14, 53685375.Google Scholar
Landau, D. P. 1976. Finite-size behavior of the simple-cubic Ising lattice. Phys. Rev. B, 14, 255262.Google Scholar
Landau, D. P. and Binder, K. 2000. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge: Cambridge University Press.Google Scholar
Landau, E. M. and Rosenbusch, J. P. 1996. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Nat. Acad. Sci. USA, 93, 1453214535.Google Scholar
Landau, E. M., Rummel, G., Cowan-Jacob, S. W. and Rosenbusch, J. P. 1997. Crystallization of a polar protein and small molecules from the aqueous compartment of lipidic cubic phases. J. Phys. Chem. B, 101, 19351937.Google Scholar
Landau, L. D. 1965. On the theory of phase transitions (I: JETP, 7, 1, 1937; II:JETP, 7, 627, 1937). In Collected Papers of L. D. Landau. New York: Gordon and Breach, pp. 193216.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1958. Quantum Mechanics. Non-Relativistic Theory. Reading: Addison-Wesley.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1980. Statistical Physics. Part 1. Oxford: Pergamon Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1993. Mechanics. 3rd ed. Oxford: Butterworth-Heinemann.Google Scholar
Langevin, D. 1972. Analyse spectrale de la lumière diffusée par la surface libre d’un cristale liquide nématique. Mesure de la tension superficielle et des coefficients de viscosité. J. de Physique, 33, 249256.Google Scholar
Langevin, D. and Bouchiat, M. A. 1973. Molecular order and surface-tension for nematic-isotropic interface of MBBA, deduced from light reflectivity and light-scattering measurements. Mol. Cryst. Liq. Cryst., 22, 317331.Google Scholar
Langner, M., Praefcke, K., Kruerke, D. and Heppke, G. 1995. Chiral radial pentaynes exhibiting cholesteric discotic phases. J. Mater. Chem., 5, 693699.Google Scholar
Lasher, G. 1970. Nematic ordering of hard rods derived from a scaled particle treatment. J. Chem. Phys., 53, 41414146.Google Scholar
Lasher, G. 1972. Monte Carlo results for a discrete-lattice model of nematic ordering. Phys. Rev. A, 5, 13501354.Google Scholar
Lau, M. H. and Dasgupta, C. 1989. Numerical investigation of the role of topological defects in the 3-dimensional Heisenberg transition. Phys. Rev. B, 39, 72127222.Google Scholar
LaViolette, R. A. and Stillinger, F. H. 1985. Consequences of the balance between the repulsive and attractive forces in dense, nonassociated liquids. J. Chem. Phys., 82, 33353343.Google Scholar
Lavrentovich, O. D. and Nastishin, Y. A. 1990. Defects in degenerate hybrid aligned nematic liquid crystals. Europhys. Lett., 12, 135141.Google Scholar
Lavrentovich, O. D. and Pergamenshchik, V. M. 1995. Patterns in thin liquid crystal films and the divergence (surface like) elasticity. Int. J. Mod. Phys. B, 9, 23892437.Google Scholar
Lavrentovich, O. D., Pasini, P., Zannoni, C. and Žumer, S. (eds.). 2001. Defects in Liquid Crystals: Computer Simulations, Theory and Experiments. Dordrecht: Kluwer.Google Scholar
Lax, M. 1974. Symmetry Principles in Solid State and Molecular Physics. New York: Wiley.Google Scholar
Le Fèvre, R. J. W. 1964. Dipole Moments: Their Measurement and Application in Chemistry. 3rd ed. London: Methuen.Google Scholar
Le Fèvre, R. J. W. 1965. Molecular refractivity and polarizability. In Advances in Physical Organic Chemistry, vol. 3. London: Academic Press, pp. 190.Google Scholar
Le Fèvre, R. J. W. and Murthy, D. S. N. 1969. Molecular susceptibility. Diamagnetic anisotropies of some polynuclear aromatic hydrocarbons. Austral. J. Chem., 22, 1415.Google Scholar
Le Fèvre, R. J. W. and Radom, L. 1967. Molecular polarisability. Carbon-carbon bond polarisabilities in relation to bond lengths. J. Chem. Soc. B, 12951298.Google Scholar
Le Fèvre, R. J. W., Radom, L. and Ritchie, G. L. D. 1967. Molecular polarisability. Anisotropic polarisabilities of anthracene and several halogenated anthracenes. J. Chem. Soc. B, 595.Google Scholar
Leach, A. R. 2001. Molecular Modelling: Principles and Applications. 2nd ed. Harlow: Prentice Hall.Google Scholar
Leadbetter, A. J. 1979. Structural studies of nematic, smectic A and smectic C phases. In Luckhurst, G. R. and Gray, G. W. (eds.), The Molecular Physics of Liquid Crystals. London: Academic Press, pp. 285316.Google Scholar
Leadbetter, A. J. and Norris, E. K. 1979. Distribution functions in three liquid crystals from X-ray diffraction measurements. Mol. Phys., 38, 669686.Google Scholar
Leadbetter, A. J., Frost, J. C., Gaughan, J. P., Gray, G. W. and Mosley, A. 1979. The structure of smectic A phases of compounds with cyano end groups. J. de Physique, 40, 375380.Google Scholar
Lebowitz, J. L. and Perram, J. W. 1983. Correlation functions for nematic liquid crystals. Mol. Phys., 50, 12071214.Google Scholar
Lebowitz, J. L., Percus, J. K. and Verlet, L. 1967. Ensemble dependence of fluctuations with application to machine computations. Phys. Rev., 153, 250254.Google Scholar
Lebwohl, P. A. and Lasher, G. 1972. Nematic liquid crystal order. A Monte Carlo calculation. Phys. Rev. A, 6, 426429.Google Scholar
Lee, J.-H., Liu, D. N. and Wu, S.-T. 2008. Introduction to Flat Panel Displays. Chichester: Wiley.Google Scholar
Lee, J. H., Atherton, T. J., Barna, V., et al. 2009. Direct measurement of surface-induced orientational order parameter profile above the nematic-isotropic phase transition temperature. Phys. Rev. Lett., 102, 167801.Google Scholar
Lee, S., Tran, A., Allsopp, M., et al. 2014. CHARMM36 United Atom chain model for lipids and surfactants. J. Phys. Chem. B, 118, 547556.Google Scholar
Lee, S. D. 1987. A numerical investigation of nematic ordering based on a simple hard-rod model. J. Chem. Phys., 87, 49724974.Google Scholar
Lee, S. D. 1988. The Onsager type theory for nematic ordering of finite-length hard ellipsoids. J. Chem. Phys., 89, 70367037.Google Scholar
Lee, S. W., Chae, B., Kim, H. C., Lee, B., et al. 2003. New clues to the factors governing the perpendicular alignment of liquid crystals on rubbed polystyrene film surfaces. Langmuir, 19, 87358743.Google Scholar
Leenhouts, F., de Jeu, W. H. and Dekker, A. J. 1979. Physical properties of nematic Schiff bases. J. de Physique, 40, 989995.Google Scholar
Lehmann, O. 1889. Über fliessende krystalle. Z. Phys. Chem., 4, 462472.Google Scholar
Lehninger, A. L., Nelson, D. L. and Cox, M. M. 2005. Principles of Biochemistry. New York: W. H. Freeman.Google Scholar
Leimkuhler, B. and Matthews, C. 2015. Molecular dynamics with Deterministic and Stochastic Numerical Methods. Heidelberg: Springer.Google Scholar
Leimkuhler, B., Margul, D. T. and Tuckerman, M. E. 2013. Stochastic, resonance-free multiple time-step algorithm for molecular dynamics with very large time steps. Mol. Phys., 111, 35793594.Google Scholar
Lekkerkerker, H. N. W. and Anderson, V. J. 2002. Insight into phase transition kinetics from colloid science. Nature, 416, 811815.Google Scholar
Lekkerkerker, H. N. W. and Vroege, G. J. 2013. Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots. Phil. Trans. Roy. Soc. A, 371, 20120263.Google Scholar
Lelidis, I. and Durand, G. 1993. Electric-field-induced isotropic-nematic phase-transition. Phys. Rev. E, 48, 38223824.Google Scholar
Lelidis, I. and Durand, G. 1994. Electrically induced isotropic-nematic smectic-A phase-transitions in thermotropic liquid crystals. Phys. Rev. Lett., 73, 672675.Google Scholar
Leonard, A. N., Wang, E., Monje-Galvan, V. and Klauda, J. B. 2019. Developing and testing of lipid force fields with applications to modeling cellular membranes. Chem. Rev., 119, 62276269.Google Scholar
LeSar, R. 2013. Introduction to Computational Materials Science: Fundamentals to Applications. Cambridge: Cambridge University Press.Google Scholar
Levelut, A. M., Malthete, J. and Collet, A. 1986. X-Ray structural study of the mesophases of some cone-shaped molecules. J. de Physique, 47, 351357.Google Scholar
Levelut, A. M., Tarento, R. J., Hardouin, F., Achard, M. F. and Sigaud, G. 1981. Number of SA phases. Phys. Rev. A, 24, 2180.Google Scholar
Levesque, D. 2017. New solid phase of dipolar systems. Condens. Matter Phys., 20, 18.Google Scholar
Levesque, D. and Weis, J. J. 1994. Orientational and structural order in strongly interacting dipolar hard spheres. Phys. Rev. E, 49, 51315140.Google Scholar
Levesque, D., Weis, J. J. and Zarragoicoechea, G. J. 1993. Monte Carlo simulation study of mesophase formation in dipolar spherocylinders. Phys. Rev. E, 47, 496505.Google Scholar
Levine, R. D. and Tribus, M. 1978. Maximum Entropy Formalism. Boston, MA: MIT Press.Google Scholar
Levitt, M. H. 2001. Spin Dynamics. Basics of Nuclear Magnetic Resonance. Chichester: Wiley.Google Scholar
Lewars, E. G. 2016. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. New York: Springer.Google Scholar
Li, L. S., Walda, J., Manna, L. and Alivisatos, A. P. 2002. Semiconductor nanorod liquid crystals. Nano Lett., 2, 557560.Google Scholar
Li, L. S., Marjanska, M., Park, G. H., Pines, A. and Alivisatos, A. P. 2004. Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. J. Chem. Phys., 120, 114952.Google Scholar
Li, M. H., Brúlet, A., Davidson, P., Keller, P. and Cotton, J. P. 1993. Observation of hairpin defects in a nematic main-chain polyester. Phys. Rev. Lett., 70, 22972300.Google Scholar
Li, X., Hill, R. M., Scriven, L. E. and Davis, H. T. 1996. Liquid crystals in ternary polyoxyethylene trisiloxane surfactant-silicone oil-H2O system. MRS Online Proceeding Library Archive, 425, 173178.Google Scholar
Liang, C. X., Yan, L. Q., Hill, J. R., et al. 1995. Force-field studies of cholesterol and cholesteryl acetate crystals and cholesterol cholesterol intermolecular interactions. J. Comput. Chem., 16, 883897.Google Scholar
Lighthill, M. J. 1958. Introduction to Fourier Analysis and Generalised Functions. Cambridge: Cambridge: University Press.Google Scholar
Limbach, H. J., Arnold, A., Mann, B. A. and Holm, C. 2006. ESPResSo an extensible simulation package for research on soft matter systems. Comput. Phys. Comm., 174, 704727.Google Scholar
Lin, Z. X. and van Gunsteren, W. F. 2015. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations. J. Chem. Phys., 143.Google Scholar
Lindahl, E. and Edholm, O. 2000. Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys., 113, 38823893.Google Scholar
Linden, C. D. and Fox, C. F. 1975. Membrane physical state and function. Acc. Chem. Res., 8, 321327.Google Scholar
Link, D. R., Natale, G., Shao, R., et al. 1997. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science, 278, 19241927.Google Scholar
Lintuvuori, J. S. and Wilson, M. R. 2008. A new anisotropic soft-core model for the simulation of liquid crystal mesophases. J. Chem. Phys., 128, 0449061.Google Scholar
Lipkin, M. D. and Oxtoby, D. W. 1983. A systematic density functional-approach to the mean field theory of smectics. J. Chem. Phys., 79, 19391941.Google Scholar
Liu, P., Kim, B., Friesner, R. A. and Berne, B. J. 2005. Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc. Nat. Acad. Sci. USA, 102, 1374913754.Google Scholar
Lo Nostro, P., Ninham, B. W., Fratoni, L., et al. 2003. Effect of water structure on the formation of coagels from ascorbyl-alkanoates. Langmuir, 19, 32223228.Google Scholar
Longa, L., Cholewiak, G., Trebin, R. and Luckhurst, G. R. 2001. Representation of pair correlations in nematics. Eur. Phys. J. E, 4, 5157.Google Scholar
Losada-Perez, P., Jimenez-Monroy, K. L., van Grinsven, B., Leys, et al. 2014. Phase transitions in lipid vesicles detected by a complementary set of methods: heat-transfer measurements, adiabatic scanning calorimetry, and dissipation-mode quartz crystal microbalance. Phys. Stat. Solid A, 211, 13771388.Google Scholar
Lub, J., Broer, D. J., Martinez Antonio, M. E. and Mol, G. N. 1998. The formation of a liquid crystalline main chain polymer by means of photopolymerization. Liq. Cryst., 24, 375379.Google Scholar
Lubensky, T. C. and Priest, R. G. 1974. Critical exponents for a symmetric traceless tensor field theory model. Phys. Lett. A, 48, 103104.Google Scholar
Lubensky, T. C. and Prost, J. 1992. Orientational order and vesicle shape. J. de Physique II, 2, 371382.Google Scholar
Lubensky, T. C. and Stark, H. 1996. Theory ofa critical point in the Blue-Phase-III-isotropic phase diagram. Phys. Rev. E, 53, 714720.Google Scholar
Luckhurst, G. R. 1985. Molecular field theories of liquid crystals: systems composed of uniaxial, biaxial or flexible molecules. In Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 5384.Google Scholar
Luckhurst, G. R. 1988. Pretransitional behavior in liquid crystals: the roles of Nuclear Magnetic Resonance spectroscopy and molecular field theory. J. Chem. Soc. Faraday Trans., 84, 961986.Google Scholar
Luckhurst, G. R. 2001. Biaxial nematic liquid crystals: fact or fiction? Thin Solid Films, 393, 4052.Google Scholar
Luckhurst, G. R. 2004. Liquid crystals – A missing phase found at last? Nature, 430, 413414.Google Scholar
Luckhurst, G. R. 2015. Biaxial nematics: order parameters and distribution functions. In Luckhurst, G. R. and Sluckin, T. J. (eds.), Biaxial Nematic Liquid Crystals. Theory, Simulation and Experiment. Chichester: Wiley, pp. 2553.Google Scholar
Luckhurst, G. R. and Gray, G. W. (eds.). 1979. The Molecular Physics of Liquid Crystals. London: Academic Press.Google Scholar
Luckhurst, G. R. and Romano, S. 1980a. Computer simulation studies of anisotropic systems. II. Uniaxial and biaxial nematics formed by noncylindrically symmetric molecules. Mol. Phys., 40, 129139.Google Scholar
Luckhurst, G. R. and Romano, S. 1980b. Computer-simulation studies of anisotropic systems. 4. The effect of translational freedom. Proc. Roy. Soc. (London) A, 373, 111130.Google Scholar
Luckhurst, G. R. and Romano, S. 1999. Computer simulation study of a nematogenic lattice model based on an elastic energy mapping of the pair potential. Liq. Cryst., 26, 871884.Google Scholar
Luckhurst, G. R. and Sanson, A. 1972. Angular dependent linewidths for a spin probe dissolved in a liquid crystal. Mol. Phys., 24, 12971311.Google Scholar
Luckhurst, G. R. and Satoh, K. 2003. Computer simulation of the field-induced alignment of the smectic A phase of the Gay-Berne mesogen GB(4.4,20.0,1,1). Mol. Cryst. Liq. Cryst., 394, 153169.Google Scholar
Luckhurst, G. R. and Sluckin, T. J. (eds.). 2015. Biaxial Nematic Liquid Crystals. Theory, Simulation and Experiment. Chichester: Wiley.Google Scholar
Luckhurst, G. R. and Yeates, R. N. 1976. Negative order parameters for nematic liquid crystals. Mol. Cryst. Liq. Cryst., 34, 5761.Google Scholar
Luckhurst, G. R. and Zannoni, C. 1975. A theory of dielectric relaxation in anisotropic systems. Proc. Roy. Soc. A, 343, 389398.Google Scholar
Luckhurst, G. R. and Zannoni, C. 1977. Why is the Maier-Saupe theory of nematic liquid crystals so successful? Nature, 267, 412414.Google Scholar
Luckhurst, G. R., Simpson, P. and Zannoni, C. 1987. Computer simulation studies of anisotropic systems.16. The smectic E-smectic B transition. Liq. Cryst., 2, 313334.Google Scholar
Luckhurst, G. R., Stephens, R. A. and Phippen, R. W. 1990. Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen. Liq. Cryst., 8, 451464.Google Scholar
Luckhurst, G. R., Zannoni, C., Nordio, P. L. and Segre, U. 1975. Molecular field theory for uniaxial nematic liquid crystals formed by non-cylindrically symmetric molecules. Mol. Phys., 30, 13451358.Google Scholar
Luo, Z., Xu, D. and Wu, S.-T. 2014. Emerging quantum-dots-enhanced LCDs. J. Display Tech., 10, 526539.Google Scholar
Luz, Z., Goldfarb, D. and Zimmermann, H. 1985. Discotic liquid crystals and their characterization by deuterium NMR. Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 343420.Google Scholar
Luzzati, V, and Tardieu, A. 1974. Lipid phases: structure and structural transitions. Annu. Rev. Phys. Chem., 25, 7994.Google Scholar
Luzzati, V., Gulik-Krzywicki, T. and Tardieu, A. 1968. Polymorphism of lecithins. Nature, 218, 10311034.Google Scholar
Luzzati, V., Mustacchi, H. and Skoulios, A. 1957. Structure of the liquid crystal phases of the soap-water system: middle soap and neat soap. Nature, 180, 600601.Google Scholar
Lydon, J. 1998. Chromonic liquid crystal phases. Curr. Opin. Colloid Interface Sci., 3, 458466.Google Scholar
Lydon, J. 2004. Chromonic mesophases. Curr. Opin. Colloid Interface Sci., 8, 480490.Google Scholar
Lynden-Bell, R. M. 1980. Are models necessary to describe molecular reorientation of symmetrical molecules? Chem. Phys. Lett., 70, 477480.Google Scholar
Lyulin, A., Al-Barwani, M., Allen, M. P., et al. 1998. Molecular dynamics simulation of main chain liquid crystalline polymers. Macromolecules, 31, 46264634.Google Scholar
Ma, S.-K. 1976. Modern Theory of Critical Phenomena. Reading: Benjamin.Google Scholar
Ma, S.-K. 1985. Statistical Mechanics. Singapore: World Scientific.Google Scholar
Mabrey-Gaud, S. 1981. Differential Scanning Calorimetry of liposomes. Knight, C. G. (ed.), Liposomes: From Physical Structure to Therapeutic Applications. Amsterdam: Elsevier – North Holland, pp. 105138.Google Scholar
MacKerrel, A. D., Wirkeiwicz-Kuczera, J. and Karplus, M. 1995. An all-atom empirical energy function for the simulation of nucleic acids. J. Amer. Chem. Soc., 117, 1194611975.Google Scholar
Madhusudana, N. V. and Pratibha, R. 1982. High strength defects in nematic liquid crystals. Curr. Sci., 51., 877881.Google Scholar
Madsen, L. A., Dingemans, T. J., Nakata, M. and Samulski, E. T. 2004. Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett., 92, 145505.Google Scholar
Maddox, J. 1988. Crystals from first principles. Nature, 335, 201.Google Scholar
Maeda, Y., Shankar Rao, D. S., Krishna Prasad, S., Chandrasekhar, S. and Kumar, S. 2001. Phase behaviour of the discotic mesogen 2,3,6,7,10, 11-hexahexylthiotriphenylene (HHTT) under hydrostatic pressure. Liq. Cryst., 28, 16791690.Google Scholar
Maeda, Y., Shankar Rao, D. S., Krishna Prasad, S., Chandrasekar, S. and Kumar, S. 2003. Phase behaviour of the discotic mesogen 2,3,6,7,10,11-hexahexyl thiotriphenylene (HHTT) under pressure. Mol. Cryst. Liq. Cryst., 397, 429442.Google Scholar
Mahanty, J. and Ninham, B. W. 1976. Dispersion Forces. London: Academic Press.Google Scholar
Maier, W. and Saupe, A. 1958. Eine einfache molekulare theorie des nematischen kristallinflüssigen zustandes. Z. Naturforsch. A, 13, 564566.Google Scholar
Maier, W. and Saupe, A. 1959. Eine einfache molekularstatistische theorie der nematischen kristallinflüssigen phase. Teil I. Z. Naturforsch. A, 14, 882889.Google Scholar
Maier, W. and Saupe, A. 1960. Eine einfache molekularstatistische theorie der nematischen kristallinflüssigen phase. Teil II. Z. Naturforsch. A, 15, 287292.Google Scholar
Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A. and Liz-Marzan, L. M. 2002. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir, 18, 36943697.Google Scholar
Malthête, J., Collet, A. and Levelut, A. M. 1989. Mesogens containing the DOBOB group. Liq. Cryst., 5, 123131.Google Scholar
Man, W. N., Donev, A., Stillinger, F. H., et al. 2005. Experiments on random packings of ellipsoids. Phys. Rev. Lett., 94, 198001.Google Scholar
Mandle, R. J. and Goodby, J. W. 2018. A nanohelicoidal nematic liquid crystal formed by a non-linear duplexed hexamer. Angew. Chem. Intern. Ed., 57, 70967100.Google Scholar
Mandle, R. J., Davis, E. J., Archbold, C. T., et al. 2015. Apolar bimesogens and the incidence of the Twist-Bend nematic phase. Chem. Eur. J., 21, 81588167.Google Scholar
Manoharan, V. N. 2015. Colloids. Colloidal matter: packing, geometry, and entropy. Science, 349, 1253751.Google Scholar
Mansoori, G. A., Carnahan, N. F., Starling, K. E. and Leland, T. W. 1971. Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys., 54, 15231525.Google Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys., 85, 11431189.Google Scholar
Margola, T., Satoh, K. and Saielli, G. 2018. Comparison of the mesomorphic behaviour of 1:1 and 1:2 mixtures of charged Gay-Berne GB(4.4,20.0,1,1) and Lennard-Jones particles. Crystals, 8, 371.Google Scholar
Marguta, R. G., Martin del Rio, E. and de Miguel, E. 2006. Revisiting McMillan’s theory of the smectic A phase. J. Phys. Condens. Matter, 18, 1033510351.Google Scholar
Marrink, S. J., Berkowitz, M. and Berendsen, H. J. C. 1993. Molecular dynamics simulation of a membrane water interface – the ordering of water and its relation to the hydration force. Langmuir, 9, 31223131.Google Scholar
Marrink, S. J., Lindahl, E., Edholm, O. and Mark, A. E. 2001. Simulation of the spontaneous aggregation of phospholipids into bilayers. J. Amer. Chem. Soc., 123, 86388639.Google Scholar
Marrink, S. J., Corradi, V., Souza, P. C. T., et al. 2019. Computational modeling of realistic cell membranes. Chem. Rev., 119, 61846226.Google Scholar
Martin, A. J., Meier, G. and Saupe, A. 1971. Extended Debye theory for dielectric relaxations in nematic liquid crystals. Symp. Faraday Soc., 5, 119133.Google Scholar
Martin del Rio, E. and de Miguel, E. 1997. Computer simulation study of the free surfaces of a liquid crystal model. Phys. Rev. E, 55, 2916.Google Scholar
Martin del Rio, E., de Miguel, E. and Rull, L. F. 1995. Computer simulation of the liquid-vapor interface in liquid crystals. Physica A, 213, 138147.Google Scholar
Martinelli, N. G., Savini, M., Muccioli, L., et al. 2009. Modeling polymer dielectric/pentacene interfaces: on the role of electrostatic energy disorder on charge carrier mobility. Adv. Funct. Mater., 19, 32543261.Google Scholar
Martinez, L., Andrade, R., Birgin, E. G. and Martinez, J. M. 2009. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem., 30, 21572164.Google Scholar
Martins, A. F., Ferreira, J. B., Volino, F., Blumstein, A. and Blumstein, R. B. 1983. NMR study of some thermotropic nematic polyesters with mesogenic elements and flexible spacers in the main chain. Macromolecules, 16, 279287.Google Scholar
Martonosi, M. 1974. Thermal-analysis of sarcoplasmic-reticulum membranes. FEBS Lett., 47, 327329.Google Scholar
Maruani, J. and Serre, J. (eds.). 1983. Symmetries and Properties of Non-Rigid Molecules. A Comprehensive Survey. Amsterdam: Elsevier.Google Scholar
Maruani, J. and Toro-Labbe, A. 1983. Symmetry analysis and conformational dependence of molecular properties in nonrigid systems. In Maruani, J. and Serre, J. (eds.), Symmetries and Properties of Non-Rigid Molecules. A Comprehensive Survey. Amsterdam: Elsevier, pp. 291314.Google Scholar
Marynissen, H., Thoen, J. and Van Dael, W. 1983. Heat-capacity and enthalpy behavior near phase transitions in some alkylcyanobiphenyls. Mol. Cryst. Liq. Cryst., 97, 149161.Google Scholar
Matthey, T., Cickovski, T., Hampton, S. S., et al. 2004. ProtoMol: an object-oriented framework for prototyping novel algorithms for molecular dynamics. ACM Trans. Math. Softw., 30, 237265.Google Scholar
Mayo, S. L., Olafson, B. D. and Goddard, W. A. 1990. DREIDING – a generic force-field for molecular simulations. J. Phys. Chem., 94, 88978909.Google Scholar
Mazenko, G. 2000. Equilibrium Statistical Mechanics. New York: Wiley.Google Scholar
McArdle, C. B. 1989. Side Chain Liquid Crystal Polymers. Glasgow: Blackie.Google Scholar
McBain, J. W. and Sierichs, W. C. 1948. The solubility of sodium and potassium soaps and the phase diagrams of aqueous potassium soaps. J. Amer. Oil Chem. Soc., 25, 221225.Google Scholar
McBride, C. and Lomba, E. 2007. Hard biaxial ellipsoids revisited: numerical results. Fluid Phase Equilibria, 255, 3745.Google Scholar
McCammon, J. A. and Harvey, S. C. 1987. Dynamics of Proteins and Nucleic Acids. Cambridge: Cambridge University Press.Google Scholar
McLaughlin, E., Shakespeare, M. A. and Ubbelohde, A. R. 1964. Pre-freezing phenomena in relation to liquid crystal formation. Trans. Faraday Soc., 60, 2532.Google Scholar
McMillan, W. L. 1971. Simple molecular model for the smectic-A phase of liquid crystals. Phys. Rev. A, 4, 12381246.Google Scholar
McMillan, W. L. 1972. X-Ray scattering from liquid crystals. I. Cholesteryl nonanoate and myristate. Phys. Rev. A, 6, 936947.Google Scholar
McMillan, W. L. 1973. Simple molecular theory of the smectic C phase. Phys. Rev. A, 8, 19211929.Google Scholar
Mederos, L., Velasco, E. and Martinez-Raton, Y. 2014. Hard-body models of bulk liquid crystals. J. Phys. Cond. Matter, 26, 463101.Google Scholar
Mei, S. and Zhang, P. W. 2015. On a molecular based Q-tensor model for liquid crystals with density variations. Multiscale Model. Simul., 13, 9771000.Google Scholar
Memmer, R. 1998. Computer simulation of chiral liquid crystal phases – VII. The chiral Gay-Berne discogen. Ber. Bunsenges. Phys. Chem., 102, 10021010.Google Scholar
Memmer, R. 2002. Liquid crystal phases of achiral banana-shaped molecules: a computer simulation study. Liq. Cryst., 29, 483496.Google Scholar
Memmer, R., Kuball, H. G. and Schönhofer, A. 1993. Computer-simulation of chiral liquid crystal phases.I. The polymorphism of the chiral Gay-Berne fluid. Liq. Cryst., 15, 345360.Google Scholar
Memmer, R., Kuball, H. G. and Schönhofer, A. 1996. Computer simulation of chiral liquid crystal phases.III. A cholesteric phase formed by chiral Gay-Berne atropisomers. Mol. Phys., 89, 16331649.Google Scholar
Menzel, D. H. 1960. Fundamental Formulas of Physics. vol. 1. New York: Dover.Google Scholar
Mercury. Crystal Structure Visualisation, Exploration and Analysis Made Easy. www.ccdc.cam.ac.uk/products/ mercury/Google Scholar
Merkel, K., Kocot, A., Vij, J. K., et al. 2004. Thermotropic biaxial nematic phase in liquid crystalline organo-siloxane tetrapodes. Phys. Rev. Lett., 93, 237801.Google Scholar
Mermin, N. D. 1979. The topological theory of defects in ordered media. Rev. Mod. Phys., 51, 591648.Google Scholar
Mermin, N. D. 1990. Boojums All The Way Through. Cambridge: Cambridge University Press.Google Scholar
Mermin, N. D. and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 11331136.Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 10871092.Google Scholar
Meyer, R. B. 1973. Existence of even indexed disclinations in nematic liquid crystals. Philos. Mag., 27, 405424.Google Scholar
Micheletti, D., Muccioli, L., Berardi, R., Ricci, M. and Zannoni, C. 2005. Effect of nanoconfinement on liquid crystal polymer chains. J. Chem. Phys., 123, 224705.Google Scholar
Michl, J. and Thulstrup, E. W. 1986. Spectroscopy with Polarized Light. New York: Wiley.Google Scholar
Miesowicz, M. 1946. The three coefficients of viscosity of anisotropic liquids. Nature, 158, 2727.Google Scholar
Millett, F. S., and Dailey, B. P. 1972. NMR determination of some deuterium quadrupole coupling constants in nematic solutions. J. Chem. Phys., 56, 32493256.Google Scholar
Mills, S. J., Care, C. M., Neal, M. P. and Cleaver, D. J. 1998. Computer simulation of an unconfined liquid crystal film. Phys. Rev. E, 58, 32843294.Google Scholar
Minkin, V. I., Osipov, O. A., Zhdanov, Y. A., Hazzard, B. J. and Vaughan, W. E. 1970. Dipole Moments in Organic Chemistry. New York: Plenum.Google Scholar
Mitov, M. 2012. Sensitive Matter. Cambridge, MA: Harvard University Press.Google Scholar
Mitov, M. 2017. Cholesteric liquid crystals in living matter. Soft Matter, 13, 41764209.Google Scholar
Mityashin, A., Roscioni, O. M., Muccioli, L., et al. 2014. Multiscale modeling of the electrostatic impact of self-assembled mono layers used as gate dielectric treatment in organic thin-film transistors. ACS Appl. Mater. Interfaces, 6, 1537215378.Google Scholar
Miyajima, S. 2001. Meaurement of translational diffusion in nematics. In Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals: Nematics. London: INSPEC-IEE, pp. 457463.Google Scholar
Mohanty, S., Chou, S. H., Brostrom, M. and Aguilera, J. 2006. Predictive modeling of self assembly of chromonics materials. Molec. Simul., 32, 11791185.Google Scholar
Moin, P. 2010. Fundamentals of Engineering Numerical Analysis. 2nd ed. New York: Cambridge University Press.Google Scholar
Moll, A, Hildebrandt, A, Lenhof, H. P. and Kohlbacher, O. 2006a. BALLView: a tool for research and education in molecular modeling. Bioinformatics, 22, 365366.Google Scholar
Moll, A., Hildebrandt, A., Lenhof, H.-P. and Kohlbacher, O. 2006b. BALLView: an object-oriented molecular visualization and modeling framework. J. Comput. Aided Mol. Des., 19, 791800.Google Scholar
Monkade, M., Martinot Lagarde, P., Durand, G. and Granjean, C. 1997. SiO evaporated films topography and nematic liquid crystal orientation. J. de Physique II, 7, 15771596.Google Scholar
Monson, P. A. and Gubbins, K. E. 1983. Equilibrium properties of the Gaussian Overlap fluid – Monte Carlo simulation and thermodynamic Perturbation Theory. J. Phys. Chem., 87, 28522858.Google Scholar
Morelhao, S. L. 2016. Computer Simulation Tools for X-ray Analysis. Scattering and Diffraction Methods. Cham: Springer.Google Scholar
Mori, H. and Nakanishi, H. 1988. On the stability of topologically non-trivial point defects. J. Phys. Soc. Japan, 57, 12811286.Google Scholar
Mori, H., Gartland, E. C., Kelly, J. R. and Bos, P. J. 1999. Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the π cell with patterned electrodes. Jap. J. Appl. Phys., 38, 135146.Google Scholar
Morozov, I. V., Kazennov, A. M., Bystryi, R. G., et al. 2011. Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs. Comput. Phys. Comm., 182, 19741978.Google Scholar
Mottram, N. J. and Newton, C. J. P. 2014. Introduction to Q-tensor theory. arXiv:1409.3542.Google Scholar
Mottram, N. J. and Newton, C. J. P. 2016. Liquid crystal theory and modelling. Chen, J., Cranton, W. and Fihn, M. (eds.), Handbook of Visual Display Technology, Vols 1–4. Berlin: Springer, pp. 20212052.Google Scholar
Mouritsen, O. and Bagatolli, L. A. 2016. Life -as a Matter of Fat: The Emerging Science of Lipidomics. 2nd ed. Berlin: Springer.Google Scholar
Movahed, H. B., Hidalgo, R. C. and Sullivan, D. E. 2006. Phase transitions of semiflexible hard-sphere chain liquids. Phys. Rev. E, 73, 032701.Google Scholar
Muccioli, L. and Zannoni, C. 2006. A deformable Gay-Berne model for the simulation of liquid crystals and soft materials. Chem. Phys. Lett., 423, 16.Google Scholar
Muccioli, L., D’Avino, G., Berardi, R., et al. 2014. Supramolecular organization of functional organic materials in the bulk and at organic/organic interfaces: a modeling and computer simulation approach. In Beljonne, D. and Cornil, J. (eds.), Topics in Current Chemistry. Multiscale Modelling of Organic and Hybrid Photovoltaics, vol. 352. Berlin: Springer, pp. 39102.Google Scholar
Mukherjee, B., Peter, C. and Kremer, K. 2013. Dual translocation pathways in smectic liquid crystals facilitated by molecular flexibility. Phys. Rev. E, 88, 010502.Google Scholar
Mukherjee, B., Delle Site, L., Kremer, K. and Peter, C. 2012. Derivation of coarse grained models for multiscale simulation of liquid crystalline phase transitions. J. Phys. Chem. B, 116, 84748484.Google Scholar
Mukherjee, P. K. 1998. The puzzle of the nematic-isotropic phase transition. J. Phys. Cond. Matter, 10, 9191.Google Scholar
Mukherjee, P. K. and Saha, M. 1997. Critical exponents for the Landau-de Gennes model of the nematic-isotropic phase transition. Mol. Cryst. Liq. Cryst., 307, 103110.Google Scholar
Mundoor, H., Park, S., Senyuk, B., Wensink, H. H. and Smalyukh, I. I. 2018. Hybrid molecular-colloidal liquid crystals. Science, 360, 768771.Google Scholar
Muševič, I. 2017. Liquid Crystal Colloids. Cham: Springer.Google Scholar
Nagle, J. F. and Tristram-Nagle, S. 2000. Structure of lipid bilayers. Bioch. Biophys. Acta., 1469, 159195.Google Scholar
Nakata, M., Zanchetta, G., Chapman, B. D., et al. 2007. End-to-end stacking and liquid crystal condensation of 6 to 20 base pair DNA duplexes. Science, 318, 12769.Google Scholar
Nazarenko, V. G., Boiko, O. P., Park, H. S., et al. 2010. Surface alignment and anchoring transitions in nematic lyotropic chromonic liquid crystals. Phys. Rev. Lett., 105, 017801.Google Scholar
Neal, M. P. and Parker, A. J. 1998. Computer simulations using a longitudinal quadrupolar Gay-Berne model: effect of the quadrupole magnitude on the formation of the smectic phase. Chem. Phys. Lett., 294, 277284.Google Scholar
Neal, M. P. and Parker, A. J. 1999. Computer simulations using a quadrupolar Gay-Berne model. Mol. Cryst. Liq. Cryst. A, 330, 18091816.Google Scholar
Nehring, J. and Saupe, A. 1971. Elastic theory of uniaxial liquid crystals. J. Chem. Phys., 54, 337343.Google Scholar
Nehring, J. and Saupe, A. 1972. Calculation of elastic-constants of nematic liquid crystals. J. Chem. Phys., 56, 55275528.Google Scholar
Nelson, D. R. 1977. Recent developments in phase-transitions and critical phenomena. Nature, 269, 379383.Google Scholar
Nelson, D. R. 2002. Toward a tetravalent chemistry of colloids. Nano Lett., 2, 11251129.Google Scholar
Ness, D. and Niehaus, J. 2011. Semiconductor nanoparticles. A review. The Strem Chemiker, 25, 3947.Google Scholar
Neubert, M. E. 2001a. Characterization of mesophase types and transitions. In Kumar, S. (ed.), Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions. Cambridge: Cambridge University Press, pp. 2964.Google Scholar
Neubert, M. E. 2001b. Chemical structure-property relationships. In Kumar, S. (ed.), Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions. Cambridge: Cambridge University Press, pp. 393476.Google Scholar
Newman, M. E. J. and Barkema, G. T. 1999. Monte Carlo Methods in Statistical Physics. Oxford: Clarendon Press.Google Scholar
Newton, I. 1686. Philosophiae Naturalis Principia Mathematica. London: J. Streater.Google Scholar
Nicastro, A. J. and Keyes, P. H. 1984. Electric-field-induced critical phenomena at the nematic-isotropic transition and the nematic-isotropic critical point. Phys. Rev. A, 30, 3156.Google Scholar
Ninham, B. W. and Lo Nostro, P. 2010. Molecular Forces and Self Assembly: In Colloid, Nano Sciences and Biology. Cambridge: Cambridge University Press.Google Scholar
Niori, T., Sekine, T., Watanabe, J., Furukawa, T. and Takezoe, H. 1996. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J. Mater. Chem., 6, 12311233.Google Scholar
NIST. 2016. Digital Library of Mathematical Functions. http://dlmf.nist.gov/Google Scholar
NIST. 2017. Electronic Book Section. http://webbook.nist.gov/chemistry/Google Scholar
NIST Center for Neutron Research. 2016. www.ncnr.nist.gov/Google Scholar
Nobili, M. and Durand, G. 1992. Disorientation-induced disordering at a nematic-liquid crystal solid interface. Phys. Rev. A, 46, R6174-R6177.Google Scholar
Nordio, P. L. 1976. General magnetic resonance theory. In Berliner, L. J. (ed.), Spin Labeling. Theory and Applications. New York: Academic Press, pp. 552.Google Scholar
Nordio, P. L. and Busolin, P. 1971. Electron Spin Resonance line shapes in partially ordered systems. J. Chem. Phys., 55, 54855490.Google Scholar
Nordio, P. L. and Segre, U. 1975. ESR linewidth in oriented solvents with two-angle-dependent distribution function. Chem. Phys., 11, 5762.Google Scholar
Nordio, P. L. and Segre, U. 1977. Magnetic relaxation from first-rank interactions. J. Magn. Res., 27, 465473.Google Scholar
Nordio, P. L. and Segre, U. 1979. Rotational diffusion. In Luckhurst, G. R. and Gray, G. (eds.), The Molecular Physics of Liquid Crystals. London: Academic Press, pp. 411426.Google Scholar
Nordio, P. L., Rigatti, G. and Segre, U. 1973. Dielectric relaxation theory in nematic liquids. Mol. Phys., 25, 129136.Google Scholar
Nosé, S. 1984. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52, 255268.Google Scholar
Nosé, S. and Klein, M. L. 1983. Constant pressure molecular dynamics for molecular systems. Mol. Phys., 50, 10551076.Google Scholar
Nounesis, G., Garland, C. W. and Shashidhar, R. 1991. Crossover from three-dimensional XY to tricritical behavior for the nematic-smectic-A1 phase transition. Phys. Rev. A, 43, 18491856.Google Scholar
O’Connor, C. J. 1982. Magnetochemistry. Advances in theory and experimentation. Progr. Inorg. Chem., 203283.Google Scholar
Odriozola, G. 2012. Revisiting the phase diagram of hard ellipsoids. J. Chem. Phys., 136, 134505.Google Scholar
Oganov, A. R. 2010. Modern Methods of Crystal Structure Prediction. Berlin: Wiley-VCH.Google Scholar
Oh-e, M., Hong, S. C. and Shen, Y. R. 2002. Orientations of phenyl sidegroups and liquid crystal molecules on a rubbed polystyrene surface. Appl. Phys. Lett., 80, 784786.Google Scholar
Ohm, C., Brehmer, M. and Zentel, R. 2012. Applications of liquid crystalline elastomers. In de Jeu, W.H. (ed.), Liquid Crystal Elastomers: Materials and Applications. Berlin: Springer, pp. 4993.Google Scholar
Ohzono, T., Katoh, K., Wang, C. G., et al. 2017. Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep., 7, 16814.Google Scholar
Olivier, Y., Muccioli, L. and Zannoni, C. 2014. Quinquephenyl: the simplest rigid-rod-like nematic liquid crystal, or is it? An atomistic simulation. ChemPhysChem, 15, 13451355.Google Scholar
Olivier, Y., Muccioli, L., Lemaur, V., et al. 2009. Theoretical characterization of the structural and hole transport dynamics in liquid crystalline phthalocyanine stacks. J. Phys. Chem. B, 113, 1410214111.Google Scholar
Ondris-Crawford, R., Boyko, E. P., Wagner, B. G., et al. 1991. Microscope textures of nematic droplets in polymer dispersed liquid crystals. J. Appl. Phys., 69, 63806386.Google Scholar
O’Neill, M. and Kelly, S. M. 2003. Liquid crystals for charge transport, luminescence, and photonics. Adv. Mater., 15, 11351146.Google Scholar
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 65, 117149.Google Scholar
Onsager, L. 1949. The effects of shape on the interaction of colloidal particles. Ann. New York. Acad. Sci., 51, 627659.Google Scholar
Orlandi, S., Berardi, R., Steltzer, J. and Zannoni, C. 2006. A Monte Carlo study of the mesophases formed by polar bent-shaped molecules. J. Chem. Phys., 124, 124907.Google Scholar
Orlandi, S., Muccioli, L., Ricci, M. and Zannoni, C. 2007. Core charge distribution and self assembly of columnar phases: the case of triphenylenes and azatriphenylenes. Chemistry Central J., 1, 1528.Google Scholar
Orlandi, S., Benini, E., Miglioli, I., et al. 2016. Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape. Phys. Chem. Chem. Phys., 18, 24282441.Google Scholar
Orr, R. and Pethrick, R. A. 2011. Viscosities coefficients of nematic liquid crystals: I. Oscillating plate viscometer measurements and rotational viscosity measurements: K15. Liq. Cryst., 38, 11691181.Google Scholar
Ortiz, C., Ober, C. K. and Kramer, E. J. 1998. Stress relaxation of a main-chain, smectic, polydomain liquid crystalline elastomer. Polymer, 39, 37133718.Google Scholar
Orville-Thomas, W. J. 1974. Internal Rotations in Molecules. New York: Wiley.Google Scholar
Oseen, C. W. 1933. The theory of liquid crystals. Trans. Faraday Soc., 29, 883899.Google Scholar
Ostrovskii, B. I. 1993. Structure and phase transitions in smectic-A liquid crystals with polar and sterical asymmetry. Liq. Cryst., 14, 131157.CrossRefGoogle Scholar
Oswald, P. and Pieranski, P. 2005. Nematic and Cholesteric Liquid Crystals. Concepts and Physical Properties Illustrated by Experiment. Boca Raton, FL: Taylor & Francis.Google Scholar
Oswald, P. and Pieranski, P. 2006. Smectic and Columnar Liquid Crystals : Concepts and Physical Properties Illustrated by Experiments. Boca Raton: Taylor & Francis.Google Scholar
Ouellette, R. J. and Rawn, J. D. 2015. Principles of Organic Chemistry. Amsterdam: Elsevier.Google Scholar
OVITO. The Open Visualization Tool. www.ovito.orgGoogle Scholar
Oyarzun, B., van Westen, T. and Vlugt, T. J. H. 2013. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids. J. Chem. Phys., 138, 204905.Google Scholar
Oyarzun, B., van Westen, T. and Vlugt, T. J. 2015. Isotropic-nematic phase equilibria of hard-sphere chain fluids. Pure components and binary mixtures. J. Chem. Phys., 142, 064903.Google Scholar
Ozel, T., Ashley, M. J., Bourret, G. R., et al. 2015. Solution-dispersible metal nanorings with deliberately controllable compositions and architectural parameters for tunable plasmonic response. Nano Lett., 15, 52735278.Google Scholar
Paci, E. and Marchi, M. 1996. Constant-pressure molecular dynamics techniques applied to complex molecular systems and solvated proteins. J. Phys. Chem., 100, 43144322.Google Scholar
Pajak, G. and Osipov, M. A. 2013. Unified molecular field theory of nematic, smectic-A, and smectic-C phases. Phys. Rev. E, 88, 012507.CrossRefGoogle ScholarPubMed
Palazzesi, F., Calvaresi, M. and Zerbetto, F. 2011. A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 7, 91489156.Google Scholar
Palermo, M. F., Muccioli, L. and Zannoni, C. 2015. Molecular organization in freely suspended nano-thick 8CB smectic films. An atomistic simulation. Phys. Chem. Chem. Phys., 17, 2614926159.Google Scholar
Palermo, M. F., Bazzanini, F., Muccioli, L. and Zannoni, C. 2017. Is the alignment of nematics on a polymer slab always along the rubbing direction? A molecular dynamics study. Liq. Cryst., 44, 17641774.Google Scholar
Palermo, M. F., Pizzirusso, A., Muccioli, L. and Zannoni, C. 2013. An atomistic description of the nematic and smectic phases of 4-n-octyl-4′ cyanobiphenyl (8CB). J. Chem. Phys., 138, 204901.Google Scholar
Palffy-Muhoray, P., Gartland, E. C. and Kelly, J. R. 1994. A new configurational transition in inhomogeneous nematics. Liq. Cryst., 16, 713718.CrossRefGoogle Scholar
Pall, S., Zhmurov, A., Bauer, P., et al. 2020. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys., 153.Google Scholar
Palma, M., Levin, J., Lemaur, V., et al. 2006. Self-organization and nanoscale electronic properties of azatriphenylene-based architectures: a scanning probe microscopy study. Adv. Mater., 18, 33133317.Google Scholar
Pana, A., Pasuk, I., Micutz, M. and Circu, V. 2016. Nematic ionic liquid crystals based on pyridinium salts derived from 4-hydroxypyridine. CrystEngComm, 18, 50665069.Google Scholar
Paolini, G. V., Ciccotti, G. and Ferrario, M. 1993. Simulation of site site soft-core liquid crystal models. Mol. Phys., 80, 297312.Google Scholar
Parrinello, M. and Rahman, A. 1981. Polymorphic transitions in single crystals: anew molecular dynamics method. J. App. Phys., 52, 71827190.Google Scholar
Parsegian, V. A. 2006. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists. New York: Cambridge University Press.Google Scholar
Parsons, J. D. 1979. Nematic ordering in a system of rods. Phys. Rev. A, 19, 12251230.Google Scholar
Parthasarathi, S., Rao, D. S. S., Palakurthy, N. B., Yelamaggad, C. V. and Prasad, S. K. 2017. Effect of pressure on dielectric and Frank elastic constants of a material exhibiting the twist bend nematic phase. J. Phys. Chem. B, 121, 896903.Google Scholar
Pasechnik, S. V., Chigrinov, V. G. and Shmeliova, D. V. 2009. Liquid Crystals: Viscous and Elastic Properties. Weinheim: Wiley-VCH.Google Scholar
Pasini, P. and Zannoni, C. 1984a. Orientational correlation-functions in ordered fluids – the short-time expansion. Mol. Phys., 52, 749756.Google Scholar
Pasini, P. and Zannoni, C. 1984b. Tables of Clebsch-Gordan coefficients for integer angular momentum J=0–6. Report TC-83/19. INFN.Google Scholar
Pasini, P. and Zannoni, C. (eds.). 2000. Advances in the Computer Simulations of Liquid Crystals. Dordrecht: Kluwer.Google Scholar
Pasini, P., Chiccoli, C. and Zannoni, C. 2000. Liquid crystal lattice models II. Confined systems. In Pasini, P. and Zannoni, C. (eds.), Advances in the Computer Simulations of Liquid Crystals. Dordrecht: Kluwer, pp. 121138.Google Scholar
Pasini, P., Semeria, F. and Zannoni, C. 1991. Symbolic computation of orientational correlation-function moments. J. Symb. Comput., 12, 221231.Google Scholar
Pasini, P., Skacej, G. and Zannoni, C. 2005a. A microscopic lattice model for liquid crystal elastomers. Chem. Phys. Lett., 413, 463467.Google Scholar
Pasini, P., Zannoni, C. and Žumer, S. (eds.). 2005b. Computer Simulations of Liquid Crystals and Polymers. Dordrecht: Kluwer.CrossRefGoogle Scholar
Patey, G. N. and Valleau, J. P. 1974. Dipolar hard spheres – Monte Carlo study. J. Chem. Phys., 61, 534540.Google Scholar
Pathria, R. K. 1972. Statistical Mechanics. Oxford: Pergamon Press.Google Scholar
Pathria, R. K. and Beale, P. D. 2011. Statistical Mechanics. 3rd ed. Amsterdam: Elsevier.Google Scholar
Pauling, L. 1960. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. 3rd ed. Ithaca, NY: Cornell University Press.Google Scholar
Peczak, P. and Landau, D. P. 1989. Monte Carlo study of finite-size effects at a weakly 1st-order phase-transition. Phys. Rev. B, 39, 1193211942.Google Scholar
Peierls, R. 1936. On Ising’s model of ferromagnetism. Math. Proc. Cambridge Phil. Soc., 32, 477481.Google Scholar
Peláez, J. and Wilson, M. 2006. Atomistic simulations of a thermotropic biaxial liquid crystal. Phys. Rev. Lett., 97, 267801.Google Scholar
Peláez, J. and Wilson, M. 2007. Molecular orientational and dipolar correlation in the liquid crystal mixture E7: a molecular dynamics simulation at a fully atomistic level. Phys. Chem. Chem. Phys., 9, 29682975.Google Scholar
Pelzl, G., Diele, S. and Weissflog, W. 1999. Banana shaped compounds – a new field of liquid crystals. Adv. Mater., 11, 707724.3.0.CO;2-D>CrossRefGoogle Scholar
Pennington, E. R., Day, C., Parker, J. M., Barker, M. and Kennedy, A. 2016. Thermodynamics of interaction between carbohydrates and unilamellar dipalmitoyl phosphatidylcholine membranes. J. Therm. Anal. Calorim., 123, 26112617.Google Scholar
Peroukidis, S. D., Karahaliou, P. K., Vanakaras, A. G. and Photinos, D. J. 2009. Biaxial nematics: symmetries, order domains and field-induced phase transitions. Liq. Cryst., 36, 727737.Google Scholar
Perram, J. W., Petersen, H. G. and De Leeuw, S. W. 1988. An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles. Mol. Phys., 65, 875893.Google Scholar
Perram, J. W., Rasmussen, J., Praestgaard, E. and Lebowitz, J. L. 1996. Ellipsoid contact potential: theory and relation to overlap potentials. Phys. Rev. E, 54, 65656572.Google Scholar
Perrin, C. L. and Nielson, J. B. 1997. ‘Strong’ hydrogen bonds in chemistry and biology. Annu. Rev. Phys. Chem., 48, 511544.Google Scholar
Perrin, F. 1934. Mouvement brownien d’un ellipsoide -I. Dispersion dielectrique pour des molecules ellipsoidales. J. Phys. Radium, 5, 497511.Google Scholar
Pershan, P. S., Aeppli, G., Litster, J. D. and Birgeneau, R. J. 1981. High-resolution X-Ray study of the smectic-A-smectic-B phase transition and the smectic-B phase in butyloxybenzylidene octylaniline. Mol. Cryst. Liq. Cryst., 67, 861870.Google Scholar
Pestov, S. and Vill, V. 2005. Liquid Crystals. In Martienssen, W. and Warlimont, H. (eds.), Springer Handbook of Condensed Matter and Materials Data. Berlin: Springer, pp. 941978.Google Scholar
Pettersen, E.F., Goddard, T. D., Huang, C. C., et al. 2004. UCSF Chimera. A visualization system for exploratory research and analysis. J. Comput. Chem., 25, 16051612.Google Scholar
Phillips, J. C., Braun, R., Wang, W., et al. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem., 26, 17811802.Google Scholar
Phillips, J. C., Hardy, D. J., Maia, J. D. C., et al. 2020. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 153, 044130.Google Scholar
Photinos, D. J., Samulski, E. T. and Toriumi, H. 1990. Alkyl chains in a nematic field. 1. A treatment of conformer shape. J. Phys. Chem., 94, 46884694.Google Scholar
Pick, R. M. and Yvinec, M. 1983. Symmetry properties in plastic crystals. In Maruani, J. and Serre, J. (eds.), Symmetries and Properties of Non-Rigid Molecules. A Comprehensive Survey. Amsterdam: Elsevier, pp. 439460.Google Scholar
Picken, S. J. 2001. Measurements and values for selected order parameters. In Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals, vol. 1: Nematics. London: INSPEC-IEE, pp. 89102.Google Scholar
Pikin, S. A. 1991. Structural Transformations in Liquid Crystals. New York: Gordon and Breach.Google Scholar
Pimentel, G. C. and McClellan, A. L. 1960. The Hydrogen Bond. San Francisco, CA: Freeman.Google Scholar
Pindak, R. and Ho, J. T. 1976. Cholesteric pitch of cholesteryl decanoate near smectic-A transition. Phys. Lett. A, 59, 277278.Google Scholar
Pindak, R. S., Huang, C. C. and Ho, J. T. 1974. Divergence of cholesteric pitch near a smectic-A transition. Phys. Rev. Lett., 32, 4346.Google Scholar
Pines, A. 1988. Lectures on pulsed NMR. In Maraviglia, B. (ed.), Physics of NMR Spectroscopy in Biology and Medicine. Proceedings of the International School of Physics ‘Enrico Fermi’, Varenna. Amsterdam: North-Holland, pp. 43120.Google Scholar
Pines, A. and Chang, J. J. 1974. Effect of phase-transitions on C-13 Nuclear Magnetic-Resonance spectra in para-azoxydianisole, a nematic liquid crystal. J. Amer. Chem. Soc., 96, 55905591.Google Scholar
Pippard, A. B. 1966. Classical Thermodynamics. Cambridge: Cambridge University Press.Google Scholar
Pisula, W., Tomovic, Z., Simpson, C., et al. 2005. Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons. Chem. Mater., 17, 42964303.Google Scholar
Pizzirusso, A., Savini, M., Muccioli, L. and Zannoni, C. 2011. An atomistic simulation of the liquid crystalline phases of sexithiophene. J. Mater. Chem., 21, 125133.Google Scholar
Pizzirusso, A., Berardi, R., Muccioli, L., Ricci, M. and Zannoni, C. 2012a. Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon. Chem. Sci., 3, 573579.Google Scholar
Pizzirusso, A., Di Cicco, M. B., Tiberio, G., et al. 2012b. Alignment of small organic solutes in a nematic solvent: the effect of electrostatic interactions. J. Phys. Chem. B, 116, 37603771.Google Scholar
Pizzirusso, A., Di Pietro, M. E., De Luca, G., et al. 2014. Order and conformation of biphenyl in cyanobiphenyl liquid crystals: a combined atomistic molecular dynamics and1 H NMR study. ChemPhysChem, 15, 13561367.Google Scholar
Plimpton, S. 1995. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117, 119.Google Scholar
Pluhackova, K., Kirsch, S. A., Han, J., et al. 2016. A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE Bilayers. J. Phys. Chem. B, 120, 38883903.Google Scholar
Poger, D., Caron, B. and Mark, A. E. 2016. Validating lipid force fields against experimental data: progress, challenges and perspectives. Biochim. Biophys. Acta 1858, 15561565.Google Scholar
Poggi, Y., Filippini, J. C. and Aleonard, R. 1976. Free energy as a function of order parameter in nematic liquid crystals. Phys. Lett. A, 57, 5356.Google Scholar
Pohl, L. and Finkenzeller, U. 1990. Physical properties of liquid crystals. In Bahadur, B. (ed.), Liquid Crystals. Applications and Uses, vol. 1. Singapore: World Scientific, pp. 139170.Google Scholar
Polnaszek, C. F., Bruno, G. V. and Freed, J. H. 1973. ESR line shapes in slow-motional region – anisotropic liquids. J. Chem. Phys., 58, 31853199.Google Scholar
Portugall, M., Ringsdorf, H. and Zentel, R. 1982. Synthesis and phase behaviour of liquid crystalline polyacrylates. Makromol. Chem., 183, 23112321.Google Scholar
Pottel, H., Herreman, W., Van der Meer, B. W. and Ameloot, M. 1986. On the significance of the fourth-rank orientational order parameter of fluorophores in membranes. Chem. Phys., 102, 3744.Google Scholar
Praefcke, K. 2001. Relationship between molecular structure and transition temperatures for organic materials of a disc-like molecular shape in nematics. Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals, vol. 1: Nematics. London: INSPEC-IEE, pp. 1735.Google Scholar
Praefcke, K., Singer, D., Kohne, B., et al. 1991. Charge-transfer induced nematic columnar phase in low-molecular-weight disk-like systems. Liq. Cryst., 10, 147159.Google Scholar
Praefcke, K., Singer, D., Langner, M., et al. 1992. Further low mass liquid crystal systems with nematic columnar phase. Mol. Cryst. Liq. Cryst., 215, 121126.Google Scholar
Preeti, G. S., Murthy, K. P. N., Sastry, V. S. S., et al. 2011. Does the isotropic-biaxial nematic transition always exist? A new topology for the biaxial nematic phase diagram. Soft Matter, 7, 1148311487.Google Scholar
Press, W., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1992. Numerical Recipes. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Price, S. L. and Stone, A. J. 1983. A distributed multipole analysis of the charge-densities of the azabenzene molecules. Chem. Phys. Lett., 98, 419423.CrossRefGoogle Scholar
Price, S. L., Stone, A. J. and Alderton, M. 1984. Explicit formulas for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Mol. Phys., 52, 9871001.Google Scholar
Priestley, E. B., Wojtowicz, P. J. and Sheng, P. 1975. Introduction to Liquid Crystals. New York: Plenum Press.Google Scholar
Priezjev, N. V. and Pelcovits, R. A. 2001. Cluster Monte Carlo simulations of the nematic-isotropic transition. Phys. Rev. E, 63, 062702.Google Scholar
Prior, C. and Oganesyan, V. S. 2017. Prediction of EPR spectra of lyotropic liquid crystals using a combination of molecular dynamics simulations and the model-free approach. Chem. Eur. J., 23, 1319213204.Google Scholar
Procacci, P. and Marchi, M. 2000. Multiple time steps algorithms for the atomistic simulations of complex molecular systems. In Pasini, P. and Zannoni, C. (eds.), Advances in the Computer Simulations of Liquid Crystals. Dordrecht: Kluwer, pp. 333388.Google Scholar
Procacci, P., Paci, E., Darden, T. A. and Marchi, M. 1997. ORAC: a molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions. J. Comput. Chem., 18, 18481862.Google Scholar
Pryde, J. A. 1969. The Liquid State. London: Hutchinson.Google Scholar
Pulvirenti, E. and Tsagkarogiannis, D. 2012. Cluster expansion in the canonical ensemble. Commun. Math. Phys., 316, 289306.Google Scholar
Qi, H. and Hegmann, T. 2008. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J. Mater. Chem., 18, 3288.Google Scholar
QMGA. Qt-Based Molecular Graphics Application. http://qmga.sourceforge.netGoogle Scholar
Querciagrossa, L., Berardi, R. and Zannoni, C. 2018. Can off-centre mesogen dipoles extend the biaxial nematic range? Soft Matter, 14, 22452253.Google Scholar
Querciagrossa, L., Ricci, M., Berardi, R. and Zannoni, C. 2013. Mesogen polarity effects on biaxial nematics. Centrally located dipoles. Phys. Chem. Chem. Phys., 15, 1906519072.Google Scholar
Querciagrossa, L., Ricci, M., Berardi, R. and Zannoni, C. 2017. Can multi-biaxial mesogenic mixtures favour biaxial nematics? A computer simulation study. Phys. Chem. Chem. Phys., 19, 23832391.Google Scholar
Rackers, J. A., Wang, Z., Lu, C., et al. 2018. Tinker 8: software tools for molecular design. J. Chem. Theory Comput., 14, 52735289.Google Scholar
Radu, M., Pfleiderer, P. and Schilling, T. 2009. Solid-solid phase transition in hard ellipsoids. J. Chem. Phys., 131, 164513.Google Scholar
Rahman, A. and Stillinger, F. H. 1971. Molecular dynamics study of liquid water. J. Chem. Phys., 55, 33363359.CrossRefGoogle Scholar
Rahman, M. D., Mohd Said, S. and Balamurugan, S. 2015. Blue Phase liquid crystal: strategies for phase stabilization and device development. Sci. Technol. Adv. Mater., 16, 033501.Google Scholar
Rai, P. K., Pinnick, R. A., Parra-Vasquez, A. N. G., et al. 2006. Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Amer. Chem. Soc., 128, 591595.Google Scholar
Raimondi, M. E. and Seddon, J. M. 1999. Liquid crystal templating of porous materials. Liq. Cryst., 26, 305339.Google Scholar
Rajteri, M., Barbero, G., Galatola, P., Oldano, C. and Faetti, S. 1996. van der Waals induced distortions in nematic liquid crystals close to a surface. Phys. Rev. E, 53, 60936100.Google Scholar
Raos, G. and Allegra, G. 2000. Mesoscopic bead-and-spring model of hard spherical particles in a rubber matrix. I. Hydrodynamic reinforcement. J. Chem. Phys., 113, 75547563.Google Scholar
Rapaport, D. C. 2004. The Art of Molecular dynamics Simulation. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Rapini, A. and Papoular, M. 1969. Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. J. de Physique Colloq., 30, 5456.Google Scholar
Rappé, A., Casewit, J., Colwell, K., Goddard, W. and Skiff, W. 1992. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Amer. Chem. Soc., 114, 1002410035.Google Scholar
Rappé, A. K. and Casewit, C. J. 1997. Molecular Mechanics across Chemistry. Sausalito, CA: University Science Books.Google Scholar
Rastogi, S., Höhne, G. W. H. and Keller, A. 1999. Unusual pressure-induced phase behavior in crystalline poly (4-methylpentene-1): calorimetric and spectroscopic results and further implications. Macromolecules, 32, 88978909.Google Scholar
Ravi, P., Murad, S., Hanley, H. J. M. and Evans, D. J. 1992. The thermal-conductivity coefficient of polyatomicmolecules – benzene. Fluid Phase Equilibria, 76, 249257.Google Scholar
Reddy, R. A. and Tschierske, C. 2006. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem., 16, 907961.Google Scholar
Reed, M. and Simon, B. 1975. Methods of Modern Mathematical Physics. vol.2 Fourier Analysis. New York: Academic Press.Google Scholar
Reed, M. A. 1993. Quantum dots. Sci. Am., 268, 118123.Google Scholar
Remler, D. K. and Haymet, A. D. J. 1986. Phase transitions in nematic liquid crystals – a mean field theory of the isotropic, uniaxial, and biaxial phases. J. Phys. Chem., 90, 54265430.Google Scholar
Renkes, G. D. 1981. Symmetry groups and representations of Hamiltonians for several coupled degrees of freedom: application to non-rigid molecular vibrations. Chem. Phys., 57, 261278.Google Scholar
Renn, S. R. and Lubensky, T. C. 1988. Abrikosov dislocation lattice in a model of the cholesteric to smectic-A transition. Phys. Rev. A, 38, 21322147.Google Scholar
Ricci, M., Berardi, R. and Zannoni, C. 2008. Columnar liquid crystals formed by bowl-shaped mesogens. A Monte Carlo study. Soft Matter, 4, 20302038.Google Scholar
Ricci, M., Berardi, R. and Zannoni, C. 2015. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation. J. Chem. Phys., 143, 084705.Google Scholar
Ricci, M., Roscioni, O. M., Querciagrossa, L. and Zannoni, C. 2019. MOLC. A reversible coarse grained approach using anisotropic beads for the modelling of organic functional materials. Phys. Chem. Chem. Phys., 21, 2619526211.Google Scholar
Ricci, M., Mazzeo, M., Berardi, R., Pasini, P. and Zannoni, C. 2010. A molecular level simulation of a Twisted Nematic cell. Faraday Discuss., 144, 171185.Google Scholar
Rigby, M. 1989. Hard Gaussian overlap fluids. Mol. Phys., 68, 687697.Google Scholar
Rivera, B. O., van Westen, T. and Vlugt, T. J. H. 2016. Liquid-crystal phase equilibria of Lennard-Jones chains. Mol. Phys., 114, 895908.Google Scholar
Rodrigues, A. S. M. C., Rocha, M. A. A. and Santos, L. M. N. B. F. 2013. Isomerization effect on the heat capacities and phase behavior of oligophenyls isomers series. J. Chem. Thermodyn., 63, 7883.Google Scholar
Romanelli, M. J. 1960. Runge-Kutta methods for the solution of ordinary equations. In Ralston, A. and Wilf, H. S. (eds.), Mathematical Methods for Digital Computers. New York: Wiley, pp. 110120.Google Scholar
Romano, S. 1998. Elastic constants and pair potentials for nematogenic lattice models. Int. J. Mod. Phys. B, 12, 23052323.Google Scholar
Romano, S. 2004a. Computer simulation study of a biaxial nematogenic lattice model associated with a three-dimensional lattice and involving dispersion interactions. Physica A, 339, 511530.Google Scholar
Romano, S. 2004b. Mean-Field and computer simulation study of a biaxial nematogenic lattice model mimicking shape amphiphilicity. Phys. Lett. A, 333, 110119.Google Scholar
Roscioni, O. M. and Zannoni, C. 2016. Molecular dynamics simulation and its applications to thin-film devices. In Da Como, E., De Angelis, F., Snaith, H. and Walker, A. B. (eds.), Unconventional Thin Film Photovoltaics. London: Royal Society of Chemistry, pp. 391419.Google Scholar
Roscioni, O. M., Muccioli, L. and Zannoni, C. 2017. Predicting the conditions for homeotropic anchoring of liquid crystals at a soft surface. 4-n-pentyl-4′-cyanobiphenyl on alkylsilane self-assembled monolayers. ACS Appl. Mater. Interfaces, 9, 1199312002.Google Scholar
Roscioni, O. M., Muccioli, L., Mityashin, A., Cornil, J. and Zannoni, C. 2016. Structural characterization of alkylsilane and fluoroalkylsilane self-assembled monolayers on SiO2 by molecular dynamics simulations. J. Phys. Chem. C, 120, 1465214662.Google Scholar
Roscioni, O. M., Muccioli, L., Della Valle, R. G., et al. 2013. Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness. Langmuir, 29, 89508958.Google Scholar
Rose, M. E. 1957. Elementary Theory of Angular Momentum. New York: Wiley.Google Scholar
Rosen, M. E., Rucker, S. P., Schmidt, C. and Pines, A. 1993. 2-dimensional proton NMR-Studies of the conformations and orientations of n-alkanes in a liquid crystal solvent. J. Phys. Chem., 97, 38583866.Google Scholar
Rosenbluth, M. N. and Rosenbluth, A. W. 1954. Further results on Monte Carlo equations of state. J. Chem. Phys., 22, 881884.Google Scholar
Rosso, L. and Gould, I. R. 2008. Structure and dynamics of phospholipid bilayers using recently developed general all-atom force fields. J. Comput. Chem., 29, 2437.Google Scholar
Rosso, R. 2007. Orientational order parameters in biaxial nematics. Polymorphic notation. Liq. Cryst., 34, 737748.Google Scholar
Roussel, O., Kestemont, G., Tant, J., et al. 2003. Discotic liquid crystals as electron carrier materials. Mol. Cryst. Liq. Cryst., 396, 3539.Google Scholar
Ruessink, B. H., Barnhoorn, J., Bulthuis, J. and Maclean, C. 1988. Electric-field NMR of pretransitional effects in liquid crystals – a solute study. Liq. Cryst., 3, 3141.Google Scholar
Rühle, V., Junghans, C., Lukyanov, A., Kremer, K. and Andrienko, D. 2009. Versatile object-oriented toolkit for coarse-graining applications. J. Chem. Theory Comput., 5, 32113223.Google Scholar
Rull, L. F. and Romero-Enrique, J. M. 2017. Computer simulation study of the nematic – vapour interface in the Gay-Berne model. Mol. Phys., 115, 111.Google Scholar
Rull, L. F., Romero-Enrique, J. M. and Fernandez-Nieves, A. 2012. Computer simulations of nematic drops: coupling between drop shape and nematic order. J. Chem. Phys., 137, 03450517.Google Scholar
Russel, W. B., Saville, D. A. and Schowalter, W. R. 1989. Colloidal Dispersions. Cambridge: Cambridge University Press.Google Scholar
Rust, B., Burrus, W. R. and Schneeberger, C. 1966. A simple algorithm for computing the generalized inverse of a matrix. Commun. ACM, 9, 381385.Google Scholar
Ryckaert, J.-P. and Bellemans, A. 1975. Molecular dynamics of liquid normal-butane near its boiling-point. Chem. Phys. Lett., 30, 123125.Google Scholar
Ryckaert, J.-P. and Bellemans, A. 1978. Molecular dynamics of liquid alkanes. Faraday Discuss., 66, 95106.Google Scholar
Ryckaert, J.-P., Ciccotti, G. and Berendsen, H. J. C. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 23, 327341.Google Scholar
Sacanna, S., Rossi, L., Kuipers, B. W. M. and Philipse, A. P. 2006. Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies. Langmuir, 22, 18221827.Google Scholar
Sackmann, H. 1989. Smectic liquid crystals. A historical review. Liq. Cryst., 5, 4355.Google Scholar
Sage, I. 1992. Thermochromic liquid crystals in devices. In Bahadur, B. (ed.), Liquid Crystals. Applications and Uses, vol. 3. Singapore: World Scientific, pp. 301343.Google Scholar
Sage, I. 2011. Thermochromic liquid crystals. Liq. Cryst., 38, 15511561.Google Scholar
Saielli, G. and Satoh, K. 2019. A coarse-grained model of ionic liquid crystals: the effect of stoichiometry on the stability of the ionic nematic phase. Phys. Chem. Chem. Phys., 21, 2032720337.Google Scholar
Saielli, G., Margola, T. and Satoh, K. 2017. Tuning Coulombic interactions to stabilize nematic and smectic ionic liquid crystal phases in mixtures of charged soft ellipsoids and spheres. Soft Matter, 13, 52045213.Google Scholar
Salaniwal, S., Cui, S. T., Cochran, H. D. and Cummings, P. T. 2001. Molecular simulation of a dichain surfactant/water/carbon dioxide system. 1. Structural properties of aggregates. Langmuir, 17, 17731783.Google Scholar
Salikolimi, K., Sudhakar, A. A. and Ishida, Y. 2020. Functional ionic liquid crystals. Langmuir, 36, 1170211731.Google Scholar
Sambasivarao, S. V. and Acevedo, O. 2009. Development of OPLS-AA forcel field parameters for 68 unique ionic liquids. J. Chem. Theory Comput., 5, 10381050.Google Scholar
Sammalkorpi, M., Karttunen, M. and Haataja, M. 2007. Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. J. Phys. Chem. B, 111, 1172211733.Google Scholar
Samulski, E. T. 1985. Macromolecular structure and liquid crystallinity. Faraday Discuss., 79, 720.Google Scholar
Sanchez-Castillo, A., Osipov, M. A. and Giesselmann, F. 2010. Orientational order parameters in liquid crystals: a comparative study of X-ray diffraction and polarized Raman spectroscopy results. Phys. Rev. E, 81, 021707.Google Scholar
Sanders, C. R. and Landis, G. C. 1995. Reconstitution of membrane-proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry, 34, 40304040.Google Scholar
Sanders, C. R. and Schwonek, J. P. 1992. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry, 31, 88988905.Google Scholar
Santoro, P. A., Sampaio, A. R., da Luz, H. L. F. and Palangana, A. J. 2006. Temperature dependence of refractive indices near uniaxial – biaxial nematic phase transition. Phys. Lett. A, 353, 512515.Google Scholar
Santos, A. 2016. A Concise Course on the Theory of Classical Liquids: Basics and Selected Topics. Heidelberg: Springer.Google Scholar
Sarman, S. 1994. Molecular dynamics of heat-flow in nematic liquid crystals. J. Chem. Phys., 101, 480489.Google Scholar
Sarman, S. and Evans, D. J. 1993. Statistical-mechanics of viscous-flow in nematic fluids. J. Chem. Phys., 99, 90219036.Google Scholar
Sarman, S. and Laaksonen, A. 2011. The heat conductivity of liquid crystal phases of a soft ellipsoid string-fluid evaluated by molecular dynamics simulation. Phys. Chem. Chem. Phys., 13, 59155925.Google Scholar
Sarman, S. and Laaksonen, A. 2013. Thermomechanical coupling, heat conduction and director rotation in cholesteric liquid crystals studied by molecular dynamics simulation. Phys. Chem. Chem. Phys., 15, 34423453.Google Scholar
Satoh, K. 2008. Influence of dipolar interaction on the molecular dynamics of the dipolar Gay-Berne model GB(3,5,1,2). Mol. Cryst. Liq. Cryst., 480, 202218.Google Scholar
Satoh, K., Mita, S. and Kondo, S. 1996a. Monte Carlo simulations on mesophase formation using dipolar Gay-Berne model. Liq. Cryst., 20, 757763.Google Scholar
Satoh, K., Mita, S. and Kondo, S. 1996b. Monte Carlo simulations using the dipolar Gay-Berne model: effect of terminal dipole moment on mesophase formation. Chem. Phys. Lett., 255, 99104.Google Scholar
Saupe, A. 1966. The average orientation of solute molecules in nematic liquid crystals by proton NMR measurements and orientation dependent intermolecular forces. In Brown, G. H., Dienes, G. J. and Labes, M. M. (eds.), Liquid Crystals. New York: Gordon and Breach, pp. 207221.Google Scholar
Saupe, A. 1974. Statistical theories of nematic liquid crystals. Ber. Bunsen-Ges. Phys. Chem., 78, 848855.Google Scholar
Saupe, A. and Englert, G. 1963. High-resolution Nuclear Magnetic Resonance spectra of orientated molecules. Phys. Rev. Lett., 11, 462466.Google Scholar
Sawamura, M., Kawai, K., Matsuo, Y., et al. 2002. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature, 419, 702705.Google Scholar
Sayle, R. 2000. RASMOL program manual. www.rasmol.comGoogle Scholar
Sayle, R. A. and Milner-White, E. J. 1995. RASMOL: biomolecular graphics for all. Trends Biochem. Sci., 20, 374376.Google Scholar
Scalfani, V. F., Williams, A. J., Tkachenko, V., et al. 2016. Programmatic conversion of crystal structures into 3D printable files using JMOL. J. Cheminform., 8, 66.Google Scholar
Schafer, K., Kolli, H. B., Christensen, M. K., et al. 2020. Supramolecular packing drives morphological transitions of charged surfactant micelles. Angew. Chem. Intern. Ed., 59, 1859118598.Google Scholar
Schatz, G. C. and Ratner, M. A. 1993. Quantum Mechanics in Chemistry. Englewoods Cliffs, NJ: Prentice Hall.Google Scholar
Schellman, J. A. 1998. Polarization modulation spectroscopy. Samori, B. and Thulstrup, E. W. (eds.), Polarized Spectroscopy of Ordered Systems. Dordrecht: Kluwer, pp. 231274.Google Scholar
Schlick, T. 2002. Molecular Modeling and Simulation. Berlin: Springer.Google Scholar
Schmid, F. and Phuong, N. H. 2002. Spatial order in liquid crystals: computer simulations of systems of ellipsoids. In Mecke, K. and Stoyan, D. (eds.), Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems. Lecture Notes in Physics, vol. 600. Berlin: Springer-Verlag, pp. 172186.Google Scholar
Schmidt-Rohr, K., Nanz, D., Emsley, L. and Pines, A. 1994. NMR measurement of resolved heteronuclear dipole couplings in liquid crystals and lipids. J. Phys. Chem., 98, 66686670.Google Scholar
Schopohl, N. and Sluckin, T. J. 1987. Defect core structure in nematic liquid crystals. Phys. Rev. Lett., 59, 25822584.Google Scholar
Schreiber, A., Ketelsen, I. and Findenegg, G. H. 2001. Melting and freezing of water in ordered mesoporous silica materials. Phys. Chem. Chem. Phys., 3, 11851195.Google Scholar
Schrödinger, L. L. C. 2010. The PyMOL Molecular Graphics System, Version 1. 3r1.Google Scholar
Schultz, A. J. and Kofke, D. A. 2014. Fifth to eleventh virial coefficients of hard spheres. Phys. Rev. E, 90, 023301.Google Scholar
Schultz, T., Özarslan, E. and Hotz, I. 2017. Modeling, Analysis, and Visualization of Anisotropy. Cham: Springer.Google Scholar
Schweizer, W. B. and Dunitz, J. D. 2006. Quantum mechanical calculations for benzene dimer energies: present problems and future challenges. J. Chem. Theory Comput., 2, 288291.Google Scholar
Scott, H. L. 2002. Modeling the lipid component of membranes. Curr. Opin. Struct. Biol., 12, 495502.Google Scholar
Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., et al. 1999. The GROMOS biomolecular simulation program package. J. Phys. Chem. A, 103, 35963607.Google Scholar
Sebastian, N., Robles-Hernandez, B., Diez-Berart, S., et al. 2017. Distinctive dielectric properties of nematic liquid crystal dimers. Liq. Cryst., 44, 177190.Google Scholar
Seddon, J. M. 1990. Structure of the inverted hexagonal (HII) Phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta, 1031, 169.Google Scholar
Seddon, J. M. 1998. Structural studies of liquid crystals by X-ray diffraction. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Handbook of Liquid Crystals. Low Molecular Weight Liquid Crystals II, vol. 2B. Weinheim: Wiley-VCH, pp. 635679.Google Scholar
Seddon, J. M. and Templer, R. H. 1993. Cubic phases of self-assembled amphiphilic aggregates. Phil. Trans. Roy. Soc. London A, 344, 377401.Google Scholar
Seelig, A. and Seelig, J. 1974. Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry, 13, 48394845.Google Scholar
Seelig, A. and Seelig, J. 1975. Bilayers of dipalmitoyl-3-sn-phosphatidylcholine: conformational differences between the fatty acyl chains. Biochim. Biophys. Acta, 406, 15.Google Scholar
Seeman, N. C. 2020. DNA nanotechnology at 40. Nano Lett., 20, 14771478.Google Scholar
Selinger, J. V. and Nelson, D. R. 1988. Theory of hexatic-to-hexatic transitions. Phys. Rev. Lett., 61, 416419.Google Scholar
Selinger, J. V. and Nelson, D. R. 1989. Theory of transitions among tilted hexatic phases in liquid crystals. Phys. Rev. A, 39, 31353147.Google Scholar
Semenza, P. 2007. Can anything catch TFT LCDs? Nat. Photonics, 1, 267268.Google Scholar
Senftle, T. P., Hong, S., Islam, M. M., et al. 2016. The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater, 2, 15011.Google Scholar
Sengupta, K., Raghunathan, V. A. and Katsaras, J. 2003. Structure of the ripple phase of phospholipid multibilayers. Phys. Rev. E, 68, 031710.Google Scholar
Sepelj, M., Lesac, A., Baumeister, U., et al. 2007. Intercalated liquid crystalline phases formed by symmetric dimers with an α,ω-diiminoalkylene spacer. J. Mater. Chem., 17, 11541165.Google Scholar
Sergeyev, S., Pisula, W. and Geerts, Y. H. 2007. Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev., 36, 19021929.Google Scholar
Serrano, J. L. and Sierra, T. 1996. Low molecular weight calamitic metallomesogens. In Serrano, J. L. (ed.), Metallomesogens: Synthesis, Properties, and Applications. New York: VCH, pp. 43130.Google Scholar
Shapira, Y. 2019. Linear Algebra and Group Theory for Physicists and Engineers. Cham: Birkhäuser.Google Scholar
Shashidhar, R, and Venkatesh, G. 1979. High pressure studies on 4′-n-alkyl-4-cyanobiphenyls. J. de Physique Colloq. C3, 40, 396400.Google Scholar
Shekhar, R., Whitmer, J. K., Malshe, R., et al. 2012. Isotropic-nematic phase transition in the Lebwohl-Lasher model from density of states simulations. J. Chem. Phys., 136, 234503.Google Scholar
Sheng, P. 1982. Boundary-layer phase transition in nematic liquid crystals. Phys. Rev. A, 26, 16101617.Google Scholar
Sheng, P. and Wojtowicz, P. J. 1976. Constant-coupling theory of nematic liquid crystals. Phys. Rev. A, 14, 18831894.Google Scholar
Sherrel, P. and Crellin, D. 1979. Susceptibilities and order parameters of nematic liquid crystals. J. de Physique, Colloq., C3, 40, 211216.Google Scholar
Sherrill, C. D., Sumpter, B. G., Sinnokrot, Mutasem O., et al. 2009. Assessment of standard force field models against high-quality ab initio potential curves for prototypes of π-π, CH-π and SH-π interactions. J. Comput. Chem., 30, 21872193.Google Scholar
Shi, J., Sidky, H. and Whitmer, J. K. 2020. Automated determination of n-cyanobiphenyl and n-cyanobiphenyl binary mixtures elastic constants in the nematic phase from molecular simulation. Mol. Syst. Des. Eng., 5, 11311136.Google Scholar
Shibaev, V. P. and Bobrovsky, A. Yu. 2017. Liquid crystalline polymers: development trends and photocontrollable materials. Russian Chem. Rev., 86, 10241072.Google Scholar
Sidky, H. and Whitmer, J. K. 2016. Elastic properties of common Gay-Berne nematogens from density of states (DOS) simulations. Liq. Cryst., 43, 22852299.Google Scholar
Sidky, H., de Pablo, J. J. and Whitmer, J. K. 2018. In silico measurement of elastic moduli of nematic liquid crystals. Phys. Rev. Lett., 120, 107801.Google Scholar
Simova, P., Kirov, N., Fontana, M. P. and Ratajczak, H. 1988. Atlas of Vibrational Spectra of Liquid Crystals. Singapore: World Scientific.Google Scholar
Sinanoglu, O. 1967. Intermolecular forces in liquids. Adv. Chem. Phys., 12, 283328.Google Scholar
Singer, S. J. and Nicolson, G. L. 1972. Fluid mosaic model of structure of cell-membranes. Science, 175, 720731.Google Scholar
Singh, G. S. and Kumar, B. 1996. Geometry of hard ellipsoidal fluids and their virial coefficients. J. Chem. Phys., 105, 24292435.Google Scholar
Singh, G. S. and Kumar, B. 2001. Molecular fluids and liquid crystals in convex-body coordinate systems. Annals Phys., 294, 2447.Google Scholar
Singh, S. 2000. Phase transitions in liquid crystals. Phys. Reports, 324, 108269.Google Scholar
Singh, S. 2019. Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals. Crystals, 9, 475.Google Scholar
Singh, U. C. and Kollman, P. A. 1984. An approach to computing electrostatic charges for molecules. J. Comput. Chem., 5, 129145.Google Scholar
Skacej, G. and Zannoni, C. 2008. Controlling surface defect valence in colloids. Phys. Rev. Lett., 100, 197802.Google Scholar
Skacej, G. and Zannoni, C. 2011. Main-chain swollen liquid crystal elastomers: a molecular simulation study. Soft Matter, 7, 99839991.Google Scholar
Skacej, G. and Zannoni, C. 2012. Molecular simulations elucidate electric field actuation in swollen liquid crystal elastomers. Proc. Nat. Acad. Sci. USA, 109, 1019310198.CrossRefGoogle ScholarPubMed
Skacej, G. and Zannoni, C. 2014. Molecular simulations shed light on supersoft elasticity in polydomain liquid crystal elastomers. Macromolecules, 47, 88248832.Google Scholar
Skacej, G. and Zannoni, C. 2021. The nematic-isotropic transition of the Lebwohl-Lasher model revisited. Phil. Trans. Roy. Soc. A, 379, 20200117.Google Scholar
Sluckin, T. J. and Poniewierski, A. 1985. Novel surface phase-transition in nematic liquid crystals – wetting and the Kosterlitz-Thouless transition. Phys. Rev. Lett., 55, 29072910.Google Scholar
Sluckin, T. J., Dunmur, D. A. and Stegemeyer, H. 2004. Crystals that Flow: Classic Papers from the History of Liquid Crystals. London: Taylor & Francis.Google Scholar
Smith, Y. 2002. DL POLY: application to molecular simulation. Mol. Sim., 28, 385471.Google Scholar
Smondyrev, A. M., Loriot, G. B. and Pelcovits, R. A. 1995. Viscosities of the Gay-Berne nematic liquid crystal. Phys. Rev. Lett., 75, 23402343.Google Scholar
Söderman, O., Carlström, G., Olsson, U. and Wong, T. C. 1988. Nuclear Magnetic Resonance relaxation in micelles. Deuterium relaxation at three field strengths of three positions on the alkyl chain of sodium dodecyl sulphate. J. Chem. Soc., Faraday Trans. I, 84, 44754486.Google Scholar
Soldera, A. 2012. Atomistic simulations of vinyl polymers. Molec. Simul., 38, 762771.Google Scholar
Soldera, A. and Metatla, N. 2005. Glass transition phenomena observed in stereoregular PMMAs using molecular modeling. Composites Part A Appl., 36, 521530.Google Scholar
Soldera, A. and Metatla, N. 2006. Glass transition of polymers: atomistic simulation versus experiments. Phys. Rev. E, 74, 061803.Google Scholar
Soler-Illia, G. J. A. A., Sanchez, C., Lebeau, B. and Patarin, J. 2002. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 102, 40934138.Google Scholar
Song, L. and Deng, Z. X. 2017. Valency control and functional synergy in DNA-bonded nanomolecules. ChemNanoMat, 3, 698712.Google Scholar
Song, W. H. and Windle, A. H. 2005. Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules, 38, 61816188.Google Scholar
Song, W. H., Kinloch, I. A. and Windle, A. H. 2003a. Nematic liquid crystallinity of multiwall carbon nanotubes. Science, 302, 13631363.Google Scholar
Song, W. H., Tu, H. J., Goldbeck-Wood, G. and Windle, A. H. 2003b. Elastic constant anisotropy and disclination interaction in nematic polymers II. Effect of disclination interaction. Liq. Cryst., 30, 775784.Google Scholar
Song, W. H., Tu, H. J., Goldbeck-Wood, G. and Windle, A. H. 2005. Effect of the elastic constant anisotropy on disclination interaction in the nematic polymers. J. Phys. Chem. B, 109, 1923419241.Google Scholar
Sonnet, A., Kilian, A. and Hess, S. 1995. Alignment tensor versus director: description of defects in nematic liquid crystals. Phys. Rev. E, 52, 718722.Google Scholar
Sonnet, A. M., Virga, E. G. and Durand, G. E. 2003. Dielectric shape dispersion and biaxial transitions in nematic liquid crystals. Phys. Rev. E, 67, 061701.Google Scholar
Southern, C. D. and Gleeson, H. F. 2007. Using the full Raman depolarisation in the determination of the order parameters in liquid crystal systems. Eur. Phys. J. E, 24, 119127.Google Scholar
Spencer, T. 2000. Universality, phase transitions and statistical mechanics. In Alon, N., Bourgain, J., Connes, A., Gromov, M., and Milman, V. (eds.), Visions in Mathematics. GAFA 2000 Special Volume, Part II. Basel: Birkhäuser Verlag, pp. 839858.Google Scholar
St. Pierre, A. G. and Steele, W. A. 1975. Cross-correlation functions for angular-momentum and orientation. J. Chem. Phys., 62, 22862300.Google Scholar
St. Pierre, A. G. and Steele, W. A. 1981. Some exact results for rotational correlation-functions at short times. Mol. Phys., 43, 123140.Google Scholar
Stanley, H. E. 1971. Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford University Press.Google Scholar
Stannarius, R. 1998a. Diamagnetic properties of nematic liquid crystals. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Handbook of Liquid Crystals, vol. 2A. Weinheim: Wiley-VCH, pp. 113127.Google Scholar
Stannarius, R. 1998b. Elastic properties of nematic liquid crystals. In Demus, D., Goodby, J., Gray, G. W., Spiess, H. W. and Vill, V. (eds.), Handbook of Liquid Crystals. Low Molecular Weight Liquid Crystals I, vol. 2A. Weinheim: Wiley-VCH, pp. 6090.Google Scholar
Stannarius, R. and Cramer, C. 1997. Computer simulation of the liquid-vapor interface in liquid crystals. Liq, Cryst., 23, 371375.Google Scholar
Steed, J. M., Dixon, T. A. and Klemperer, W. 1979. Molecular beam studies of benzene dimer, hexafluorobenzene dimer, and benzene – hexafluorobenzene. J. Chem. Phys., 70, 49404946.Google Scholar
Steele, W. 1976. The rotation of molecules in dense phases. Adv. Chem. Phys., 34, 1104.Google Scholar
Steele, W. 1983. Symmetry constraints on the rotational time-correlations functions of rigid and non-rigid molecules. In Maruani, J. and Serre, J. (eds.), Symmetries and Properties of Non-Rigid Molecules. A Comprehensive Survey. Amsterdam: Elsevier, pp. 427438.Google Scholar
Steele, W. A. 1963. Statistical mechanics of nonspherical molecules. J. Chem. Phys., 39, 31973208.Google Scholar
Steele, W. A. 1980. Symmetry constraints on the configurational properties of non-linear molecules tetrahedra. Mol. Phys., 39, 14111422.Google Scholar
Steinhardt, P. J., Nelson, D. R. and Ronchetti, M. 1983. Bond-orientational order in liquids and glasses. Phys. Rev. B, 28, 784805.Google Scholar
Stelzer, J., Berardi, R. and Zannoni, C. 1999. Flexoelectric effects in liquid crystals formed by pear-shaped molecules. A computer simulation study. Chem. Phys. Lett., 299, 916.Google Scholar
Stelzer, J., Longa, L. and Trebin, H. R. 1995. Molecular dynamics simulations of a Gay-Berne nematic liquid crystal. Elastic properties from direct correlation-functions. J. Chem. Phys., 103, 30983107.Google Scholar
Stelzer, J., Bates, M. A., Longa, L. and Luckhurst, G. R. 1997. Computer simulation studies of anisotropic systems. 27. The direct pair correlation function of the Gay-Berne discotic nematic and estimates of its elastic constants. J. Chem. Phys., 107, 74837492.Google Scholar
Stephen, M. J. and Straley, J. P. 1974. Physics of Liquid Crystals. Rev. Mod. Phys., 46, 617704.Google Scholar
Stephenson, J. 1971. Critical phenomena: static aspects. In Henderson, D. (ed.), Liquid State. Physical Chemistry. An Advanced Treatise, vol. VIIIB. New York: Academic Press, pp. 717795.Google Scholar
Sternberg, U., Witter, R. and Ulrich, A. S. 2007. All-atom molecular dynamics simulations using orientational constraints from anisotropic NMR samples. J. Biomol. NMR, 38, 2339.Google Scholar
Stewart, I. W. 2004. The Static and Dynamical Continuum Theory of Liquid Crystals: a Mathematical Introduction. London: Taylor & Francis.Google Scholar
Stewart, I. W. 2015. Continuum theory of biaxial nematic liquid crystals. In Luckhurst, G. R. and Sluckin, T. J. (eds.), Biaxial Nematic Liquid Crystals. Theory, Simulation and Experiment. Chichester: Wiley pp. 185203.Google Scholar
Stinson, T. W. and Litster, J. D. 1970. Pretransitional phenomena in the isotropic phase of a nematic liquid crystal. Phys. Rev. Lett., 25, 503506.Google Scholar
Stockmayer, W. H. 1941. Second virial coefficients of polar gases. J. Chem. Phys., 9, 398402.Google Scholar
Stöhr, J. and Samant, M. G. 1999. Liquid crystal alignment by rubbed polymer surfaces: A microscopic bond orientation model. J. Electron Spectros. Relat. Phenomena, 98, 189207.Google Scholar
Stone, A. 1996. The Theory of Intermolecular Forces. Oxford: Oxford University Press.Google Scholar
Stone, A. J. 1978. Description of bimolecular potentials, forces and torques – S and V function expansions. Mol. Phys., 36, 241256.Google Scholar
Stone, A. J. 1979. Intermolecular forces. In Luckhurst, G. R. and Gray, G. W. (eds.), The Molecular Physics of Liquid Crystals. London: Academic Press, pp. 3150.Google Scholar
Stone, A. J. 1981. Distributed multipole analysis, or how to describe a molecular charge-distribution. Chem. Phys. Lett., 83, 233239.Google Scholar
Stone, A. J. 1985. Distributed polarizabilities. Mol. Phys., 56, 10651082.Google Scholar
Straley, J. P. 1973. Gas of long rods as a model for lyotropic liquid crystals. Mol. Cryst. Liq. Cryst., 22, 333357.Google Scholar
Straley, J. P. 1974. Ordered phases of a liquid of biaxial particles. Phys. Rev. A, 10, 18811887.Google Scholar
Strichartz, R. S. 1994. A Guide to Distribution Theory and Fourier Transforms. Boca Raton, FL: CRC Press.Google Scholar
Strohmaier, E., Meuer, H. W., Dongarra, J. and Simon, H. D. 2015. The TOP500 list and progress in high-performance computing. Computer, 48, 4249.Google Scholar
Stukowski, A. 2010. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng., 18, 015012.Google Scholar
Sugimura, A. and Luckhurst, G. R. 2016. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals. Progr. NMR Spectr., 94–95, 3774.Google Scholar
Sugita, Y. and Okamoto, Y. 1999. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 314, 141151.Google Scholar
Sun, H. 1995. Ab-Initio calculations and force-field development for computer-simulation of polysilanes. Macromolecules, 28, 701712.Google Scholar
Suurkuusk, J., Lentz, B. R., Barenholz, Y., Biltonen, R. L. and Thompson, T. E. 1976. Calorimetric and fluorescentprobe study of gel-liquid crystalline phase transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles. Biochemistry, 15, 13931401.Google Scholar
Swager, T. M. and Xu, B. 1994. Liquid crystalline calixarenes. J. Incl. Phenom. Mol. Recogn. Chem., 19, 389.Google Scholar
Sweet, J. R. and Steele, W. A. 1967. Statistical mechanics of linear molecules. I. Potential energy functions. J. Chem. Phys., 47, 30223028.Google Scholar
Swendsen, R. H. 1991. Acceleration methods for Monte Carlo computer simulations. Comput. Phys. Commun., 65, 281288.Google Scholar
Swendsen, R. H. 2012. An Introduction to Statistical Mechanics and Thermodynamics. Oxford: Oxford University Press.Google Scholar
Swift, J. 1976. Fluctuations near nematic-smectic C phase transition. Phys. Rev. A, 14, 22742277.Google Scholar
Szabo, A. and Ostlund, N. S. 1996. Modern Quantum Chemistry. New York: Dover.Google Scholar
Szabó, M. J., Szilagyi, R. K., Unaleroglu, C. and Bencze, L. 1999. DTMM and COSMIC molecular mechanics parameters for alkylsilanes. J. Mol. Struct.-Theochem, 490, 219232.Google Scholar
Taddese, T., Anderson, R. L., Bray, D. J. and Warren, P. B. 2020. Recent advances in particle-based simulation of surfactants. Curr. Opin. Colloid Interface Sci., 48, 137148.Google Scholar
Takebe, A. and Urayama, K. 2020. Supersoft elasticity and slow dynamics of isotropic-genesis polydomain liquid crystal elastomers investigated by loading-and strain-rate-controlled tests. Phys. Rev. E, 102, 012701.Google Scholar
Takezoe, H. and Eremin, A. 2017. Bent-Shaped Liquid Crystals : Structures and Physical Properties. 1st ed. Boca Raton, FL: CRC Press.Google Scholar
Tamman, G. 1905. In Annual Meeting of the German Chemical Society. University of Karlsruhe.Google Scholar
Tang, X. M., Koenig, P. H. and Larson, R. G. 2014. Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field. J. Phys. Chem. B, 118, 38643880.Google Scholar
Tao, P., Wu, X. W. and Brooks, B. R. 2012. Maintain rigid structures in Verlet based Cartesian molecular dynamics simulations. J. Chem. Phys., 137.Google Scholar
Tarroni, R. and Zannoni, C. 1991. On the rotational diffusion of asymmetric molecules in liquid crystals. J. Chem. Phys., 95, 45504564.Google Scholar
Tarumi, K., Finkenzeller, U. and Schuler, B. 1992. Dynamic behaviour of twisted nematic liquid crystals. Jpn. J. Appl. Phys., 31, 28292836.Google Scholar
te Velde, G., Bickelhaupt, F. M., Baerends, E. J., et al. 2001. Chemistry with ADF. J. Comput. Chem., 22, 931967.Google Scholar
Teixeira, P. I. C. and Sluckin, T. J. 1992. Microscopic theory of anchoring transitions at the surfaces of pure liquid crystals and their mixtures. I. The Fowler approximation. J. Chem. Phys., 97, 14981509.Google Scholar
Teixeira, P. I. C., Osipov, M. A. and Luckhurst, G. R. 2006. Simple model for biaxial smectic-A liquid crystal phases. Phys. Rev. E, 73, 061708.Google Scholar
Tenchov, B. G., Yao, H. and Hatta, I. 1989. Time-resolved X-ray diffraction and calorimetric studies at low scan rates: I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases. Biophys. J., 56, 757.Google Scholar
Ter Beek, L. C., Zimmerman, D. S. and Burnell, E. E. 1991. The conformation of 2,2′-dithiophene in nematic solvents determined by 1H-NMR. Mol. Phys., 74, 10271035.Google Scholar
Thiem, H., Strohriegl, P., Shkunov, M. and McCulloch, I. 2005. Photopolymerization of reactive mesogens. Macromolec. Chem. and Phys., 206, 21532159.Google Scholar
Thiemann, T. and Vill, V. 1997. Development of an incremental system for the prediction of the nematic-isotropic phase transition temperature of liquid crystals with two aromatic rings. Liq. Cryst., 22, 519523.Google Scholar
Thind, R., Walker, M. and Wilson, M. R. 2018. Molecular simulation studies of cyanine-based chromonic mesogens: spontaneous symmetry breaking to form chiral aggregates and the formation of a novel lamellar structure. Adv. Theory Simul., 1, 1800088.Google Scholar
Thoen, J. 1988. Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate. Phys. Rev. A, 37, 17541759.Google Scholar
Thoen, J. 1995. Thermal investigations of phase transitions in thermotropic liquid crystals. Int. J. Mod. Phys. B, 9, 21572218.Google Scholar
Thompson, D’Arcy W. 1917. On Growth and Form. Cambridge: Cambridge University Press.Google Scholar
Thompson, I. R., Coe, M. K., Walker, A. B., et al. 2018. Microscopic origins of charge transport in triphenylene systems. Phys. Rev. Materials, 2, 064601.Google Scholar
Tiberio, G., Muccioli, L., Berardi, R. and Zannoni, C. 2009. Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. ChemPhysChem, 10, 125136.Google Scholar
Tiddy, G. J. T. 1980. Surfactant-water liquid crystal phases. Phys. Rep., 57, 146.Google Scholar
Tikhonov, A. N. and Arsenin, V. I. 1977. Solutions of Ill-Posed Problems. Washington, WA: V.H. Winston.Google Scholar
Tilley, R. D. 2000. Colour and Optical Properties of Materials. New York: Wiley.Google Scholar
Tjandra, N. and Bax, A. 1997. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science, 278, 11111114.Google Scholar
Tjipto-Margo, B. and Evans, G. T. 1990. The Onsager theory of the isotropic-nematic liquid crystal transition. Incorporation of the higher virial coefficients. J. Chem. Phys., 93, 42544265.Google Scholar
Tjipto-Margo, B. and Sullivan, D. E. 1988. Molecular interactions and interface properties of nematic liquid crystals. J. Chem. Phys., 88, 66206630.Google Scholar
Tokita, M., Tagawa, H., Niwano, H., Sada, K. and Watanabe, J. 2006. Temperature-induced reversible distortion along director axis observed for monodomain nematic elastomer of cross-linked main-chain polyester. Jpn. J. Appl. Phys, 45, 17291733.Google Scholar
Tolédano, J.-C. and Tolédano, P. 1987. The Landau Theory of Phase Transitions. Singapore: World Scientific.Google Scholar
Torquato, S. and Stillinger, F. H. 2010. Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev. Mod. Phys., 82, 26332672.Google Scholar
Torras, N., Zinoviev, K. E., Esteve, J. and Sanchez-Ferrer, A. 2013. Liquid crystalline elastomer micropillar array for haptic actuation. J. Mater. Chem. C, 1, 51835190.Google Scholar
Tournilhac, F., Blinov, L. M., Simon, J. and Yablonsky, S. V. 1992. Ferroelectric liquid crystals from achiral molecules. Nature, 359, 621623.Google Scholar
Toxvaerd, S. 1982. A new algorithm for molecular dynamics calculations. J. Comput. Phys., 47, 444451.Google Scholar
Toxvaerd, S. 1983. Energy-conservation in molecular dynamics. J. Comput. Physics, 52, 214216.Google Scholar
Trebin, H-R. 1982. The topology of non-uniform media in condensed matter physics. Adv. Phys., 31, 195254.Google Scholar
Tricomi, F. G. 1948. Serie orthogonali di funzioni. Torino: Istituto Editoriale Gheroni.Google Scholar
Tripp, C. P. and Hair, M. L. 1995. Reaction of methylsilanols with hydrated silica surfaces: the hydrolysis of trichloro-, dichloro-, and monochloromethylsilanes and the effects of curing. Langmuir, 11, 149155.Google Scholar
Tschierske, C. 2001. Non-conventional soft matter. Ann. Rep. Progr. Chem. C, 97, 191267.Google Scholar
Tschierske, C. 2002. Liquid crystals stack up. Nature, 419, 681683.Google Scholar
Tschierske, C. and Photinos, D. J. 2010. Biaxial nematic phases. J. Mater. Chem., 20, 42634294.Google Scholar
Tsvetkov, V. F. 1939. Acta Physicochim. URSS, 10, 555561.Google Scholar
Tsykalo, A. L. 1991. Thermophysical Properties of Liquid Crystals. New York: Gordon & Breach.Google Scholar
Tsykalo, A. L. and Bagmet, A. D. 1978. Molecular dynamics study of nematic liquid crystals. Mol. Cryst. Liq. Cryst., 46, 111119.Google Scholar
Tuchband, M. R.., Shuai, M., Graber, K. A., et al. 2017. Double-helical tiled chain structure of the Twist-Bend liquid crystal phase in CB7CB. arXiv:1703.10787.Google Scholar
Tuckerman, M. E. 2010. Statistical Mechanics: Theory and Molecular Simulation. Oxford: Oxford University Press.Google Scholar
Tuckerman, M. E., Berne, B. J. and Martyna, G. J. 1991a. Molecular dynamics algorithm for multiple time scales: systems with long-range forces. J. Chem. Phys., 94, 68116815.Google Scholar
Tuckerman, M. E., Berne, B. J. and Martyna, G. J. 1992. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97, 19902001.Google Scholar
Tuckerman, M. E., Berne, B. J. and Rossi, A. 1991b. Molecular dynamics algorithm for multiple time scales. Systems with disparate masses. J. Chem. Phys., 94, 14651469.Google Scholar
Turiv, T., Koizumi, R., Thijssen, K., et al. 2020. Polar jets of swimming bacteria condensed by a patterned liquid crystal. Nat. Phys., 16, 481.Google Scholar
Turzi, S. S. 2011. On the Cartesian definition of orientational order parameters. J. Math. Phys., 52, 053517.Google Scholar
Uchida, N. 2000. Soft and nonsoft structural transitions in disordered nematic networks. Phys. Rev. E, 62, 51195136.Google Scholar
Ulmius, J., Wennerström, H., Lindblom, G. and Arvidson, G. 1977. Deuteron Nuclear Magnetic Resonance studies of phase equilibriums in a lecithin-water system. Biochemistry, 16, 57425745.Google Scholar
Ungar, G., Percec, V. and Zuber, M. 1992. Liquid-crystalline polyethers based on conformational iso-merism.20. nematic-nematic transition in polyethers and copolyethers based on 1-(4-hydroxyphenyl)-2-(2-r-4-hydroxyphenyl)ethane with R = Fluoro, Chloro, and methyl and flexible spacers containing an odd number of methylene units. Macromolecules, 25, 7580.Google Scholar
Unsöld, A. 1927. Quantum theory of the hydrogen molecular ion and the Born-Landé repulsive forces. Z. Phys., 43, 563574.Google Scholar
Urayama, K., Honda, S. and Takigawa, T. 2005. Electrooptical effects with anisotropic deformation in nematic gels. Macromolecules, 38, 35743576.Google Scholar
Urayama, K., Honda, S. and Takigawa, T. 2006. Deformation coupled to director rotation in swollen nematic elastomers under electric fields. Macromolecules, 39, 19431949.Google Scholar
Urayama, K., Kohmon, E., Kojima, M. and Takigawa, T. 2009. Polydomain-Monodomain transition of randomly disordered nematic elastomers with different cross-linking histories. Macromolecules, 42, 40844089.Google Scholar
Urban, S., Przedmojski, J. and Czub, J. 2005. X-ray studies of the layer thickness in smectic phases. Liq. Cryst., 32, 619624.Google Scholar
Urbanski, M. and Lagerwall, J. P. F. 2017. Why organically functionalized nanoparticles increase the electrical conductivity of nematic liquid crystal dispersions. J. Mater. Chem. C, 5, 88028809.Google Scholar
Uzunov, D. I. 2010. Introduction to the Theory of Critical Phenomena: Mean Field, Fluctuations and Renormalization. 2nd ed. Singapore: World Scientific.Google Scholar
Vaidya, D., Kofke, D. A., Tang, S. and Evans, G. T. 1994. Self-diffusion in the nematic-A-phase and smectic-A-phase of an aligned fluid of hard spherocylinders. Mol. Phys., 83, 101112.Google Scholar
Valleau, J. P. and Torrie, G. M. 1977. A guide to Monte Carlo for statistical mechanics: 2. Byways. In Berne, B. J. (ed.), Statistical Mechanics. Part A: Equilibrium Techniques. New York: Plenum, pp. 169194.Google Scholar
van Bruggen, M. P. B., van der Kooij, F. M. and Lekkerkerker, H. N. W. 1996. Liquid crystal phase transitions in dispersions of rod-like colloidal particles. J. Phys. Cond. Matter, 8, 94519456.Google Scholar
Van der Est, A. J., Kok, M. Y. and Burnell, E. E. 1987. Size and shape effects on the orientation of rigid molecules in nematic liquid crystals. Mol. Phys., 60, 397413.Google Scholar
Van der Haegen, R., Debruyne, J., Luyckx, R. and Lekkerkerker, H. N. W. 1980. 4 particle cluster approximation for the Maier-Saupe model of the isotropic-nematic phase transition. J. Chem. Phys., 73, 24692473.Google Scholar
van der Kooij, F. M. and Lekkerkerker, H. N. W. 1998. Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J. Phys. Chem. B, 102, 78297832.Google Scholar
van der Kooij, F. M., Kassapidou, K. and Lekkerkerker, H. N. W. 2000. Liquid crystal phase transitions in suspension of polydisperse plate-like particles. Nature, 406, 868871.Google Scholar
Van der Meer, B. W. and Vertogen, G. 1979. Elastic-constants as key for a molecular-model of cholesterics. Phys. Lett. A, 71, 486488.Google Scholar
Van der Meer, B. W., Vertogen, G., Dekker, A. J. and Ypma, J. G. J. 1976. Molecular-statistical theory of temperature-dependent pitch in cholesteric liquid crystals. J. Chem. Phys., 65, 39353943.Google Scholar
van der Schoot, P. 1995. Phase ordering of marginally flexible linear micelles. J. de Physique II, 5, 243.Google Scholar
van der Spoel, B., Lindahl, E., Hess, B., et al. 2005. GROMACS: fast, flexible and free. J. Comput. Chem., 26, 17011718.Google Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F. and Goddard, W. A. 2001. ReaxFF: a Reactive force field for hydrocarbons. J. Phys. Chem. A, 105, 93969409.Google Scholar
van Gunsteren, W. F. and Berendsen, H. J. C. 1987. Groningen Molecular Simulation (GROMOS) Library Manual. Biomos, Groningen.Google Scholar
Van Kampen, N. G. 1961. A simplified cluster expansion for the classical real gas. Physica, 27, 783792.Google Scholar
van Meer, G., Voelker, D. R. and Feigenson, G. W. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol., 9, 112124.Google Scholar
Van Roie, B., Denolf, K., Pitsi, G. and Thoen, J. 2005. Characterization of the smectic-A-hexatic-B transition in 65OBC by adiabatic scanning calorimetry. Eur. Phys. J. E, 16, 361364.Google Scholar
van Westen, T., Oyarzun, B., Vlugt, T. J. H. and Gross, J. 2013. The isotropic-nematic phase transition of tangent hard-sphere chain fluids. Pure components. J. Chem. Phys., 139, 034505.Google Scholar
Vanakaras, A. G. and Photinos, D. J. 2008. Thermotropic biaxial nematic liquid crystals: spontaneous or field stabilized? J. Chem. Phys., 128, 1545121.Google Scholar
Vanzo, D., Ricci, M., Berardi, R. and Zannoni, C. 2012. Shape, chirality and internal order of freely suspended nematic nanodroplets. Soft Matter, 8, 1179011800.Google Scholar
Vanzo, D., Ricci, M., Berardi, R., and Zannoni, C. 2016. Wetting behaviour and contact angles anisotropy of nematic nanodroplets on flat surfaces. Soft Matter, 12, 16101620.Google Scholar
Varetto, U. Molekel molecular visualization. Lugano, CH: Swiss National Supercomputing Centre. http://molekel.cscs.chGoogle Scholar
Varga, S. and Szalai, I. 2000. Modified Parsons-Lee theory for fluids of linear fused hard sphere chains. Mol. Phys., 98, 693698.Google Scholar
Varga, S., Szalai, I., Liszi, J. and Jackson, G. 2002. A study of orientational ordering in a fluid of dipolar Gay-Berne molecules using density-functional theory. J. Chem. Phys., 116, 91079119.Google Scholar
Vause, C. A. 1986. Connection between the isotropic-nematic Landau point and the paranematic-nematic critical-point. Phys. Lett. A, 114, 485490.Google Scholar
Vega, L., de Miguel, E., Rull, L. F., Jackson, G. and Mclure, I. A. 1992. Phase equilibria and critical-behavior of square-well fluid of variable width by Gibbs Ensemble Monte Carlo simulation. J. Chem. Phys., 96, 22962305.Google Scholar
Vehoff, T., Baumeier, B. and Andrienko, D. 2010. Charge transport in columnar mesophases of carbazole macrocycles. J. Chem. Phys., 133, 134901.Google Scholar
Venable, R. M., Zhang, Y. H., Hardy, B. J. and Pastor, R. W. 1993. Molecular-dynamics simulations of a lipid bilayer and of hexadecane – an investigation of membrane fluidity. Science, 262, 223226.Google Scholar
Verlet, L. 1967. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159, 98103.Google Scholar
Versmold, H. 1977. Symmetries of molecular-reorientation processes in liquids. Mol. Phys., 33, 10511061.Google Scholar
Vertogen, G. and de Jeu, W. H. 1988. Thermotropic Liquid Crystals: Fundamentals. Berlin: Springer.Google Scholar
Verwey, G. C., Warner, M. and Terentjev, E. M. 1996. Elastic instability and stripe domains in liquid crystalline elastomers. J. Phys. II France, 6, 12731290.Google Scholar
Vieillard-Baron, J. 1972. Phase transitions of the classical hard ellipse system. J. Chem. Phys., 56, 47294744.Google Scholar
Vilan, A., Yaffe, O., Biller, A., et al. 2010. Molecules on Si: electronics with chemistry. Adv. Mater., 22, 140159.Google Scholar
Virga, E. G. 1994. Variational Theories for Liquid Crystals. London: Chapman & Hall.Google Scholar
Visser, J. 1972. On Hamaker constants: a comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Colloid Interface Sci., 3, 331363.Google Scholar
Vita, F., Adamo, F. C. and Francescangeli, O. 2018. Polar order in bent-core nematics: an overview. J. Mol. Liq., 267, 564573.Google Scholar
Vliegenthart, G. A. and Lekkerkerker, H. N. W. 2000. Predicting the gas-liquid critical point from the second virial coefficient. J. Chem. Phys., 112, 53645369.Google Scholar
Voets, G., Martin, H. and Van Dael, W. 1989. Calorimetric investigation of phase transitions in cholesteryl oleate. Liq. Cryst., 5, 871875.Google Scholar
Vogel, N., Retsch, M., Fustin, C. A., del Campo, A. and Jonas, U. 2015. Advances in Colloidal assembly. The design of structure and hierarchy in two and three dimensions. Chem. Rev., 115, 62656311.Google Scholar
Voitchovsky, K., Kuna, J. J., Contera, S. A., Tosatti, E. and Stellacci, F. 2010. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol., 5, 401405.Google Scholar
Vold, M. J. 1957. The van der Waals interaction of anisometric colloidal particles. Proc. Indian Acad. Sci. A, 46, 152166.Google Scholar
Vold, R. R. 1985. Nuclear spin relaxation. In Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 253288.Google Scholar
Vold, R. R. and Prosser, R. S. 1996. Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J. Mag. Res. B, 113, 267271.Google Scholar
Voss, N. R. and Gerstein, M. 2010. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res., 38, W555-W562.Google Scholar
Vroege, G. J. 2013. Biaxial phases in mineral liquid crystals. Liq. Cryst., 41, 342352.Google Scholar
Vroege, G. J. and Lekkerkerker, H. N. W. 1992. Phase transitions in lyotropic colloidal and polymer liquid crystals. Rep. Progr. Phys., 55, 12411309.Google Scholar
Vuillermot, P. A. and Romerio, M. 1973a. Exact solution of Maier-Saupe model of unidimensional nematic liquid crystal. Helv. Phys. Acta, 46, 467468.Google Scholar
Vuillermot, P. A. and Romerio, M. V. 1973b. Exact solution of Maier-Saupe model for a nematic liquid crystal on a one-dimensional lattice. J. Phys. C, 6, 29222930.Google Scholar
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. and Case, D. A. 2004. Development and testing of a general AMBER force field. J. Comput. Chem., 25, 11571174.Google Scholar
Wang, L. Y. and Li, Y. D. 2007. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater., 19, 727734.Google Scholar
Wang, M., Liechti, K. M., Wang, Q. and White, J. M. 2005. Self-assembled silane monolayers: fabrication with nanoscale uniformity. Langmuir, 21, 18481857.Google Scholar
Wang, S. P., Chen, A. F. T. and Schwartz, M. 1988. Rotational diffusion of tribromobenzene in solution. Mol. Phys., 65, 689693.Google Scholar
Wang, X. L., In, M., Blanc, C., Nobili, M. and Stocco, A. 2015. Enhanced active motion of Janus colloids at the water surface. Soft Matter, 11, 73767384.Google Scholar
Wang, Z. Q., Lupo, J. A., Patnaik, S. and Pachter, R. 2001. Large scale molecular dynamics simulations of a 4-n-pentyl-4’-cyanobiphenyl (5CB) liquid crystalline model in the bulk and as a droplet. Comput. and Theor. Polym. Sci., 11, 375387.Google Scholar
Warman, J. M. and Van de Craats, A. M. 2003. Charge mobility in discotic materials studied by PR-TRMC. Mol. Cryst. Liq. Cryst., 396, 4172.Google Scholar
Warner, M. and Terentjev, E. M. 2003. Liquid Crystal Elastomers. Oxford: Oxford University Press.Google Scholar
Wassmer, K. H., Ohmes, E., Portugall, M., Ringsdorf, H. and Kothe, G. 1985. Molecular order and dynamics of liquid crystal side-chain polymers – an Electron Spin Resonance study employing rigid nitroxide spin probes. J. Amer. Chem. Soc., 107, 15111519.Google Scholar
Weber, A. C. J., Burnell, E. E., Meerts, W. L., et al. 2015. Communication: molecular dynamics and 1H NMR of n-hexane in liquid crystals. J. Chem. Phys., 143.Google Scholar
Weber, A. C., Pizzirusso, A., Muccioli, L., et al. 2012. Efficient analysis of highly complex Nuclear Magnetic Resonance spectra of flexible solutes in ordered liquids by using molecular dynamics. J. Chem. Phys., 136, 174506.Google Scholar
Weeks, J. D. and Broughton, J. Q. 1983. van der Waals theory of melting in two and three dimensions. J. Chem. Phys., 78, 41974205.Google Scholar
Wegdam, G. H., Evans, G. J. and Evans, M. 1977. The properties of some derivative autocorrelation functions computed with the atom-atom potential. Mol. Phys., 33, 18051811.Google Scholar
Wei, D. and Patey, G. N. 1992. Orientational order in simple dipolar liquids: computer simulation of a ferroelectric nematic phase. Phys. Rev. Lett., 62, 20432045.Google Scholar
Weiner, P. K. and Kollman, P. A. 1981. AMBER-Assisted Model-Building with Energy Refinement. A general program for modeling molecules and their interactions. J. Comput. Chem., 2, 287303.Google Scholar
Weiner, S. J., Kollmann, P. A., Case, D. A., et al. 1984. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Amer. Chem. Soc., 106, 765784.Google Scholar
Weis, J. J. 2005. The ferroelectric transition of dipolar hard spheres. J. Chem. Phys., 123, 044503.Google Scholar
Weis, J. J. and Levesque, D. 2006. Orientational order in high density dipolar hard sphere fluids. J. Chem. Phys., 125, 34504.Google Scholar
Weis, J. J., Levesque, D. and Zarragoicoechea, G. J. 1992. Orientational order in simple dipolar liquid crystal models. Phys. Rev. Lett., 69, 913916.Google Scholar
Wen, X., Garland, C. W. and Heppke, G. 1991. Calorimetric investigation of nematic-smectic A2 and smectic A2 -smectic C2 transitions. Phys. Rev. A, 44, 50645068.Google Scholar
Wennerström, H. and Lindman, B. 1979. Micelles. Physical chemistry of surfactant association. Phys. Rep., 52, 186.Google Scholar
Wermter, H. and Finkelmann, H. 2001. Liquid crystalline elastomers as artificial muscles. e-Polymers, 1, 113.Google Scholar
Wermuth, C. G., Aldous, D., Raboisson, P. and Rognan, D. (eds.). 2015. The Practice of Medicinal Chemistry. 4th ed. Amsterdam: Elsevier.Google Scholar
Westin, C.-F., Maier, S. E., Mamata, H., et al. 2002. Processing and visualization for diffusion tensor MRI. Medical Image Analysis, 6, 93108.Google Scholar
White, T. J. and Broer, D. J. 2015. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater., 14, 10871098.Google Scholar
Whittle, M. and Masters, A. J. 1991. Liquid crystal formation in a system of fused hard-spheres. Mol. Phys., 72, 247265.Google Scholar
Widom, B. 1996. Theory of phase equilibrium. J. Phys. Chem., 100, 1319013199.Google Scholar
Wigner, E. P. 1959. Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. New York: Academic Press.Google Scholar
Williams, G. 1994. Dielectric relaxation behaviour of liquid crystals. In Luckhurst, G. R. and Veracini, C. A. (eds.), The Molecular Dynamics of Liquid Crystals, Dordrecht: Kluwer, pp. 431450.Google Scholar
Williams, G. and Watts, D. C. 1970. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc., 66, 8085.Google Scholar
Wilson, M. R. 1999. Atomistic simulations of liquid crystals. In Mingos, D. M. P. (ed.), Structure and Bonding: Liquid Crystals I, vol. 94. Heidelberg: Springer-Verlag, pp. 4164.Google Scholar
Wilson, M. R. and Allen, M. P. 1993. A computer simulation study of liquid crystal formation in a semi-flexible system of linked hard spheres. Mol. Phys., 80, 277.Google Scholar
Wittgenstein, L. 1922. Tractatus Logico-Philosophicus. London: Kegan Paul, Trench, Trubner & Co.Google Scholar
Wohrle, T., Wurzbach, I., Kirres, J., et al. 2016. Discotic liquid crystals. Chem. Rev., 116, 11391241.Google Scholar
Wolarz, E. and Bauman, D. 2006. Polarized fluorescence studies of orientational order in some nematic liquid crystals doped with stilbene dye. Mol. Cryst. Liq. Cryst., 197, 113.Google Scholar
Wood, W. W. and Jacobson, J. D. 1957. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys., 27, 12071208.Google Scholar
Woodcock, L. V. 1971. Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett., 10, 257261.Google Scholar
Woodcock, L. V. 1997. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature, 385, 141143.Google Scholar
Wu, F. 1982. The Potts model. Rev. Mod. Phys., 54, 235268.Google Scholar
Wu, S. T. and Cox, R. J. 1988. Optical and electro-optic properties of cyanotolanes and cyanostilbenes – potential infrared liquid crystals. J. Appl. Phys., 64, 821826.Google Scholar
Wu, Y. H., Yang, Y., Qian, X. J., et al. 2020. Liquid-crystalline soft actuators with switchable thermal reprogrammability. Angew. Chem. Intern. Ed., 59, 47784784.Google Scholar
Wunderlich, B. 1999. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta, 340–341, 3752.Google Scholar
Würflinger, A. and Sandmann, M. 2001. Equations of state for nematics. Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals: Nematics. EMIS Datareview Series, vol. 25. London: INSPEC, IEE, pp. 151161.Google Scholar
Xu, B. and Swager, T. M. 1993. Rigid bowlic liquid crystals based on tungsten-oxo calix [4] arenes: host-guest effects and head-to-tail organization. J. Amer. Chem. Soc., 115, 11591160.Google Scholar
Xu, F., Kitzerow, H. S. and Crooker, P. P. 1992. Electric-field effects on nematic droplets with negative dielectric anisotropy. Phys. Rev. A, 46, 65356540.Google Scholar
Xue, X., Chandler, G., Zhang, X., et al. 2015. Oriented liquid crystalline polymer semiconductor films with large ordered domains. ACS Appl. Mater. Interfaces, 7, 2672626734.Google Scholar
Yakovenko, S. Y., Muravski, A. A., Eikelschulte, F. and Geiger, A. 1998. Temperature dependence of the properties of simulated PCH5. Liq. Cryst., 24, 657671.Google Scholar
Yang, C. 1961. An Approach to the Ising Problem Using a Large Scale Fast Digital Computer. Report. IBM T. J. Watson Center, Yorktown Heights, New York.Google Scholar
Yang, D. K. and Wu, S. T. 2006. Fundamentals of Liquid Crystal Devices. Chichester: Wiley.Google Scholar
Yang, D. K., Huang, X. Y. and Zhu, Y. M. 1997. Bistable cholesteric reflective displays: materials and drive schemes. Ann. Rev. Mater. Sci., 27, 117146.Google Scholar
Yang, L. J., Tan, C. H., Hsieh, M. J., et al. 2006. New-generation AMBER united-atom force field. J. Phys. Chem. B, 110, 1316613176.Google Scholar
Yashonath, S. and Rao, C. N. R. 1985. Molecular design and computer simulations of novel mesophases. Mol. Phys., 54, 245251.Google Scholar
Yildirim, A., Eroglu, E. and Yilmaz, S. 2011. Investigation of anisotropic thermal conductivity of uniaxial and biaxial Gay-Berne particles with molecular dynamics simulation. Molec. Simul., 37, 11791185.Google Scholar
Yokoyama, H. 1988. Surface anchoring of nematic liquid crystals. Mol. Cryst. Liq. Cryst., 165, 265316.Google Scholar
Yoshida, H. 1990. Construction of higher order symplectic integrators. Phys. Lett. A, 150, 262268.Google Scholar
Young, C. Y., Pindak, R., Clark, N. A. and Meyer, R. B. 1978. Light-scattering study of 2-dimensional molecularorientation fluctuations in a freely suspended ferroelectric liquid crystal film. Phys. Rev. Lett., 40, 773776.Google Scholar
Young, M. J., Lei, W., Nounesis, G., Garland, C. W. and Birgeneau, R. J. 1994. X-ray-diffraction study of the smectic-Ã fluid antiphase and its transitions to smectic-A1 and smectic-A2 phases. Phys. Rev. E, 50, 368376.Google Scholar
Youssefian, S., Rahbar, N., Lambert, C. R. and Van Dessel, S. 2017. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature. J. Roy. Soc. Interface, 14, 20170127.Google Scholar
Yu, L. J. and Saupe, A. 1980. Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures. Phys. Rev. Lett., 45, 10001003.Google Scholar
Yu, Y. L. and Klauda, J. B. 2020. Update of the CHARMM36 United Atom chain model for hydrocarbons and phospholipids. J. Phys. Chem. B, 124, 67976812.Google Scholar
Zana, R. and Kaler, E. W. 2007. Giant Micelles: Properties and Applications. Boca Raton, FL: CRC Press.Google Scholar
Zannoni, C. 1975. On the Molecular Theories of Liquid Crystals. Ph.D. Thesis, University of Southampton.Google Scholar
Zannoni, C. 1979a. Computer simulations. In Luckhurst, G. R. and Gray, G. W. (eds.), The Molecular Physics of Liquid Crystals. London: Academic Press, pp. 191220.Google Scholar
Zannoni, C. 1979b. Mean field theory of a model anisotropic potential of rank higher than two. Mol. Cryst. Liq. Cryst. Letters, 49, 247253.Google Scholar
Zannoni, C. 1979c. Order parameters and orientational distributions in liquid crystals. In Luckhurst, G. R. and Gray, G. W. (eds.), The Molecular Physics of Liquid Crystals. London: Academic Press, pp. 5183.Google Scholar
Zannoni, C. 1979d. A theory of time dependent Fluorescence Depolarization in liquid crystals. Mol. Phys., 38, 18131827.Google Scholar
Zannoni, C. 1981. A theory of Fluorescence Depolarization in membranes. Mol. Phys., 42, 13031320.Google Scholar
Zannoni, C. 1985. An internal order parameter formalism for non-rigid molecules. In Emsley, J. W. (ed.), Nuclear Magnetic Resonance of Liquid Crystals. Dordrecht: Reidel, pp. 3552.Google Scholar
Zannoni, C. 1986. A Cluster Monte Carlo method for the simulation of anisotropic systems. J. Chem. Phys., 84, 424433.Google Scholar
Zannoni, C. 1988. Order parameters and orientational distributions in liquid crystals. In Samori, B. and Thulstrup, E. W. (eds.), Polarized Spectroscopy of Ordered Systems. Dordrecht: Kluwer, pp. 5783.Google Scholar
Zannoni, C. 2000. Liquid crystal observables. Static and dynamic properties. In Pasini, P. and Zannoni, C. (eds.), Advances in the Computer Simulations of Liquid Crystals. Dordrecht: Kluwer, pp. 1750.Google Scholar
Zannoni, C. 2001a. Molecular design and computer simulations of novel mesophases. J. Mater. Chem., 11, 26372646.Google Scholar
Zannoni, C. 2001b. Results of generic model simulations. In Dunmur, D. A., Fukuda, A. and Luckhurst, G. R. (eds.), Physical Properties of Liquid Crystals, vol. 1: Nematics. London: INSPEC-IEE, pp. 624634.Google Scholar
Zannoni, C. 2020. Molecular dipoles, quadrupoles, and polarizabilities for mesogenic molecules. Unpublished calculations performed with Quantum Chemistry suite ADF 2019.303 (rel. 21/02/2020) using DFT meta GGA-TPSS-D3BJ-TZP (triple zeta polarized basis set).Google Scholar
Zannoni, C. and Guerra, M. 1981. Molecular dynamics of a model anisotropic system. Mol. Phys., 44, 143154.Google Scholar
Zannoni, C., Arcioni, A. and Cavatorta, P. 1983. Fluorescence Depolarization in liquid crystals and membrane bilayers. Chem. Phys. Lipids, 32, 179250.Google Scholar
Zannoni, C., Pedulli, G. F., Masotti, L. and Spisni, A. 1981. The polyliquid crystalline EPR spectra of nitroxide spin probes and their interpretation. J. Mag. Res., 43, 141153.Google Scholar
Zasadzinski, J. A. N. and Meyer, R. B. 1986. Molecular imaging of Tobacco Mosaic-Virus lyotropic nematic phases. Phys. Rev. Lett., 56, 636638.Google Scholar
Zemansky, M. W. and Dittman, R. 1997. Heat and Thermodynamics: An Intermediate Textbook. 7th ed. New York: McGraw-Hill.Google Scholar
Zewdie, H. 1998. Computer simulation studies of liquid crystals: a new Corner potential for cylindrically symmetric particles. J. Chem. Phys., 108, 21172133.Google Scholar
Zhang, J., Domenici, V., Veracini, C. A. and Dong, R. Y. 2006a. Deuterium NMR of the TGBA* phase in chiral liquid crystals. J. Phys. Chem. B, 110, 1519315197.Google Scholar
Zhang, J. G., Su, J. Y. and Guo, H. X. 2011. An atomistic simulation for 4-cyano-4′-pentylbiphenyl and its homologue with a reoptimized force field. J. Phys. Chem. B, 115, 22142227.Google Scholar
Zhang, S., Kinloch, I. A, and Windle, A. H. 2006b. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett., 6, 568572.Google Scholar
Zhang, Z. P., Mouritsen, O. G. and Zuckermann, M. J. 1992. Weak 1st-order orientational transition in the Lebwohl-Lasher model for liquid crystals. Phys. Rev. Lett., 69, 28032806.Google Scholar
Zhang, Z. P., Zuckermann, M. J. and Mouritsen, O. G. 1993. Phase transition and director fluctuations in the 3-dimensional Lebwohl-Lasher model of liquid crystals. Mol. Phys., 80, 11951221.Google Scholar
Zhao, J. G., Gulan, U., Horie, T., et al. 2019. Advances in biological liquid crystals. Small, 15, 1900019.Google Scholar
Zheng, Q., Durben, D. J., Wolf, G. H. and Angell, C. A. 1991. Liquids at large negative pressures: water at the homogeneous nucleation limit. Science, 254, 829832.Google Scholar
Zheng, X. and Palffy-Muhoray, P. 2007. Distance of closest approach of two arbitrary hard ellipses in two dimensions. Phys. Rev. E, 75, 061709.Google Scholar
Zhengmin, S. and Kleman, M. 1984. Measurement of the 3 elastic constants and the shear viscosity γ1 in a main-chain nematic polymer. Mol. Cryst. Liq. Cryst., 111, 321328.Google Scholar
Zhou, S., Nastishin, Y. A., Omelchenko, M. M., et al. 2012. Elasticity of lyotropic chromonic liquid crystals probed by director reorientation in a magnetic field. Phys. Rev. Lett., 109, 037801.Google Scholar
Zhou, X., Hu, X., Zhou, S., et al. 2017. Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy. Adv. Funct. Mater., 27, 1703858.Google Scholar
Zhu, C. H., Tuchband, M. R., Young, A., et al. 2016. Resonant carbon K-edge soft X-ray scattering from lattice-free heliconical molecular ordering: soft dilative elasticity of the Twist-Bend liquid crystal phase. Phys. Rev. Lett., 116, 147803.Google Scholar
Zhu, X., Lopes, P. E. M. and MacKerell, A. D. 2012. Recent developments and applications of the CHARMM force fields. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, 167185.Google Scholar
Zhuang, X. W., Marrucci, L. and Shen, Y. R. 1994. Surface-monolayer-induced bulk alignment of liquid crystals. Phys. Rev. Lett., 73, 15131516.Google Scholar
Zimmerman, D. and Burnell, E. 1990. Size and shape effects on the orientation of solutes in nematic liquid crystals. Mol. Phys., 69, 10591071.Google Scholar
Zimmermann, H., Poupko, R., Luz, Z. and Billard, J. 1985. Pyramidic mesophases. Z. Naturforsch. A,, 40, 149160.Google Scholar
Zubarev, E. R., Kuptsov, S. A., Yuranova, T. I., Talroze, R. V. and Finkelmann, H. 1999. Monodomain liquid crystalline networks: reorientation mechanism from uniform to stripe domains. Liq. Cryst., 26, 15311540.Google Scholar
Zwanzig, R. 2001. Nonequilibrium Statistical Mechanics. Oxford: Oxford University Press.Google Scholar
Zwanzig, R. and Ailawadi, N. K. 1969. Statistical error due to finite time averaging in computer experiments. Phys. Rev., 182, 280283.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Claudio Zannoni
  • Book: Liquid Crystals and their Computer Simulations
  • Online publication: 21 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108539630.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Claudio Zannoni
  • Book: Liquid Crystals and their Computer Simulations
  • Online publication: 21 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108539630.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Claudio Zannoni
  • Book: Liquid Crystals and their Computer Simulations
  • Online publication: 21 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108539630.028
Available formats
×