Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phases and Mesophases
- 2 Phase Transitions
- 3 Order Parameters
- 4 Distributions
- 5 Particle–Particle Interactions
- 6 Dynamics and Dynamical Properties
- 7 Molecular Theories
- 8 Monte Carlo Methods
- 9 The Molecular Dynamics Method
- 10 Lattice Models
- 11 Molecular Simulations
- 12 Atomistic Simulations
- Appendix A A Modicum of Linear Algebra
- Appendix B Tensors and Rotations
- Appendix C Taylor Series
- Appendix D The Dirac Delta Function
- Appendix E Fourier Series and Transforms
- Appendix F Wigner Rotation Matrices and Angular Momentum
- Appendix G Molecular and Mesophase Symmetry
- Appendix H Quaternions and Rotations
- Appendix I Nuclear Magnetic Resonance
- Appendix J X-ray Diffraction
- Appendix K Stochastic Processes
- Appendix L Simulating Polarized Optical Microscopy Textures
- Appendix M Units and Conversion Factors
- Appendix N Acronyms and Symbols
- References
- Index
9 - The Molecular Dynamics Method
Published online by Cambridge University Press: 21 July 2022
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phases and Mesophases
- 2 Phase Transitions
- 3 Order Parameters
- 4 Distributions
- 5 Particle–Particle Interactions
- 6 Dynamics and Dynamical Properties
- 7 Molecular Theories
- 8 Monte Carlo Methods
- 9 The Molecular Dynamics Method
- 10 Lattice Models
- 11 Molecular Simulations
- 12 Atomistic Simulations
- Appendix A A Modicum of Linear Algebra
- Appendix B Tensors and Rotations
- Appendix C Taylor Series
- Appendix D The Dirac Delta Function
- Appendix E Fourier Series and Transforms
- Appendix F Wigner Rotation Matrices and Angular Momentum
- Appendix G Molecular and Mesophase Symmetry
- Appendix H Quaternions and Rotations
- Appendix I Nuclear Magnetic Resonance
- Appendix J X-ray Diffraction
- Appendix K Stochastic Processes
- Appendix L Simulating Polarized Optical Microscopy Textures
- Appendix M Units and Conversion Factors
- Appendix N Acronyms and Symbols
- References
- Index
Summary
This chapter starts with the equations of motion for atomistic systems and their time integration, including the multiple time step methods taking care of different timescales. Systems of rigid anisotropic particles are also discussed with the help of the quaternion formulation, avoiding spurious singularities. Constant temperature and constant pressure methods are considered. A summary of available molecular dynamics packages is provided.
Keywords
- Type
- Chapter
- Information
- Liquid Crystals and their Computer Simulations , pp. 379 - 400Publisher: Cambridge University PressPrint publication year: 2022