Published online by Cambridge University Press: 05 February 2016
Abstract
In this contribution we discuss High-Order Perturbation of Surfaces (HOPS) methods with particular application to traveling water waves. The Transformed Field Expansion method (TFE) is discussed as a method for handling the unknown fluid domain. The procedures for computing Stokes waves and Wilton Ripples are compared. The Lyapunov-Schmidt procedure for the Wilton Ripple is presented explicitly in a simple, weakly nonlinear model equation.
Introduction
Traveling water waves have been studied for over a century, most famously by Stokes, for whom weakly-nonlinear periodic waves are now named [1–3]. In his 1847 paper, Stokes expanded the wave profile as a power series in a small parameter, the wave slope, a technique that has since become commonplace. This classic perturbation expansion, which we will refer to as the Stokes’ expansion, has been applied to the water wave problem numerous times [4–9]. When the effect of surface tension is included, the expansion may be singular. This singularity, due to a resonance between a long and a short wave, was noted first by Wilton [10] and has been studied more recently in [11–15].
In these lecture notes, we explain how traveling water waves may be computed using a High-Order Perturbation of Surfaces (HOPS) approach, which numerically computes the coefficients in an amplitude-based series expansion of the free surface. For the water wave problem, a crucial aspect of any numerical approach is the method used to handle the unknown fluid domain. Popular examples include Boundary Integral Methods [16, 17], conformal mappings [18, 19], and series computations of the Dirichelet-to-Neumann operator [20, 21]. Here we discuss an alternative approach, in which the solution is expanded using the Transformed Field Expansion (TFE) method, developed in [22, 23].
The TFE method has been used to compute traveling waves on both two-dimensional (one horizontal and one vertical dimension) and three-dimensional fluids, both for planar and short-crested waves [23]. Short-crested wave solutions to the potential flow equations have been computed without surface tension [22, 24, 25] and with surface tension [26]. They have also been studied experimentally [27, 28].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.