Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T12:51:53.085Z Has data issue: false hasContentIssue false

Chapter Two - Metazoan adaptation to deep-sea hydrothermal vents

from Part I - Extreme environments: responses and adaptation to change

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

Fauna inhabiting the deep-sea usually obtains its nutrition from sinking organic matter formed by photosynthesis in the photic zone. This photosynthetic organic matter is degraded during its fall and, as a result, these great depths are typically host to a high biodiversity but low biomass. The discovery of deep-sea hydrothermal vents in the late 1970s

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 42 - 67
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aisen, P., Enns, C., Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. International Journal of Biochemistry & Cell Biology, 33, 940959.Google Scholar
Arp, A.J., Childress, J.J. (1983). Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science, 219, 295297.CrossRefGoogle ScholarPubMed
Arp, A.J., Childress, J.J., Vetter, R.D. (1987). The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular haemoglobin. Journal of Experimental Biology, 128, 139158.Google Scholar
Bates, A.E., Tunnicliffe, V., Lee, R.W. (2005). Role of thermal conditions in habitat selection by hydrothermal vent gastropods. Marine Ecology Progress Series, 305, 115.Google Scholar
Bates, A.E., Lee, R.W., Tunnicliffe, V., Lamare, M.D. (2010). Deep-sea hydrothermal vent animals seek cool fluids in a highly variable thermal environment. Nature Communications, 1, 14.CrossRefGoogle Scholar
Bates, A.E., Bird, T.J., Robert, K., et al. (2013). Activity and positioning of eurythermal hydrothermal vent sulphide worms in a variable thermal environment. Journal of Experimental Marine Biology and Ecology, 448, 149155.Google Scholar
Bougerol, M., Boutet, I., Le Guen, D., Jollivet, D., Tanguy, A. (2015). Transcriptomic response of the hydrothermal mussel Bathymodiolus azoricus in experimental exposure to heavy metals is modulated by the Pgm genotype and symbiont content. Marine Genomics, 21, 6373.CrossRefGoogle ScholarPubMed
Boutet, I., Jollivet, D., Shillito, B., Moraga, D., Tanguy, A. (2009a). Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genomics, 10(1), 222.Google Scholar
Boutet, I., Tanguy, A., Le Guen, D., et al. (2009b). Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 30713079.Google Scholar
Brulle, F., Cocquerelle, C., Wamalah, A.N., et al. (2008). c-DNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotoxicology & Environmental Safety, 71, 4755.Google Scholar
Campbell, B.J., Smith, J.L., Hanson, T.E., et al. (2009). Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genetics, 5(2), e1000362.CrossRefGoogle ScholarPubMed
Cary, S.C., Shank, T., Stein, J. (1998). Worms bask in extreme temperatures. Nature, 391(6667), 545.CrossRefGoogle Scholar
Chausson, F., Bridges, C.R., Sarradin, P.M., et al. (2001). Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab. Proteins, 45, 351359.CrossRefGoogle ScholarPubMed
Chausson, F., Sanglier, S., Leize, E., et al. (2004). Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Micron, 35, 3141.CrossRefGoogle Scholar
Chen, L., Zhou, J., Zhang, Y., et al. (2015). Preparation and representation of recombinant Mn-Ferritin flower-like spherical aggregates from marine invertebrates. PLoS One, 10, 115.Google ScholarPubMed
Chevaldonné, P., Jollivet, D. (1993). Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour. Marine Ecology Progress Series, 95, 251262.Google Scholar
Chevaldonné, P., Desbruyères, D., Childress, J.J. (1992). Some like it hot and some even hotter. Nature, 359, 593594.Google Scholar
Chevaldonné, P., Fisher, C.R., Childress, J.J., et al. (2000). Thermotolerance and the ‘Pompeii worms’. Marine Ecology Progress Series, 208, 293295.Google Scholar
Childress, J.J., Fisher, C.R. (1992). The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanography and Marine Biology: An Annual Review, 30, 337441.Google Scholar
Company, R., Serafim, A., Cosson, R.P., et al. (2006). The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Biology, 148, 817825.Google Scholar
Corliss, J.B., Ballard, R.D. (1977). Oases of life in the cold abyss. National Geographic, 152, 441454.Google Scholar
Cosson, R.P., Thiébaut, E., Company, R., et al. (2008). Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research, 65(5), 405415.Google Scholar
Cosson-Mannevy, M.A., Cosson, R.P., Gaill, F. (1986). Mise en évidence de protéines de type metallothionéine chez deux invertébrés des sources hydrothermales, le pogonophore vestimentifère Riftia pachyptila et l’annélide polychète Alvinella pompejana. Comptes Rendus de l’Académie des Sciences de Paris, Série III, 302, 347352.Google Scholar
Cosson-Mannevy, M.A., Cosson, R.P., Gaill, F., Laubier, L. (1988). Transfert, accumulation et régulation des éléments mineraux chez les organismes des sources hydrothermales. Oceanologica Acta (Special Issue), 8, 219226.Google Scholar
Cottin, D., Shillito, B., Chertemps, T., et al. (2010). Comparison of heat-shock responses between the hydrothermal vent shrimp Rimicaris exoculata and the related coastal shrimp Palaemonetes varians.Journal of Experimental Marine Biology and Ecology, 393(1–2), 916.CrossRefGoogle Scholar
Cravo, A., Foster, P., Almeida, C., et al. (2007). Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the Mid-Atlantic Ridge. Environment International, 33(5), 609615.Google Scholar
Cravo, A., Foster, P., Almeida, C., et al. (2008). Metal concentrations in the shell of Bathymodiolus azoricus from contrasting hydrothermal vent fields on the mid-Atlantic ridge. Marine Environmental Research, 65, 338348.CrossRefGoogle ScholarPubMed
Dahlhoff, E., Somero, G.N. (1991). Pressure and temperature adaptation of cytosolic malate dehydrogenases of shallow and deep-living marine invertebrates: evidence for high body temperatures in hydrothermal vent animals. Journal of Experimental Biology, 159(1), 473487.Google Scholar
Dahlhoff, E., O’Brien, J., Somero, G.N., Vetter, R.D. (1991). Temperature effects on mitochondria from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. Physiological Zoology, 64(6), 14901508.Google Scholar
Decelle, J., Andersen, A.C., Hourdez, S. (2010). Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold-seeps. Marine Biology, 156(7), 12591269.CrossRefGoogle Scholar
Demina, L.L., Galkin, S.V. (2008). On the role of abiogenic factors on the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology, 48(6), 784797.Google Scholar
Demuynck, S., Bocquet-Muchembled, B., Deloffre, L., Grumiaux, F., Leprêtre, A. (2004). Stimulation by cadmium of myohemerythrin-like cells in the gut of the annelid Nereis diversicolor. Journal of Experimental Biology, 207, 11011111.Google Scholar
Desbruyères, D., Chevaldonné, P., Alayse, A.-M., et al. (1998). Biology and ecology of the Pompeii worm (Alvinella pompejana Desbruyères and Laubier), a normal dweller on an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Research Part II, 45, 383422.CrossRefGoogle Scholar
Dilly, G.F., Young, C.R., Lane, W.S., Pangilinan, J., Girguis, P.R. (2012). Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes. Proceedings of the Royal Society B: Biological Sciences, 279(1741), 33473356.Google Scholar
Di Meo-Savoie, C.A., LutherIII, G.W., Cary, S.C. (2004). Physicochemical characterization of the microhabitat of the epibionts associated with Alvinella pompejana, a hydrothermal vent annelid. Geochimica et Cosmochimica Acta, 68(9), 20552066.Google Scholar
Dubilier, N., Bergin, C., Lott, C. (2008). Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nature Reviews Microbiology, 6(10), 725740.Google Scholar
Fago, A., Forest, E., Weber, R. (2002). Hemoglobin and subunit multiplicity in the rainbow trout (Oncorhynchus mykiss) hemoglobin system. Fish Physiology & Biochemistry, 24, 335342.Google Scholar
Felbeck, H., Somero, G.N., Childress, J.J. (1981). Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide rich habitats. Nature, 293, 291293.CrossRefGoogle Scholar
Fisher, C.R. (1995). Toward an appreciation of hydrothermal-vent animals: their environment, physiological ecology, and tissue stable isotope values. In: Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (eds) Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91. American Geophysical Union, Washington, DC, pp. 297316.Google Scholar
Flores, J.F., Hourdez, S. (2006). The zinc-mediated sulfide-binding mechanism of hydrothermal vent tubeworm 400-kDa hemoglobin. Cahiers de Biologie Marine, 47(4), 371377.Google Scholar
Flores, J., Fisher, C.R., Carney, S.L., et al. (2005). Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proceedings of the National Academy of Sciences USA, 102(8), 27132718.CrossRefGoogle ScholarPubMed
Fontanillas, E., Galzitskaya, O.V., Lecompte, O., et al. (2017). Proteome evolution of deep-sea hydrothermal vent alvinellid polychaetes supports the ancestry of thermophily and subsequent adaptation to cold in some lineages. Genome Biology and Evolution, 9(2), 279296.Google Scholar
Fuenzalida, G. (2017). Transcriptomic approach of the response to metals in the hydrothermal mussel Bathymodiolus azoricus. PhD thesis, Université Pierre and Marie Curie.Google Scholar
Gagnière, N., Jollivet, D., Boutet, I., et al. (2010). Insights into metazoan evolution from Alvinella pompejana cDNAs. BMC Genomics, 11(1), 634.Google Scholar
Gaill, F., Hunt, S. (1991). The biology of annelid worms from high temperature hydrothermal vent regions. Reviews in Aquatic Sciences, 4(2), 107137.Google Scholar
Gaill, F., Mann, K., Wiedemann, H., Engel, J., Timpl, R. (1995). Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. Journal of Molecular Biology, 246(2), 284294.Google Scholar
Genard, B., Marie, B., Loumaye, E., et al. (2013). Living in a hot redox soup: antioxidant defenses of the hydrothermal worm Alvinella pompejana. Aquatic Biology, 18, 217228.CrossRefGoogle Scholar
Geret, F., Rousse, N., Riso, R., Sarradin, P.-M., Cosson, R.P. (1998). Metal compartmentalization and metallothionein isoforms in mussels from the Mid-Atlantic Ridge; preliminary approach to the fluid-organism relationship. Cahiers de Biologie Marine, 39(3–4), 291293.Google Scholar
Girguis, P.R., Childress, J.J. (2006). Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Journal of Experimental Biology, 209(18), 35163528.Google Scholar
Girguis, P.R., Lee, R.W. (2006). Thermal preference and tolerance of alvinellids. Science, 312(5771), 231–231.Google Scholar
Gorodezky, L.A., Childress, J.J. (1994). Effects of sulfide exposure history and hemolymph thiosulfate on oxygen-consumption rates and regulation in the hydrothermal vent crab Bythograea thermydron. Marine Biology, 120, 123131.Google Scholar
Grieshaber, M.K., Völkel, S. (1998). Animal adaptations for tolerance and exploitation of poisonous sulfide. Annual Review of Physiology, 60, 3353.Google Scholar
Grill, E., Winnacker, E.L., Zenk, M.H. (1987). Phytochelatins, a class of heavy-metal-binding from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences of the USA, 84, 439443.Google Scholar
Grzymski, J.J., Murray, A.E., Campbell, B.J., et al. (2008). Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proceedings of the National Academy of Sciences of the USA, 105(45), 1751617521.Google Scholar
Hardivillier, Y., Denis, F., Demattei, M.-V., et al. (2006). Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus thermophilus. Comparative Biochemistry & Physiology, Part C, 143, 321332.Google Scholar
Hartwig, A. (1994). Role of DNA repair inhibition in lead and chromium-induced genotoxicity: a review. Environmental Health & Perspectives, 102, 4550.Google Scholar
Hassoun, E.A., Stohs, S.J. (1996). Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology, 112(2–3), 219226.CrossRefGoogle ScholarPubMed
Henscheid, K.L., Shin, D.S., Cary, S.C., Berglund, J.A. (2005). The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana. Biochimica et Biophysica Acta Gene Structure and Expression, 1727(3), 197207.CrossRefGoogle ScholarPubMed
Holder, T., Basquin, C., Ebert, J., et al. (2013). Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biology Direct, 8(1), 2.Google Scholar
Horikoshi, K. (1998). Barophiles: deep-sea microorganisms adapted to an extreme environment. Current Opinion in Microbiology, 1(3), 291295.CrossRefGoogle Scholar
Hourdez, S. (2012). Hypoxic environments. In: E. M. Bell (ed.) Life at Extremes: Environments, Organisms and Strategies for Survival, pp. 438–453 CABI WallingfordGoogle Scholar
Hourdez, S. (2018). Cardiac response of the hydrothermal vent crab Segonzacia mesatlantica to variable temperature and oxygen levels. Deep Sea Research Part I: Oceanographic Research Papers, 137, 5765.CrossRefGoogle Scholar
Hourdez, S., Jouin-Toulmond, C. (1998). Functional anatomy of the respiratory system of Branchipolynoe (Annelida; Polychaeta), commensal with mussels from deep-sea hydrothermal vents. Zoomorphology, 118, 225233.Google Scholar
Hourdez, S., Lallier, F.H. (2007). Adaptations to hypoxia in hydrothermal vent and cold-seep invertebrates. Reviews in Environmental Sciences & Biotechnology, 6, 143159.Google Scholar
Hourdez, S., Weber, R.E. (2005). Molecular and functional adaptations in deep-sea hemoglobins. Journal of Inorganic Biochemistry, 99(1), 130141.CrossRefGoogle ScholarPubMed
Hourdez, S., Lallier, F.H., Green, B.N., Toulmond, A. (1999a). Hemoglobins from deep-sea scale-worms of the genus Branchipolynoe (Polychaeta, Polynoidae): a new type of quaternary structure. Proteins, 34(4), 427434.Google Scholar
Hourdez, S., Martin-Jézéquel, V., Lallier, F.H., Weber, R.E., Toulmond, A. (1999b). Characterization and functional properties of the extracellular coelomic hemoglobins from the deep-sea, hydrothermal vent scaleworm Branchipolynoe symmytilida. Proteins, 34(4), 435442.Google Scholar
Hourdez, S., Lamontagne, J., Peterson, P., Weber, R.E., Fisher, C.R. (2000). Hemoglobin from a deep-sea hydrothermal vent copepod. The Biological Bulletin, 199, 9599.Google Scholar
Isani, G., Carpenè, E. (2014). Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules, 4, 435457.Google Scholar
Johnson, K.S., Childress, J.J., Beehler, C.L. (1988a). Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep-Sea Research, 35, 17111721.Google Scholar
Johnson, K.S., Childress, J.J., Hessler, R.R., Sakamoto-Arnold, C.M., Beehler, C.L. (1988b). Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep-Sea Research, 35A, 17231744.Google Scholar
Jokumsen, A., Weber, R.E. (1982). Hemocyanin-oxygen affinity in hermit crab blood is temperature independent. The Journal of Experimental Zoology, 221, 389394.Google Scholar
Jollivet, D., Desbruyères, D., Ladrat, C., Laubier, L. (1995). Evidence for differences in the allozyme thermostability of deep-sea hydrothermal vent polychaetes (Alvinellidae): a possible selection by habitat. Marine Ecology Progress Series, 123, 125136.Google Scholar
Jollivet, D., Mary, J., Gagnière, N., et al. (2012). Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm. PLoS One, 7(2), e31150.Google Scholar
Jouin, C., Gaill, F. (1990). Gills of hydrothermal vent annelids: structure, ultrastructure and functional implications in two alvinellid species. Progress in Oceanography, 24, 5969.CrossRefGoogle Scholar
Jouin-Toulmond, C., Hourdez, S. (2006). Morphology, ultrastructure and functional anatomy of the branchial organ of Terebellides stroemii (Polychaeta: Trichobranchidae), with remarks on the systematic position of the genus Terebellides. Cahiers de Biologie Marine, 47(3), 287299.Google Scholar
Jouin-Toulmond, C., Augustin, D., Desbruyères, D., Toulmond, A. (1996). The gas transfer system in alvinellids (Annelida Polychaeta, Terebellida). Anatomy and ultrastructure of the anterior circulatory system and characterization of a coelomic, intracellular, haemoglobin. Cahiers de Biologie Marine, 37, 135151.Google Scholar
Kashiwagi, S., Kuraoka, I., Fujiwara, Y., et al. (2010). Characterization of a Y-family DNA polymerase Eta from the eukaryotic thermophile Alvinella pompejana. Journal of Nucleic Acids, 2010, 113.Google Scholar
Lallier, F.H., Truchot, J.P. (1997). Hemocyanin oxygen-binding properties of a deep-sea hydrothermal vent shrimp: evidence for a novel cofactor. Journal of Experimental Zoology, 277, 357364.Google Scholar
Lallier, F.H., Camus, L., Chausson, F., Truchot, J.-P. (1998). Structure and function of hydrothermal vent crustacean haemocyanin: an update. Cahiers de Biologie Marine, 39, 313316.Google Scholar
Lau, A.T., He, Q.Y., Chiu, J.F. (2004). A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochemical Journal, 382, 641650.Google Scholar
Le Bris, N., Gaill, F. (2007). How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? Reviews in Environmental Science and Biotechnology, 6(1–3), 197.Google Scholar
Le Bris, N., Sarradin, P.-M., Caprais, J.C. (2003). Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna. Deep-Sea Research I, 50, 737747.CrossRefGoogle Scholar
Lee, R.W. (2003). Thermal tolerances of deep-sea hydrothermal vent animals from the Northeast Pacific. The Biological Bulletin, 205(2), 98101.Google Scholar
Leignel, V., Hardivillier, Y., Laulier, M. (2005). Small metallothionein MT-10 genes in coastal and hydrothermal mussels. Marine & Biotechnology, 7, 236244.Google Scholar
Lowe, S.E., Jain, M.K., Zeikus, J.G. (1993). Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiology & Molecular Biology Reviews, 57(2), 451509.Google ScholarPubMed
Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101, 1330.Google Scholar
Luther, G.W., Rozan, T.F., Taillefert, M., et al. (2001). Chemical speciation drives hydrothermal vent ecology. Nature, 410, 813816.Google Scholar
Marie, B., Genard, B., Rees, J.-F., Zal, F. (2006). Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Marine Biology, 150, 273284.Google Scholar
Matabos, M., Le Bris, N., Pendlebury, S., Thiébaut, E. (2008). Role of physico-chemical environment on gastropod assemblages at hydrothermal vents on the East Pacific Rise (13 N/EPR). Journal of the Marine Biological Association of the UK, 88(5), 9951008.Google Scholar
Matabos, M., Cuvelier, D., Brouard, J., et al. (2015). Behavioural study of two hydrothermal crustacean decapods: Mirocaris fortunata and Segonzacia mesatlantica, from the Lucky Strike vent field (Mid-Atlantic Ridge). Deep-Sea Research Part II, 121, 146158.Google Scholar
Mickel, T.J., Childress, J.J. (1982a). Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). The Biological Bulletin, 162(1), 7082.Google Scholar
Mickel, T.J., Childress, J.J. (1982b). Effects of temperature, pressure, and oxygen concentration on the oxygen consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Physiological Zoology, 55(2), 199207.Google Scholar
Moore, P.G., Rainbow, P.S. (1997). Ferritin crystals in the gut caeca of a deep-sea hydrothermal vent stegocephalid (Crustacea: Amphipoda). Journal of the Marine Biological Association of UK, 77(1), 269272.Google Scholar
Morris, S., Taylor, A.C., Bridges, C.R., Grieshaber, M.K. (1985). Respiratory properties of the haemolymph of the intertidal prawn Palaemon elegans (Rathke). The Journal of Experimental Zoology 233, 175186.Google Scholar
Phleger, C.F., Nelson, M.M., Groce, A.K., et al. (2005). Lipid biomarkers of deep-sea hydrothermal vent polychaetes – Alvinella pompejana, A. caudata, Paralvinella grasslei and Hesiolyra bergi. Deep Sea Research Part I: Oceanographic Research Papers, 52(12), 23332352.CrossRefGoogle Scholar
Piccino, P., Viard, F., Sarradin, P.-M., et al. (2004). Thermal selection of PGM allozymes in newly founded populations of the thermotolerant vent polychaete Alvinella pompejana. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1555), 23512359.Google Scholar
Prieur, D., Erauso, G., Jeanthon, C. (1995). Hyperthermophilic life at deep-sea hydrothermal vents. Planetary and Space Science, 43(1–2), 115122.Google Scholar
Projecto-Garcia, J., Zorn, N., Jollivet, D., et al. (2010). Origin and evolution of the unique tetra-domain hemoglobin from the hydrothermal vent scale-worm Branchipolynoe. Molecular Biology & Evolution, 27(1), 143152.Google Scholar
Projecto-Garcia, J., Le Port, A.-S., Govindji, T., et al. (2017). Evolution of single-domain globins in hydrothermal vent scale-worms. Journal of Molecular Evolution, 85(5–6), 172187.Google Scholar
Ravaux, J., Toullec, J.Y., Léger, N., et al. (2007). First hsp70 from two hydrothermal vent shrimps, Mirocaris fortunata and Rimicaris exoculata: characterization and sequence analysis. Gene, 386(1–2), 162172.Google Scholar
Ravaux, J., Hamel, G., Zbinden, M., et al. (2013). Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm. PLoS One, 8(5), e64074.Google Scholar
Roesijadi, G., Smith, J.S., Crecelius, E.A., Thomas, L.E. (1985). Distribution of trace metals in the hydrothermal vent clam Calyptogena magnifica. Bulletin of the Biological Society of Washington, 6, 311324.Google Scholar
Sanders, N.K., Arp, A.J., Childress, J.J. (1988). Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans. Respiration Physiology, 71, 5768.Google Scholar
Sarrazin, J., Levesque, C., Juniper, S.K., Tivey, M.K. (2002). Mosaic community dynamics on Juan de Fuca Ridge sulphide edifices: substratum, temperature and implications for trophic structure. Cahiers de Biologie Marine, 43(3/4), 275280.Google Scholar
Sell, A. (2000). Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod. Proceedings of the Royal Society of London B, 267.Google Scholar
Shillito, B., Jollivet, D., Sarradin, P.-M., et al. (2001). Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls. Marine Ecology Progress Series, 216, 141149.Google Scholar
Shin, D.S., DiDonato, M., Barondeau, D.P., et al. (2009). Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Journal of Molecular Biology, 385(5), 15341555.Google Scholar
Sicot, F.X., Mesnage, M., Masselot, M., et al. (2000). Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. Journal of Molecular Biology, 302(4), 811820.CrossRefGoogle Scholar
Smith, F., Brown, A., Mestre, N.C., Reed, A.J., Thatje, S. (2013). Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. Deep-Sea Research Part II: Topical Studies in Oceanography, 92, 234239.Google Scholar
Smith, R.P., Cooper, R.C., Engen, T., et al. (1979). Hydrogen Sulfide. University Park Press, Baltimore.Google Scholar
Somero, G.N., Childress, J.J., Anderson, A.E. (1989). Transport, metabolism and detoxification of hydrogen sulphide in animals from sulphide-rich marine environments. Critical Reviews in Aquatic Sciences, 1, 591614.Google Scholar
Toulmond, A., Slitine, F.E.I., De Frescheville, J., Jouin, C. (1990). Extracellular hemoglobins of hydrothermal vent annelids: structural and functional characteristics in three alvinellid species. The Biological Bulletin, 179(3), 366373.Google Scholar
Truchot, J-P. (1992). Respiratory function of arthropod hemocyanins. In: Mangum, C.P. (ed.) Blood and Tissues Oxygen Carriers. Spinger Verlag, Berlin/Heidelberg, pp. 377410.Google Scholar
Tunnicliffe, V. (1991). The biology of hydrothermal vents: Ecology and evolution. Oceanography and Marine Biology: An Annual Review, 29, 319407.Google Scholar
Tunnicliffe, V., Desbruyères, D., Jollivet, D., Laubier, L. (1993). Systematic and ecological characteristics of Paralvinella sulfincola Desbruyères and Laubier, a new polychaete (family Alvinellidae) from northeast Pacific hydrothermal vents. Canadian Journal of Zoology, 71(2), 286297.Google Scholar
Vetter, R.D., Wells, M.E., Kurtsman, A.L., Somero, G.N. (1987). Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiological Zoology, 60, 121137.Google Scholar
Von Damm, K.L. (1995). In:Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (eds) Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids. Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp. 222247.Google Scholar
Weber, R.E. (1990). Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In: Truchot, J.-P. and Lahlou, B (eds) Animal Nutrition and Transport Processes. 2. Transport, Respiration and Excretion: Comparative and Environmental Aspects.Karger, Basel, pp. 5875.Google Scholar
Weber, R.E. (2000). Adaptations for oxygen transport: Lessons from fish hemoglobins. In: Di Prisco, G, Giardina, B, Weber, R.E. (eds) Hemoglobin Function in Vertebrates: Molecular Adaptation in Extreme and Temperate Environments. Springer-Verlag, Italia, Milan, pp. 2337.Google Scholar
Weber, R.E., Hourdez, S., Knowles, F., Lallier, F.H. (2003). Hemoglobin function in deep-sea and hydrothermal vent fish: Symenchelis parasitica (Anguillidae) and Thermarces cerberus (Zoarcidae). Journal of Experimental Biology, 206(15), 26932702.Google Scholar
Wilmot, D.B.J., Vetter, R.D. (1990). The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Marine Biology, 106, 273283.Google Scholar
Wohlgemuth, S.E., Arp, A.J., Bergquist, D., Julian, D. (2007). Rapid induction and disappearance of electron-dense organelles following sulfide exposure in the marine annelid Branchioasychis americana.Invertebrate Biology, 126(2), 163172.Google Scholar
Wong, Y.H., Sun, J., He, L.S., et al. (2015). High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Scientific Reports, 5, 16597.Google Scholar
Yamada, H., Miyahara, T., Sasaki, Y. (1993). Inorganic cadmium increases the frequency of chemically induced chromosome aberrations in cultured mammalian cells. Mutation Research, 302(3), 137145.Google Scholar
Zal, F., Leize, E., Lallier, F.H., et al. (1998). S-sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proceedings of the National Academy of Sciences of the USA, 95(15), 89979002.Google Scholar
Zal, F., Leize, E., Oros, D.R., et al. (2000). Haemoglobin structure and biochemical characteristics of the sulphide-binding component from the deep-sea clam Calyptogena magnifica. Cahiers de Biologie Marine, 41(4), 413423.Google Scholar
Zapata, M., Tanguy, A., David, E., Moraga, D., Riquelme, C. (2009). Transcriptomic response of Argopecten purpuratus post-larvae to copper exposure under experimental conditions. Gene, 442, 3746.Google Scholar
Zierenberg, R.A., Adams, M.W., Arp, A.J. (2000). Life in extreme environments: hydrothermal vents. Proceedings of the National Academy of Sciences of the USA, 97(24), 1296112962.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×