Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T21:03:15.268Z Has data issue: false hasContentIssue false

15 - Liquid Cell TEM for Studying Environmental and Biological Mineral Systems

from Part II - Applications

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beveridge, T. J., Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol., 43 (1989), 147171.Google Scholar
Banfield, J. F. and Zhang, H. Z., Nanoparticles in the environment. In Banfield, J. F. and Navrotsky, A., eds., Nanoparticles and the Environment, Reviews in Mineralogy & Geochemistry 44 (Mineralogical Society of America, 2001) pp. 158.Google Scholar
Schmidt, M. W. I., Torn, M. S., Abiven, S. et al., Persistence of soil organic matter as an ecosystem property. Nature, 478 (2011), 4956.Google Scholar
Knoll, A. H., Biomineralization and evolutionary history. In Dove, P. M., DeYoreo, J. J. and Weiner, S., eds., Biomineralization, Reviews in Mineralogy & Geochemistry 54 (Mineralogical Society of America, 2003) pp. 329356.CrossRefGoogle Scholar
Lowenstam, H. A. and Weiner, S., On Biomineralization (New York: Oxford University Press, 1989).CrossRefGoogle Scholar
Hoose, C. and Mohler, O., Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys., 12 (2012), 98179854.CrossRefGoogle Scholar
Hendricks, S. B., Nelson, R. A. and Alexander, L. T., Hydration mechanism of the clay mineral montmorillonite saturated with various cations. J. Am. Chem. Soc., 62 (1940), 14571464.Google Scholar
Sposito, G., Skipper, N. T., Sutton, R. et al., Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA, 96 (1999), 33583364.Google Scholar
Hu, Q., Nielsen, M. H., Freeman, C. L. et al., The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways. Faraday Discuss., 159 (2012), 509523.Google Scholar
Giuffre, A. J., Hamm, L. M., Han, N., De Yoreo, J. J. and Dove, P. M., Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. USA, 110 (2013), 92619266.CrossRefGoogle ScholarPubMed
Hamm, L. M., Giuffre, A. J., Han, N. et al., Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proc. Natl. Acad. Sci. USA, 111 (2014), 13041309.Google Scholar
Fang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P. and Beniash, E., Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl. Acad. Sci. USA, 108 (2011), 1409714102.Google Scholar
Nudelman, F., Pieterse, K., George, A. et al., The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater., 9 (2010), 10041009.CrossRefGoogle ScholarPubMed
Tester, C. C., Brock, R. E., Wu, C. H. et al., In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm, 13 (2011), 39753978.Google Scholar
Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M. and De Yoreo, J. J., In situ TEM shows ion binding is key to directing CaCO3 nucleation in a biomimetic matrix. Nat. Mater., 14 (2015), 394399.Google Scholar
Rieger, J., Frechen, T., Cox, G. et al., Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss., 136 (2007), 265277.CrossRefGoogle Scholar
Lee, J. R. I., Han, T. Y. J., Willey, T. M. et al., Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film. J. Am. Chem. Soc., 129 (2007), 1037010381.Google Scholar
Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. and Navrotsky, A., Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA, 107 (2010), 1643816443.Google Scholar
Bots, P., Benning, L. G., Rodriguez-Blanco, J. D., Roncal-Herrero, T. and Shaw, S., Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crys. Growth Des., 12 (2012), 38063814.Google Scholar
Gibbs, J. W., On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Arts Sci., 3 (1876), 108248; (1878), 343–524.Google Scholar
Gebauer, D., Volkel, A. and Colfen, H., Stable prenucleation calcium carbonate clusters. Science, 322 (2008), 18191822.Google Scholar
Pouget, E. M., Bomans, P. H. H., Goos, J. A. C. M. et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323 (2009), 14551458.CrossRefGoogle ScholarPubMed
Bewernitz, M. A., Gebauer, D., Long, J., Colfen, H. and Gower, L. B., A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss., 159 (2012), 291312.Google Scholar
Demichelis, R., Raiteri, P., Gale, J. D., Quigley, D. and Gebauer, D., Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun., 2 (2011), 590.Google Scholar
Wallace, A. F., Hedges, L. O., Fernandez-Martinez, A. et al., Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science, 341 (2013), 885889.CrossRefGoogle ScholarPubMed
Brecevic, L. and Nielsen, A. E., Solubility of amorphous calcium carbonate. J. Cryst. Growth, 98 (1989), 504510.Google Scholar
Rieger, J., Thieme, J. and Schmidt, C., Study of precipitation reactions by X-ray microscopy: CaCO3 precipitation and the effect of polycarboxylates. Langmuir, 16 (2000), 83008305.Google Scholar
Habraken, W. J. E. M., Tao, J. H., Brylka, L. J. et al., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun., 4 (2013), 1507.CrossRefGoogle ScholarPubMed
Erdemir, D., Lee, A. Y. and Myerson, A. S., Nucleation of crystals from solution: classical and two-step models. Accounts Chem. Res., 42 (2009), 621629.CrossRefGoogle ScholarPubMed
Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E. and Vekilov, P. G., Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc. Natl. Acad. Sci. USA, 99 (2002), 84798483.Google Scholar
Chung, S., Shin, S. H., Bertozzi, C. R. and De Yoreo, J. J., Self-catalyzed growth of S layers via an amorphous to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. USA, 107 (2010), 1653616541.CrossRefGoogle Scholar
Penn, R. L. and Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281 (1998), 969971.Google Scholar
Frandsen, C., Legg, B. A., Comolli, L. R. et al., Aggregation-induced growth and transformation of beta-FeOOH nanorods to micron-sized alpha-Fe2O3 spindles. CrystEngComm, 16 (2014), 14511458.CrossRefGoogle Scholar
Baumgartner, J., Dey, A., Bomans, P. H. H. et al., Nucleation and growth of magnetite from solution. Nat. Mater., 12 (2013), 310314.Google Scholar
De Yoreo, J. J., Gilbert, P. U. P. A., Sommerdijk, N. A. J. M. et al., Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349 (2015), aaa6760.CrossRefGoogle ScholarPubMed
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Nielsen, M. H., Lee, J. R. I., Hu, Q. N., Han, T. Y. J. and De Yoreo, J. J., Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss., 159 (2012), 105121.CrossRefGoogle Scholar
Nielsen, M. H., Aloni, S. and De Yoreo, J. J., In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.CrossRefGoogle ScholarPubMed
Bischoff, J. L., Fitzpatrick, J. A. and Rosenbauer, R. J., The solubility and stabilization of ikaite (CaCO3.6H2O) from 0–25 °C: environmental and paleoclimatic implications for thinolite tufa. J. Geol., 101 (1993), 2133.Google Scholar
Chernov, A. A., Modern Crystallography III. Springer Series in Solid-State Sciences (Berlin: Springer, 1984).Google Scholar
Trotsenko, O., Roiter, Y. and Minko, S., Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. Langmuir, 28 (2012), 60376044.Google Scholar
Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. and Weiner, S., A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA, 84 (1987), 27322736.CrossRefGoogle ScholarPubMed
Nudelman, F., Gotliv, B. A., Addadi, L. and Weiner, S., Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol., 153 (2006), 176187.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.CrossRefGoogle ScholarPubMed
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.Google Scholar
Liao, H. G., Cui, L. K., Whitelam, S. and Zheng, H. M., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.CrossRefGoogle ScholarPubMed
Parent, L. R., Robinson, D. B., Woehl, T. J. et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, L., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.CrossRefGoogle ScholarPubMed
Nielsen, M. H., Li, D. S., Zhang, H. Z. et al., Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal., 20 (2014), 425436.Google Scholar
Fukami, A., Fukushima, K., Kohyama, N., Observation technique for wet clay minerals using film-sealed environmental cell equipment attached to high-resolution electron microscope. In Bennett, R. et al., eds., Microstructure of Fine-Grained Sediments ( New York: Springer, 1991) pp. 321331.Google Scholar
Adachi, K., Freney, E. J. and Buseck, P. R., Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering. Geophys. Res. Lett., 38 (2011), L13804.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×