Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Notation and conventions
- Chapter 1 Special relativity and Minkowski spacetime
- Chapter 2 The Einstein equation
- Chapter 3 Basics of Lorentzian causality
- Chapter 4 The Penrose singularity theorem
- Chapter 5 The Einstein constraint equations
- Chapter 6 Scalar curvature deformation and the Einstein constraint equations
- Chapter 7 Asymptotically flat solutions of the Einstein constraint equations
- Chapter 8 On the center of mass and constant mean curvature surfaces of asymptotically flat initial data sets
- Chapter 9 On the Riemannian Penrose inequality
- References
- Index
Chapter 6 - Scalar curvature deformation and the Einstein constraint equations
Published online by Cambridge University Press: 03 April 2025
- Frontmatter
- Dedication
- Contents
- Preface
- Notation and conventions
- Chapter 1 Special relativity and Minkowski spacetime
- Chapter 2 The Einstein equation
- Chapter 3 Basics of Lorentzian causality
- Chapter 4 The Penrose singularity theorem
- Chapter 5 The Einstein constraint equations
- Chapter 6 Scalar curvature deformation and the Einstein constraint equations
- Chapter 7 Asymptotically flat solutions of the Einstein constraint equations
- Chapter 8 On the center of mass and constant mean curvature surfaces of asymptotically flat initial data sets
- Chapter 9 On the Riemannian Penrose inequality
- References
- Index
Summary
A classical approach to the problem of effectively parametrizing the space of solutions to the vacuum Einstein constraint equations is the conformal method. We will focus on the constant mean curvature case, which reduces to the analysis of the Lichnerowicz equation to solve the Hamiltonian constraint, and which brings the study of the scalar curvature operator to the fore. We begin the chapter with elements of the theory of elliptic partial differential equations, and then develop the conformal method and present in detail the closed constant mean curvature case. In the last section we discuss more general scalar curvature deformation and an obstruction to positive scalar curvature due to Schoen and Yau.
Keywords
- Type
- Chapter
- Information
- Lectures on Mathematical Relativity , pp. 167 - 230Publisher: Cambridge University PressPrint publication year: 2025