Published online by Cambridge University Press: 05 February 2016
Abstract
These lecture notes provide an introduction to the theory of “modulation” and its role in the derivation of model equations, such as the KdV equation, Boussinesq equation, KP equation, and Whitham modulation equations, and their role in the theory of water waves. The classical theory of modulation, such as Whitham modulation theory, will be discussed, and a new approach will be introduced, based on modulation of background flow. Methodology that is key to the theory is symmetry and conservation laws, relative equilibria, Hamiltonian and Lagrangian structures, multiple scale perturbation theory, and elementary differential geometry. By basing the theory on modulation of relative equilibria, new settings are discovered for the emergence of KdV and other modulation equations. For example, it is shown that the KdV equation can be a valid model for deep water as well as shallow water. The lecture notes are introductory, and no prior knowledge is assumed.
Introduction
Modulation is one of the most widely used concepts in the theory of nonlinear waves. In linear theory modulation is normally the process of varying the envelope of a signal. In electronics this concept is expanded further to include digital modulation, analog modulation, pulse modulation, frequency modulation, and so on. In the theory of nonlinear waves it is used to describe “modulation equations,” which typically are nonlinear equations governing the envelope of a wave, although the term is much more widely used now, with any equation on a slow space and time scale called a modulation equation. The term modulation in these notes is closest in spirit to Whitham modulation theory [1]. The idea is that given a basic state, dependent on a phase and a parameter or parameters, the phase and parameters are treated as slowly-varying functions of space and time, and governing equations are derived for these slowly-varying functions.
An abstraction of the idea of a basic state dependent on a phase is a relative equilibrium. A central theme of these notes is modulation of relative equilibria (RE). A definition of RE is given in §12.2. The context throughout will be conservative (Lagrangian, Hamiltonian, multisymplectic).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.