Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-07T05:15:57.260Z Has data issue: true hasContentIssue false

The Beilinson conjectures

Published online by Cambridge University Press:  18 December 2009

J. Coates
Affiliation:
University of Cambridge
M. J. Taylor
Affiliation:
University of Manchester Institute of Science and Technology
Get access

Summary

Introduction

The Beilinson conjectures describe the leading coefficients of L-series of varieties over number fields up to rational factors in terms of generalized regulators. We begin with a short but almost selfcontained introduction to this circle of ideas. This is possible by using Bloch's description of Beilinson's motivic cohomology and regulator map in terms of higher Chow groups and generalized cycle maps. Here we follow [Bl3] rather closely. We will then sketch how much of the known evidence in favour of these conjectures — to the left of the central point — can be obtained in a uniform way. The basic construction is Beilinson's Eisenstein symbol which will be explained in some detail. Finally in an appendix a map is constructed from higher Chow theory to a suitable Ext-group in the category of mixed motives as defined by Deligne and Jannsen. This smooths the way towards an interpretation of Beilinson's conjectures in terms of a Deligne conjecture for critical mixed motives [Sc2]. It also explains how work of Harder [Ha2] and Anderson fits into the picture.

For further preliminary reading on the Beilinson conjectures, one should consult the Bourbaki seminar of Soulé [Sol], the survey article by Ramakrishnan [Ra2] and the introductory article by Schneider [Sch]. For the full story see the book [RSS] and of course Beilinson's original paper [Bel]. Here one will also find the conjectures for the central and near-central points, which for brevity we have omitted here.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×