Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 A simple model of fluid mechanics
- 2 Two routes to hydrodynamics
- 3 Inviscid two-dimensional lattice-gas hydrodynamics
- 4 Viscous two-dimensional hydrodynamics
- 5 Some simple three-dimensional models
- 6 The lattice-Boltzmann method
- 7 Using the Boltzmann method
- 8 Miscible fluids
- 9 Immiscible lattice gases
- 10 Lattice-Boltzmann method for immiscible fluids
- 11 Immiscible lattice gases in three dimensions
- 12 Liquid-gas models
- 13 Flow through porous media
- 14 Equilibrium statistical mechanics
- 15 Hydrodynamics in the Boltzmann approximation
- 16 Phase separation
- 17 Interfaces
- 18 Complex fluids and patterns
- Appendix A Tensor symmetry
- Appendix B Polytopes and their symmetry group
- Appendix C Classical compressible flow modeling
- Appendix D Incompressible limit
- Appendix E Derivation of the Gibbs distribution
- Appendix F Hydrodynamic response to forces at fluid interfaces
- Appendix G Answers to exercises
- Author Index
- Subject Index
Appendix C - Classical compressible flow modeling
Published online by Cambridge University Press: 23 September 2009
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 A simple model of fluid mechanics
- 2 Two routes to hydrodynamics
- 3 Inviscid two-dimensional lattice-gas hydrodynamics
- 4 Viscous two-dimensional hydrodynamics
- 5 Some simple three-dimensional models
- 6 The lattice-Boltzmann method
- 7 Using the Boltzmann method
- 8 Miscible fluids
- 9 Immiscible lattice gases
- 10 Lattice-Boltzmann method for immiscible fluids
- 11 Immiscible lattice gases in three dimensions
- 12 Liquid-gas models
- 13 Flow through porous media
- 14 Equilibrium statistical mechanics
- 15 Hydrodynamics in the Boltzmann approximation
- 16 Phase separation
- 17 Interfaces
- 18 Complex fluids and patterns
- Appendix A Tensor symmetry
- Appendix B Polytopes and their symmetry group
- Appendix C Classical compressible flow modeling
- Appendix D Incompressible limit
- Appendix E Derivation of the Gibbs distribution
- Appendix F Hydrodynamic response to forces at fluid interfaces
- Appendix G Answers to exercises
- Author Index
- Subject Index
Summary
Non-dissipative, inviscid, compressible flow
We consider a simple fluid such as air or water. This fluid is described by a number of thermodynamical fields, such as pressure, density, etc., as well as a velocity field u. A variable is called specific when it gives a quantity per unit mass. For instance, let E be the internal energy of a finite volume V of fluid. Let M = ρV be the mass of this volume of fluid. Then e = E/M is the specific internal energy. Table C.1 lists all the thermodynamic variables used in this appendix.
In addition to thermodynamic variables there are variables describing the external actions on the fluid. The effect of gravity, for instance may be represented by the acceleration f = g. The heating rate per unit mass q represents sources of heat, for instance from radiation. There may be heat and momentum exchanges inside the fluid, by heat conduction or viscous forces. These are not taken into account in the non-dissipative description.
For a one-component gas, there are only two independent thermodynamic variables. As a special choice, one may choose ρ, T as independent variables and express all quantities such as p, e, h, etc., in terms of ρ and T, but other choices are possible as well. These relations are linked through equations of state. For instance p = p(ρ, T) is the standard form for an equation of state.
- Type
- Chapter
- Information
- Lattice-Gas Cellular AutomataSimple Models of Complex Hydrodynamics, pp. 271 - 275Publisher: Cambridge University PressPrint publication year: 1997