Book contents
- Frontmatter
- Contents
- List of contributors
- 1 Introduction
- 2 Geologic analogies between the surface of Mars and the McMurdo Dry Valleys: microclimate-related geomorphic features and evidence for climate change
- 3 The legacy of aqueous environments on soils of the McMurdo Dry Valleys: contexts for future exploration of martian soils
- 4 The antarctic cryptoendolithic microbial ecosystem
- 5 Antarctic McMurdo Dry Valley stream ecosystems as analog to fluvial systems on Mars
- 6 Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environments
- 7 The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on martian ice now?
- 8 Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica
- 9 Other analogs to Mars: high-altitude, subsurface, desert, and polar environments
- Index
- References
7 - The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on martian ice now?
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- List of contributors
- 1 Introduction
- 2 Geologic analogies between the surface of Mars and the McMurdo Dry Valleys: microclimate-related geomorphic features and evidence for climate change
- 3 The legacy of aqueous environments on soils of the McMurdo Dry Valleys: contexts for future exploration of martian soils
- 4 The antarctic cryptoendolithic microbial ecosystem
- 5 Antarctic McMurdo Dry Valley stream ecosystems as analog to fluvial systems on Mars
- 6 Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environments
- 7 The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on martian ice now?
- 8 Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica
- 9 Other analogs to Mars: high-altitude, subsurface, desert, and polar environments
- Index
- References
Summary
Introduction
Microbial life on Earth usually requires at least five prerequisites: innoculi, liquid water, and sources of energy, carbon, and nutrients (Rothschild and Manicelli,2001). One of the major advances in the cryospheric sciences during the last decade is the realization that microbial life or innoculi are found in a whole spectrum of environments throughout glacier ice masses of all scales, from the snow cover, through ice surface (or supraglacial) environments, within ice (or englacial) environments through to ice bed (or subglacial) environments (Hodson et al., 2008). A remarkable observation is that apparently viable microbes can be found throughout the whole 4 km of ice column found near the center of the East Antarctic Ice Sheet above subglacial Lake Vostok (Priscu et al., 2008). Hence, glaciers on Earth can now be regarded as biomes or ecotomes, and the question arises whether or not glaciers on other celestial bodies have the potential to act as ecotomes. This chapter begins to provide an answer by first describing how microbial life exists in the cold glaciers of the McMurdo Dry Valleys, and second, by speculating on whether or not there is the chance of life in the glaciers and ice caps of Mars. We make the assumption that potential microbial life on Mars is carbon based and requires the same five prerequisites for microbial life as on Earth (Rothschild and Manicelli, 2001).
- Type
- Chapter
- Information
- Life in Antarctic Deserts and other Cold Dry EnvironmentsAstrobiological Analogs, pp. 195 - 220Publisher: Cambridge University PressPrint publication year: 2010
References
- 8
- Cited by