Abramowitz, M. and I. A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York, 1972.
Adamchik, V.On the Hurwitz function for rational arguments. Appl. Math. Comp., 187: 3–12, 2007.
Adler, S.Generalized Ewald method for lattice sums. Physica (Utrecht), 27: 1193–1201, 1961.
Andrews, G. E., R., Askey, and R., Roy. Special Functions. Cambridge University Press, Cambridge, 1999.
Appell, P.Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris, 91:211–214, 1880.
Appell, P.Sur les fonctions de trois variables réelles satisfaisant à l'équation différentielle Δ F = 0. Acta Math., 4:313–374, 1884.
Appell, P.Sur quelques applications de la fonction Z(x, y, z) à la physique mathématique. Acta Math., 8:265–294, 1886.
Appell, P.Sur les fonctions harmoniques à trois groupes de périodes. Rend. Circ. Mat. Palermo, 22:361–370, 1906.
Ayoub, R.An Introduction to the Analytic Theory of Numbers. American Mathematical Society, Providence, RI, 1963.
Bailey, D. H., J. M., Borwein, D., Broadhurst, and M. L., Glasser. Elliptic integral evaluations of Bessel moments and applications. J. Phys. A: Math. Theor., 41:205–203, 2008.
Bailey, D. H., J. M., Borwein, R. E., Crandall, and I. J., Zucker. Lattice sums arising from the Poisson equation. J. Phys.A, 46:115201–115232, 2012.
Bailey, W. N.A reducible case of the fourth type of Appell's hypergeometric functions of two variables. Quart. J. Math. Oxford, 4:305–308, 1933.
Bailey, W. N.Some infinite integrals involving Bessel functions. Proc. London Math. Soc., 40: 37–48, 1935.
Baldereschi, A., G., Senatore, and I., Oriani. Madelung energy of the Wigner crystal on lattices with non-equivalent sites. Solid State Commun., 81: 21–22, 1992.
Barber, M. N.Cross-over phenomena in the asymptotic behaviour of lattice sums. J. Phys. A., 10: 2133–2142, 1977.
Bellman, R.A Brief Introduction to Theta Functions. Holt, New York, 1961.
Benson, G. C.A simple formula for evaluating the Madelung constant of a NaCl-type crystal. Can. J. Phys., 34: 888–890, 1956.
Benson, G. C. and H. P., Schreiber. A method for the evaluation of some lattice sums occur¬ring in calculations of physical properties of crystals. II. Can. J. Phys., 33: 529–533, 1955.
Benson, G. C., H. P., Schreiber, and D., Patterson. An examination of Verwey's model for the lattice structure of the free surface of alkali halide crystals. Can. J. Phys., 34: 265–275, 1956.
Benson, G. C. and F., van Zeggeren. Madelung constants of some cubic crystals. J. Chem. Phys., 26:1083–1085, 1957.
Berndt, B. C.Ramanujan's Notebooks Part III. Springer-Verlag, New York, 1991.
Berndt, B. C., G., Lamb, and M., Rogers. Two dimensional series evaluations via the elliptic functions of Ramanujan and Jacobi. Ramanujan Journal, 2011.
Bertaut, F.L'énergie électrostatique de réseaux ioniques. J. Phys. Radium, 13: 499–505, 1952.
Bertaut, F.C. R., Hebd. Seances Acad. Sci., 239: 234–235, 1954.
Bertin, M. J.Mesure de Mahler d'hypersurfaces K3. J. Number Theory, 128: 2890–2913, 2008.
Bethe, H.Splitting of terms in crystals. Ann. Phys. (Leipzig), 3:137, 1929.
Birman, J. L.Effect of overlap on electrostatic lattice potentials in ionic crystals. Phys. Rev., 97:897–902, 1955.
Blakemore, J. S.Solid State Physics. Saunders, Philadelphia, 1969.
Bogomolny, E. and P., Leboeuf. Statistical properties of the zeros of zeta functions – beyond the Riemann case. Nonlinearity, 7:1155–1167, 1994.
Bonsall, L. and A. A., Maradudin. Some static and dynamical properties of a two-dimensional Wigner crystal. Phys. Rev. B, 15:1959–1973, 1977.
Boon, M. and J., Zak. Coherent states and lattice sums. J. Math. Phys., 19: 2308–2311, 1978.
Born, M.Dynamik der Kristallgitter. Teubner, Leipzig, 1916.
Born, M.Über elektrostatische Gitterpotentiale. Zeitschrift für Physik, 7: 124–140, 1921.
Born, M. and M., Bradburn. The thermodynamics of crystal lattices. II. Proc. Camb. Phil. Soc., 39: 104–113, 1943.
Born, M. and R., Fürth. The stability of crystal lattices. III. Proc. Camb. Phil. Soc., 36:454–465, 1940.
Born, M. and M., Göppert-Mayer. In Handbuch der Physik (S., Fliigge, ed.), vol. 24, Part 2, p. 707. Springer-Verlag, Berlin and New York, 1933.
Born, M. and A., Landé. The absolute calculation of crystal properties with the help of Bohr's atomic model. Part 2. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp. 1048–1068, 1918.
Born, M. and R. D., Misra.On the stability of crystal lattices. IV. Proc. Camb. Phil. Soc., 36: 466–478, 1940.
Bornemann, F., D., Laurie, S., Wagon, and J., Waldvogel. The SIAM 100-Digit Challenge. SIAM, 2004.
Borwein, D. and J. M., Borwein.A note on alternating series in several dimensions. Amer. Math. Mon., 93:531–539, 1985.
Borwein, D. and J. M., Borwein.Some exponential and trigonometric lattice sums. J. Math. Anal.Appl., 188:209–5218, 1994.
Borwein, D., J. M., Borwein, and C., Pinner. Convergence of Madelung-like lattice sums. Trans. Amer. Math. Soc., 350:3131–3167, 1998.
Borwein, D., J. M., Borwein, and R., Shail. Analysis of certain lattice sums. J. Math. Anal. Appl., 143:126–137, 1989.
Borwein, D., J. M., Borwein, R., Shail, and I. J., Zucker.Energy of static electron lattices. J. Phys. A: Math. Gen., 21:1519–1531, 1988.
Borwein, D., J. M., Borwein, and K., Taylor. Convergence of lattice sums and Madelung's constant. J. Math. Phys., 26:2999–3009, 1985.
Borwein, J. M. and D. H., Bailey.Mathematics by Experiment: Plausible Reasoning in the 21st Century, 2nd edition. A. K., Peters, 2008.
Borwein, J. M. and P. B., Borwein.Pi and the AGM - A Study in Analytic Number Theory and Computational Complexity. Wiley, New York, 1987.
Borwein, J. M., P. B., Borwein, and F. G., Garvan.Some cubic modular identities of Ramanujan. Trans. Amer. Math. Soc., 343:35–47, 1994.
Borwein, J. M. and K.-K. S., Choi. On the representations of xy + yz + zx. Exp. Math., 9: 153–158, 2000.
Borwein, J. M. and A. S., Lewis.Partially-finite convex programming in L 1:entropy maximization. SIAM J. Optimization, 3:248–267, 1993.
Borwein, J. M., A., Straub, and J. G., Wan.Three-step and four-step random walk integrals. Exp. Math., 22:1–14, 2013.
Borwein, J. M., A., Straub, J. G., Wan, and W., Zudilin. Densities of short uniform random walks. Can. J. Math., 64:961–990, 2012, with an appendix by Don Zagier.
Borwein, J. M. and J., Vanderwerff. Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications, vol. 109, Cambridge University Press, 2010.
Borwein, J. M. and I. J., Zucker.Elliptic integral evaluation of the Gamma function at rational values of small denominator. IMA J. Numer. Anal., 12:519–526, 1992.
Borwein, J. M. and R. E., Crandall.Closed forms: what they are and why we care. Not. Amer. Math. Soc., 60(1):60–65, 2013.
Boyd, D. W.Mahler's measure and special values of L-functions. Exp. Math., 7: 37–82, 1998.
Broadhurst, D.Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function. 2008. Preprint: arXiv:0801.0891v1.
Brown, E. and C. J., Parry.The imaginary bicyclic biquadratic fields with class number 1. J. Reine Angew. Math., 266:118–120, 1974.
Buhler, J. P. and R. E., Crandall.On the convergence problem for lattice sums. J. Phys. A: Math. Gen., 23:2523–2528, 1990.
Burrows, E. L. and S. F. A., Kettle. Madelung constants and other lattice sums. J. Chem. Ed., 52: 58–59, 1975.
Campbell, E. S.Existence of a well defined specific energy for an ionic crystal – justification of Ewald's formulae and of their use to deduce equations for multipole lattices. J. Phys. Chem. Solids, 24:197, 1963.
Cayley, A.The Collected Mathematical Papers, vol. 1. Cambridge University Press, Cambridge, 1889.
Cayley, A.An Elementary Treatise on Elliptic Functions, 2nd edition. Deighton, Bell and Co., 1895.
Chaba, A. N. and R. K., Pathria.Evaluation of a class of lattice sums in arbitrary dimensions. J. Math. Phys., 16:1457–1460, 1975.
Chaba, A. N. and R. K., Pathria.Evaluation of lattice sums using Poisson's summation formula. 2. J. Phys. A, 9:1411–1423, 1976a.
Chaba, A. N. and R. K., Pathria.Evaluation of lattice sums using Poisson's summation formula. 3. J. Phys. A, 9:1801–1810, 1976b.
Chaba, A. N. and R. K., Pathria.Evaluation of lattice sums using Poisson's summation formula. 4. J. Phys. A, 10:1823–1832, 1977.
Chen, L. C. and F. Y., Wu.The random cluster model and a new integration identity. J. Phys. A: Math. Gen., 38:6271–6276, 1005.
Chin, S. K., N. A., Nicorovici, and R. C., McPhedran.Green's function and lattice sums for electromagnetic scattering by a square array of cylinders. Phys.Rev.E, 49, 1994.
Chowla, S.An extension of Heilbronn's class number theorem. Quart. J. Math. Oxford, 5: 304–307, 1934.
Clausen, T.Ueber die Fälle wenn die Reihe ein Quadrat von der Form hat. J. Math., 3:89–95, 1828.
Clausius, R.Die Mechanische Behandlung der Electricität. Braunschweig, Vieweg, 1879.
Cockayne, E.Comment on ‘stability of the Wigner electron crystal on the perovskite lattice’. J. Phys: Condens. Matter, 3:8757, 1991.
Cohn, H.A Classical Invitation to Algebraic Numbers and Class Fields. Springer-Verlag, Berlin and New York, 1978.
Coldwell-Horsfall, R. A. and A. A., Maradudin. Zero point energy of an electron lattice. J. Math. Phys., 1: 395–404, 1960.
Colquitt, D. J., M. J., Nieves, I. S., Jones, A. B., Movchan, and N. V., Movchan.Localisation for an infinite line defect in an infinite square lattice. Preprint: arXiv:1208.1871v2:1-24, 2012.
Conrey, J. B.The Riemann hypothesis. Not. Amer. Math. Soc., 50:341–353, 2003.
Courant, R.Über partielle Differenzengleichung. In Proc. Atti Congresso Internazionale Dei Matematici, Bologna, vol. 3, pp. 83–89, 1929.
Courant, R., K., Friedrichs, and H., Lewy. Über die partiellen Differenzengleichung der mathematischen Physik. Math. Ann., 100:32–74, 1928.
Crandall, R. E.New representations for the Madelung constant. Exp. Math., 8: 367–379, 1999.
Crandall, R. E.The Poisson equation and ‘natural’ Madelung constants. 2012. Preprint.
R. E., Crandall and J. P., Buhler.Elementary function expansions for Madelung constants. J. Math. Phys., 20:5497–5510, 1987.
R. E., Crandall and J. F., Delord.The potential within a crystal lattice. J. Math. Phys., 20: 2279–2292, 1987.
Davies, H.Poisson's partial differential equation. Quart. J. Math, 6:232–240, 1955.
De Wette, F. W.Electric field gradients in pointion and uniform-background lattices. Phys. Rev., 123:103, 1961.
De Wette, F. W. and G. E., Schacher.Internal fields in general dipole lattices. Phys.Rev. A, 137: 78–91, 1965.
Delves, R. T. and G. S., Joyce.On the Green function for the anisotropic simple cubic lattice. Ann. Phys., 291:71–133, 2001.
Delves, R. T. and G. S., Joyce.Exact product form for the anisotropic simple cubic lattice Green function. J. Phys. A: Math. Theor., 39:4119–4145, 2006.
Delves, R. T. and G. S., Joyce.Derivation of exact product forms for the simple cubic lattice Green function using Fourier generating functions and Lie group identities. J. Phys. A: Math. Theor., 40: 8329–8343, 2007.
Deninger, C.Deligne periods of mixed motives, K-theory and the entropy of certain Zn – actions. J. Amer. Math. Soc., 10:259–281, 1997.
Dickson, L. E.An Introduction to the Theory of Numbers. Dover, New York, 1957.
Dietz, B. and K., Zyczkowski. Level-spacing distributions beyond the Wigner surmise. Z. Phys. Condens. Matter, 84:157–158, 1991.
Domb, C.On multiple returns in the random walk problem. Proc. Camb. Phil. Soc., 50: 586–591, 1954.
Doyle, P. G. and L. J., Snell.Random Walks and Electric Networks. Carus Mathematical Monographs, MAA, 1984.
Duffin, R. J.Discrete potential theory. Duke Math. J., 20:233–251, 1953.
Emersleben, O.Zetafunktionen und elektrostatische Gitterpotentiale. I. Phys. Z., 24:73–80, 1923a.
Emersleben, O.Zetafunktionen und elektrostatische Gitterpotentiale. II. Phys. Z., 24:97–104, 1923b.
Emersleben, O.Die elektrostatische Gitterenergie eines neutralen ebenen, insbesondere alternierenden quadratischen Gitters. Z. Phys., 127:588–609, 1950a.
Emersleben, O.Über die Berechnung der Gitterenergie endlicher Kristallstücke. Z. Angew. Math. Mech., 30:252–254, 1950b.
Emersleben, O.Über die Konvergenz der Reihen Epsteinscher Zetafunktionen, Math. Nachr., 4: 468–480, 1951.
Emersleben, O.Z. Phys. Chem., 194: 170–190, 1952.
Emersleben, O.Über Summen Epsteinscher Zetafunktionen regelmäßig verteilter ‘unterer’ Parameter. Math. Nachr., 13: 59–72, 1954.
Emersleben, O.Über Funktionalgleichungen zwischen Epsteinscher Zetafunktionen gleichen Arguments. Math. Nachr., 44: 205–230, 1970.
Engblom, S.Gaussian quadratures with respect to discrete measures. Uppsala University Technical Reports, 7: 1–17, 2006.
Epstein, P.Zur Theorie allgemeiner Zetafunktionen. Math. Ann., 56: 615–644, 1903.
Evjen, H.On the stability of certain heteropolar crystals. Phys. Rev., 39: 675–687, 1932.
Ewald, P.Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys., 64: 253–287, 1921.
Ferguson, Helaman and Claire, Ferguson. Sculpture inspired by work with Alfred Gray: Kepler elliptic curves and minimal surface sculptures of the planets. Contemp. Math., 288: 39–53, 2000.
Fetter, A. L.Evaluation of lattice sums for clean type-II superconductors. Phys. Rev. B, 11: 2049–2052, 1975.
Foldy, L. L.Electrostatic stability of Wigner and Wigner-Dyson lattices. Phys. Rev. B, 17: 4889–4894, 1978.
Folsom, A., W., Kohnen, and S., Robins. Conic theta functions and their relations to theta functions. 2011. Preprint.
Forrester, P. J. and M. L., Glasser.Some new lattice sums including an exact result for the electrostatic potential within the NaCl lattice. J. Phys. A, 15:911–914, 1982.
Fuchs, K.A quantum mechanical investigation of the cohesive forces of metallic copper. Proc. Roy. Soc. London A, 151: 585–602, 1935.
Fumi, F. G. and M. P., Tosi.On the Naor relations between Madelung constants for cubic ionic lattices. Phil. Mag., 2:284, 1957.
Fumi, F. G. and M. P., Tosi.Extension of the Madelung method for the evaluation of lattice sums. Phys. Rev., 117:1466–1468, 1960.
Garnett, J. C. M.Colours in metal glasses and in metallic films. Phil. Trans. Roy. Soc. London, 203:385–420, 1904.
Glaisher, J. W. L.Messenger ofMathematics, vol. 24, p. 27, 1895.
Glasser, M. L.A Watson sum for a cubic lattice. J. Math. Phys., 13:1145, 1972.
Glasser, M. L.The evaluation of lattice sums. I. Analytic procedures. J. Math. Phys., 14:409–413, 1973a.
Glasser, M. L.The evaluation of lattice sums. II. Number-theoretic approach. J. Math. Phys., 14:701–703, 1973b.
Glasser, M. L.The evaluation of lattice sums. III. Phase modulated sums. J. Math. Phys., 15: 188–189, 1974.
Glasser, M. L.The evaluation of lattice sums. IV. A five-dimensional sum. J. Math. Phys., 16: 1237–1238, 1975.
Glasser, M. L.Definite integrals of the complete elliptic integral K. J. Res. NBS., 80B:313–323, 1976.
Glasser, M. L.A note on a hyper-cubic Mahler measure and associated Bessel integral. J. Phys. A, 45:494002, 2012.
Glasser, M. L. and G., Lamb. A lattice spanning tree entropy function. J. Phys. A: Math. Gen., 38:L471–L475, 2005.
Glasser, M. L. and E., Montaldi. Staircase polygons and recurrent lattice walks. Phys. Rev. E, 48:2339–2342, 1993.
Glasser, M. L. and V. E., Wood.A closed form evaluation of the elliptical integral. Math. Comput., 25: 535–536, 1971.
Glasser, M. L. and F. Y., Wu.On the entropy of spanning trees on a large triangular lattice. Ramanujan Journal, 10:205–214, 2005.
Glasser, M. L. and I. J., Zucker.Extended Watson integrals for the cubic lattices. Proc. Nat. Acad. Sci. USA, 74:1800–1801, 1977.
Glasser, M. L. and I. J., Zucker.Lattice sums. In Theoretical Chemistry, Advances and Perspectives (H., Eyring and D., Henderson, eds.), vol. 5, pp. 67–139, 1980.
Gordon, B. Some identities in combinatorial analysis. Quart. J. Math., 12:285–290, 1961.
Goursat, E.Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéometrique. Ann. Sci. École Norm. Sup., 10:S3–S142, 1881.
Graovac, A., H. J., Monkhorst, and M. L., Glasser.Computation of Fourier transform quantities in Hartree-Fock calculations for simple crystals. Int. J. Quantum Chem., 9: 243–259, 1975.
Greenspan, N. T.The End ofthe Certain World: The Life and Science of Max Born. Basic Books, 2005.
Guillera, J. and M., Rogers. Ramanujan series upside-down. Preprint. Submitted for publication on 18 June 2012.
Guttmann, A. J.Lattice Green functions in all dimensions. J. Phys. A: Math. Theor., 43:305205, 2010.
Guttmann, A. J. and T., Prellberg. Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions. Phys. Rev. E, 47:R2233–R2236, 1993.
Guttmann, A. J. and M., Rogers. An integral arising from the chiral sl(n) Potts model. J. Phys. A: Math. Theor., 46:045202, 2013.
Guttmann, A. J. and M., Rogers. Spanning tree generating functions and Mahler measures. J. Phys. A, to appear.
Guy, R. K.Gauss' lattice point problem. In Unsolved Problems in Number Theory, 2nd edition. Springer-Verlag, New York, 1994.
Hall, G. E.Asymptotic properties of generalized Chaba and Pathria lattice sums. J. Math. Phys., 17:259–260, 1976a.
Hall, G. E.Weak phase transitions in asymptotic properties of lattice sums. J. Stat. Phys., 14:521–524, 1976b.
Hall, G. E.Order relations for lattice sums from order relations for theta functions. J. Phys. Chem. Solids, 38:367–373, 1977.
Hardy, G. H.On some definite integral considered by Mellin. Messenger of Mathematics, vol. 49, pp. 85–91, 1919.
Hardy, G. H. and M., Riesz. The General Theory ofDirichlet Series. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, Cambridge, 1915.
Hardy, G. H. and E. M., Wright.An Introduction to the Theory of Numbers, 4th edition. Clarendon, Oxford, 1960.
Harris, F. E. and H. J., Monkhorst.Electronic-structure studies of solids. I. Fourier representation method for Madelung sums. Phys. Rev. B, 2: 4400–4405, 1970.
Hautot, A.A new method for the evaluation of slowly convergent series. J. Math. Phys., 15: 1722–1727, 1974.
Hautot, A.New applications of Poisson's summation formula. J. Phys. A, 8:853–862, 1975.
Heller, W. R. and A., Marcus. A note on the propagation of excitation in an idealized crystal. Phys. Rev., 84:809–813, 1951.
Hioe, F. T.A Green's function for a cubic lattice. J. Math. Phys., 19:1064–1067, 1978.
Hirschhorn, M., F., Garvan, and J. M., Borwein.Cubic analogues of the Jacobian theta function 0(q, z). J. Math. Phys., 19:1064, 1978.
Højendahl, K.K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 16:135, 1938.
Hoskins, C. S., M. L., Glasser, and E. R., Smith.Half-space electrostatic sums. J. Phys. A, 10: 879–884, 1977.
Hove, J. and J. A., Krumhansl.The evaluation of lattice sums for cubic crystals. Phys. Rev., 92: 569–572, 1953.
Hund, F.Versuch einer Ableitung der Gittertypen aus der Vorstellung des isotropen polarisierbaren Ions. Z. Phys., 34:833–857, 1925.
Hund, F.Vergleich der elektrostatischen Energien einiger Ionengitter. Z. Phys., 94: 11–21, 1935.
Huxley, M. N.Exponential sums and lattice points II. Proc. London Math. Soc., 66:279–301, 1993.
Iwata, G.Evaluation of the Watson integral of a face-centered lattice. Nat. Sci. Report, Ochanomizu University, 20:13–18, 1969.
Jacobi, C. G.Fundamenta Nova Theoriae Functionum Ellipticarum. Konigsberg, 1829.
Jacobi, C. G.Gesammelte Werke, vol. 3. Chelsea, New York, 1969.
Jones, D. S.Generalized Functions. McGraw-Hill, New York, 1966.
Jones, J. E.On the determination of molecular fields. III. From crystal measurements and kinetic theory data. Proc. Roy. Soc. London A, 106:709–718, 1924.
Jones, J. E. and B. M., Dent.Cohesion at a crystal surface. Trans. Faraday Soc., 24: 92–108, 1928.
Jones, J. E. and A. E., Ingham.On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. Roy. Soc. London A, 107: 636–653, 1925.
Joyce, G. S.Lattice Green function for the anisotropic face centred cubic lattice. J. Phys. C, 4:L53–L56, 1971.
Joyce, G. S.Lattice Green function for the simple cubic lattice. J. Phys. A, 5:L65–L68, 1972.
Joyce, G. S.On the simple cubic lattice Green function. Phil. Trans. Roy. Soc. London, A273:583–610, 1973.
Joyce, G. S.On the cubic lattice Green functions. Proc. Roy. Soc. London, A455:463–477, 1994.
Joyce, G. S.On the cubic modular transformation and the cubic lattice Green functions. J. Math. A: Math. Gen., 31:5105–5115, 1998.
Joyce, G. S.Singular behaviour of the cubic lattice Green functions and associated integrals. J. Phys. A: Math. Gen., 34:3831–3839, 2001.
Joyce, G. S.Application of Mahler measure theory to the face-centred cubic lattice Green function at the origin and its associated logarithmic integral. J. Phys. A: Math. Theor., 45:285001, 2012.
Joyce, G. S. and R. T., Delves.Exact product forms for the simple cubic lattice Green functions: I. J. Phys. A: Math. Gen., 37:3645–3671, 2004.
Joyce, G. S. and R. T., Delves.Exact product forms for the simple cubic lattice Green functions: II. J. Phys. A: Math. Gen., 37:5417–5447, 2004.
Joyce, G. S., R. T., Delves, and I. J., Zucker.Exact evaluation of the Baxter-Bazhanov Green function. J. Phys. A: Math. Gen., 31:1781–1790, 1998.
Joyce, G. S., R. T., Delves, and I. J., Zucker.Exact evaluation for the anisotropic face-centred and simple cubic lattices. J. Phys. A: Math. Gen., 36: 8661–8672, 2003.
Joyce, G. S. and I. J., Zucker.Evaluation of the Watson integral and associated logarithmic integral for the d-dimensional hypercubic lattice. J. Phys. A, 34: 7349–7354, 2001.
Joyce, G. S. and I. J., Zucker.On the evaluation of generalized Watson integrals. Proc. AMS, 133:71–81, 2004.
Kac, V. G.Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula. Adv. Math., 30:85–136, 1978.
Kanamori, J., T., Moriya, K., Motizuki, and T., Nagamiya. Methods of calculating the crystalline electric field. J. Phys. Soc., 10:93–102, 1956.
Kanemitsu, S., Y., Tanigawa, K., Tsukada, and M., Yoshimoto. Crystal symmetry viewed as zeta symmetry. Chapter 9 in Zeta Functions, Topology and Quantum Physics. Springer, 2005.
Kanemitsu, S. and H., Tsukada. The Legacy ofAlladi Ramakrishnan in the Mathematical Sciences: Crystal Symmetry Viewed as Zeta Symmetry II. Springer, 2010.
Kendall, J.The abnormality of strong electrolytes and the ionization theory of Ghosh. J. Am. Chem. Soc., 44: 717–738, 1922.
Kittel, C.Introduction to Solid State Physics. Wiley, New York, 1953.
Köhler, G.Some eta-identities arising from theta series. Math. Scand., 66: 147–154, 1990.
Kornfeld, H.Die Berechnung elektrostatischer Potentiale und der Energie von Dipol- und Quadrupolgittern. Z. Phys., 22: 27–43, 1924.
Krätzel, E.Bemerkungen zu einem Gitterpunkte. Math. Ann., 179: 90–96, 1969.
Krätzel, E. and W., Nowak. Lattice points in large convex bodies, II. Acta Arith., 62:285–295, 1992.
Krazer, A. and E., Prym. Neue Grundlagen einer Theorie der Allgemeinen Thetafunktionen. Teubner, Leipzig, 1893.
Kummer, E. E.Uber die hypergeometrische Reihe. J. Reine Angew. Math., 15:39–83, 127–172, 1836.
Landau, E.Über eine Aufgabe aus der Theorie der quadratischen Formen. Wien. Sitzungsber., 124: 445–468, 1915.
Landau, E.Zur analytischen Zahlentheorie der definiten quadratischen Formen (über Gitterpunkte in mehrdimensionalen Ellipsoiden). S. B. Preuss. Akad. Wiss., 458–476, 1915.
Landau, E.Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Zeit., 21: 126–132, 1924.
Landau, E.Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Zweite Abhandlung. Math. Zeit., 24:299–310, 1926.
Landau, E.Vorselungen über Zahlentheorie, vol. 2, Part 8, Chapter 6. Chelsea, New York, 1955.
Landauer, R.Electrical conductivity in inhomogeneous media. In Proc.Amer. Inst.Phys. Conf., vol. 40, pp. 2–45, 1978.
Landé, A.Verh. Dtsch. Phys. Ges., 20:217, 1918.
Lin, Y. K.Staggered ice-rule vertex model on the Kagome lattice. J. Phys. A: Math. Gen., 8: 1899–1919, 1975.
Linton, C. M.Lattice sums for the Helmholtz equation. SIAM Review, 52: 630–674, 2010.
Lorentz, H. A.The Theory of Electrons. B. G. Teubner, Leipzig, 1909. Reprint: Dover, New York, 1952.
Lorenz, L.Bidrag tiltalienes theori. Tidsskrift Math., 1:97–114, 1871.
Lorenz, L.Wiedemannsche Ann., 11:70, 1880.
Mackenzie, J. K.General relation between lattice sums. J. Chem. Phys., 26:1769, 1957.
Mackenzie, J. K.A simple formula for evaluating the Madelung constant of a NaCl-type crystal. Can. J. Phys., 35: 500–501, 1957.
Madelung, E.Das elektrische Feld in Systemen von regelmäßig angeordneten Punktladungen. Phys. Z., 19: 524–533, 1918.
Madras, N., C. E., Soteros, S. G., Whittington, et al. The free energy of a collapsing branched polymer. J. Phys. A: Math. Gen., 23: 5327–5350, 1990.
Maradudin, A. A., E. W., Montroll, G. H., Weiss, R., Herman, and W. H., Miles.Green's Functions for Monatomic Simple Cubic Lattices. Académie Royale de Belgique, 1960.
Maradudin, A. A. and G. H., Weiss.A method for evaluating lattice sums. Can. J. Phys., 37: 170–173, 1959.
Martin, Y. and K., Ono. Eta-quotients and elliptic curves. Proc. Amer. Math. Soc., 125:3169–3176, 1997.
McCrea, W. H.A problem on random paths. Math. Gazette, 20:311–317, 1936.
McCrea, W. H. and F. J. W., Whipple. Random paths in two and three dimensions. Proc. Roy. Soc. Edinburgh, 60:281–298, 1940.
McKean, P. and V., Moll. Elliptic Curves: Function Theory, Geometry, Arithmetic. Cambridge University Press, New York, 1997.
McNeil, M. B.Electrostatic energies calculated by plane-wise summation. J. Phys. C, 3: 2020–2021, 1970.
McPhedran, R. C., L. C., Botten, N. P., Nicorovici, and I. J., Zucker.Systematic investigation of two-dimensional static array sums. J. Math. Phys., 48:033501, 2007.
McPhedran, R. C., L. C., Botten, N. P., Nicorovici, and I. J., Zucker.On the Riemann property of angular lattice sums and the one-dimensional limit of two-dimensional lattice sums. Proc. Roy. Soc. A, 464:3327–3352, 2008.
McPhedran, R. C., L. C., Botten, D. J., Williamson, and N. A., Nicorovici.The Riemann hypothesis and the zero distribution of angular lattice sums. Proc. Roy. Soc. London A, 467: 2462–2478, 2011.
McPhedran, R. C., G. H., Smith, N. A., Nicorovici, and L. C., Botten.Distributive and analytic properties of lattice sums. J. Math. Phys., 45: 2560–2578, 2004.
Miller, J. Jr. Lie Theory and Special Functions. Academic Press, New York, 1968.
Misra, R.On the stability of crystal lattices. II. Proc. Camb. Phil. Soc., 36: 173–182, 1940.
Mityushev, V. V.Transport properties of doubly-periodic arrays of circular cylinders. Z. Angew. Math. Mech., 77: 115–120, 1997.
Mityushev, V. V. and P. M., Adler.Longitudinal permeability of spatially periodic rectangular arrays of circular cylinders. I. A single cylinder in the unit cell. Z. Angew. Math. Mech., 82: 335–345, 2002.
Molière, G.Z. Kristallogr., 101:383, 1939.
Monien, H.Gaussian quadrature for sums: a rapidly convergent summation scheme. Math. Comp., 79: 857–869, 2010.
Montaldi, E.The evaluation of Green's functions for cubic lattices, revisited. Lettera al Nuovo Cimento, 30:403–409, 1981.
Montroll, E. W.Theory of the vibration of simple cubic lattices with nearest neighbor interaction. In Proc. 3rd Berkeley Symp. on Math. Stats. and Probability, vol.3, pp. 209–246, 1956.
Moroz, A.On the computation of the free-space doubly-periodic Green's function of the three-dimensional Helmholtz equation. J. Electromagn. Waves Appl., 16: 457–465, 2002.
Mossotti, O. F.Memorie di Matematica e di Fisica della Società Italiana delle Scienze Residente inModena, 24:49–74, 1850.
Movchan, A. B., N. A., Nicorovici, and R. C., McPhedran.Green's tensors and lattice sums for elastostatics and elastodynamics. Proc. Roy. Soc. London A, 453: 643–662, 1997.
Naor, P.Linear dependence of lattice sums. Z. Kristallogr. Kristallgeom., 110: 112–126, 1958.
Nicholson, M. M.Surface tension in ionic crystals. Proc. Roy. Soc. London A, 228:490–510, 1955.
Nicorovici, N. A., C. G., Poulton, and R. C., McPhedran.Analytical results for a class of sums involving Bessel functions and square arrays. J. Math. Phys., 37: 2043–2052, 1996.
Nijboer, B. R. A. and F. W., de Wette. On the calculation of lattice sums. Physica (Utrecht), 23: 309–321, 1957.
Nijboer, B. R. A. and F. W., de Wette. The internal field in dipole lattices. Physica (Utrecht), 24: 422–431, 1958.
Novâk, B.Über eine Methode der Ω-abschätzungen. Czech. Math. J., 21:257–279, 1971.
Novâk, B.New proofs of a theorem of Edmund Landau. Acta Arith., 31:101–105, 1976.
Olver, F. W. J., D. W., Lozier, R. F., Boisvert, and C. W., Clark (eds.). NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.
Ornstein, L. S. and F., Zernike. Magnetische eigenschappen van cubische Kristalnetten. Proc. K. Akad. Wet. Amst., 21:911, 1918.
Peng, H. W. and S. C., Powers.On the stability of crystal lattices. VIII. Stability of rhombohedral Bravais lattices. Proc. Camb. Phil. Soc., 38:67–81, 1942.
Perrins, W. T., D. R., McKenzie, and R. C., McPhedran.Transport properties of regular arrays of cylinders. Proc. Roy. Soc. London A, 369:207–225, 1979.
Peters, M.The Diophantine equation xy + yz + xz = n and indecomposable binary quadratic forms. Exp. Math., 13:273–274, 2004.
Petkovsek, M., H., Wilf, and D., Zeilberger. A = B.A. K. Peters, Wellesley, 1996.
Placzek, G., B. R. A., Nijboer, and L., van Hove. Effect of short wavelength interference on neutron scattering by dense systems of heavy nuclei. Phys. Rev., 82:392–403, 1951.
Pölya, G.Uber eine Aufgabe der Wahrscheinlichkeitstheorie betreffend die Irrfahrt im Strassennetz. Math. Ann., 84:149–60, 1921.
Poulton, C. G., L. C., Botten, R. C., McPhedran, and A. B., Movchan.Source-neutral Green's functions for periodic problems and their equivalents in electromagnetism. Proc. Roy. Soc. London A, 455: 1107–1123, 1999.
Prudnikov, A. P., Y. A., Brychkov, and O. I., Marichev.Integrals and Series. 1. Elementary Functions. Gordon and Breach, New York, 1986.
Ramanujan, S.Modular equations and approximations to π. Quart. J. Math., 45: 350–372, 1914.
Ramanujan, S.On certain arithmetical functions. Trans. Camb. Phil. Soc., 22: 159–184, 1916.
Rashid, M.A. Lattice Green's functions for cubic lattices. J. Math. Phys., 21: 2549–2552, 1980.
Rayleigh, Lord. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag., 34: 481–502, 1892.
Redlack, A. and J., Grindlay. The electrostatic potential in a finite ionic crystal. Can. J. Phys, 50: 2815–2825, 1972.
Redlack, A. and J., Grindlay. Coulombic potential lattice sums. J. Phys. Chem. Solid, 36:73–82, 1975.
Riesz, M.Sur un théorème de la moyenne et ses applications. Acta Univ. Hungaricae Franc.-Jos., 1: 114–126, 1923.
Rodriguez-Villegas, F.Modular Mahler measures I. In Topics in Number Theory, pp. 17–48. Kluwer, Dordrecht, 1999.
Rogers, M.New5F4 hypergeometric transformations, three-variable Mahlermeasures, and formulas for 1/π. Ramanujan Journal, 18:327–340, 2009.
Rogers, M.Hypergeometric formulas for lattice sums and Mahler measures. IMRN, 17: 4027–4058, 2011.
Rogers, M., J. G., Wan, and I. J., Zucker.Moments of elliptical integrals and critical L-values. Preprint: arXiv:1303.2259, 2013.
Rogers, M. and W., Zudilin. From L-series of elliptic curves to Mahler measures. Compositio Math., 148: 385–414, 2012.
Rosengren, A.On the number of spanning trees for the 3D simple cubic lattice. J. Phys. A: Math. Gen., 20:L923–L927, 1987.
Rudge, W. E.Generalized Ewald potential problem. Phys. Rev., 181:1020–1024, 1969.
Sakamoto, Y.Madelung constants of simple crystals expressed in terms of Born's basic potentials of 15 figures. J. Chem. Phys., 28:164–165, 1958.
Sakamoto, Y.J. Sci. Hiroshima Univ., 27:111, 1964.
Sakamoto, Y.J. Sci. Hiroshima Univ., 38: 239–270, 1974.
Schoeneberg, B.Elliptic Modular Functions. Springer-Verlag, New York, 1974.
Selberg, A. and S., Chowla. On Epstein's zeta function (I). Proc. Nat. Acad. Sci. USA, 35: 371–374, 1949.
Selberg, A. and S., Chowla. On Epstein's zeta-function. J. Reine Angew. Math., 227: 86–110, 1967.
Sherman, J.Crystal energies of ionic compounds and thermochemical applications. Chem. Rev., 11:93–170, 1932.
Sholl, C. A.The calculation of electrostatic energies of metals by plane-wise summation. Proc. Phys. Soc., 92:434–445, 1967.
Shrock, R. and F. Y., Wu.Spanning trees on graphs and lattices in d-dimensions. J. Phys. A: Math. Gen., 33:3881–3902, 2000.
Smith, H. J. S.Report on the Theory of Numbers. Chelsea, New York, 1865.
Srivastava, H. M. and J., Choi. Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht, 2001.
Stepanets, G. F. and A. A., Lopatkin.Russ. J. Phys. Chem. (Engl. Transl.), 41: 1481–1484, 1967.
Stewart, I.How to Cut a Cake and Other Mathematical Conundrums. Oxford University Press, New York, 2006.
Takahasi, U. and Y., Sakamoto. J. Sci. Hiroshima Univ., 24:118–130, 1960.
Taylor, P. R.On the Riemann zeta function. Quart. J. Oxford, 16:1–21, 1945.
Temperley, H. N. V.Combinatorics. In Proc. Oxford Conf. on Combinatorial Mathematics, pp. 356–357, 1972.
Tikson, M.Tabulation of an integral arising in the theory of cooperative phenomena. J. Res. Nat. Bur. Stds., 50:177–178, 1953.
Titchmarsh, E. C.The Theory ofthe Riemann Zeta Function. Oxford University Press, London and New York, 1951.
Topping, J.On the mutual potential energy of a plane network of doublets. Proc. Roy. Soc. London A, 114:67–72, 1927.
Tosi, M. P.Cohesion of ionic solids in the Born model. Solid State Phys., 16:1, 1964.
Tyagi, S.New series representation for the Madelung constant. Progr. Theor. Phys., 114: 517–521, 2005.
van der Hoff, B. M. E. and C. L., Benson.A method for the evaluation of some lattice sums occurring in calculations of physical properties of crystals. Can. J. Phys., 31:1087–1094, 1953.
van Pepye, W. F. ZürTheorie der magnetischen anisotropic kubischer Kristalle beim absoluten Nullpunkt. Physica, 5:465–82, 1938.
Waddington, T. C.Lattice energies and their significance in inorganic chemistry. Adv. Inorg. Chem. Radiochem., 1:157, 1959.
Walfisz, A.Über Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Zeit., 19: 300–307, 1924.
Walfisz, A.Convergence abscissae of certain Dirichlet series. Akad. Nauk Gruzin. SSR. Trudy Tbiliss. Mat. Inst. Razmadze, 22:33–75, 1956.
Wan, J. G.Moments of products of elliptic integrals. Adv. Appl. Math., 48:121–141, 2012.
Watson, G. N.The expansion of products of hypergeometric functions. Quart. J. Math., 39: 27–51, 1908.
Watson, G. N.A Treatise on the Theory ofBessel Functions. Cambridge University Press, Cambridge, 1922.
Watson, G. N.Three triple integrals. Quart. J. Math. Oxford, 10:266–276, 1939.
Whittaker, E. T. and G. N., Watson.A Course ofModern Analysis, 4th edition. Cambridge University Press, Cambridge, 1946.
Wigner, E. P.On the interaction of electrons in metals. Phys. Rev., 46:1002–1011, 1934.
Wilton, J. R.A series of Bessel functions connected with the theory of lattice points. Proc. London Math. Soc., 29:168–188, 1928.
Wu, F. Y.Number of spanning trees on a lattice. J. Phys. A: Math. Gen., 10:L113–115, 1977.
Y., Zhou. Legendre functions, spherical rotations, and multiple elliptic integrals. arXiv:1301.1735 [math. CA], preprint, 2013.
Zucker, I. J.Exact results for some lattice sums in 2, 4, 6 and 8 dimensions. J. Phys. A, 7: 1568–1575, 1974.
Zucker, I. J.Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures. J. Phys. A, 8:1734–1745, 1975.
Zucker, I. J.New Jacobian θ functions and the evaluation of lattice sums. J. Math. Phys., 16: 2189–2191, 1975.
Zucker, I. J.Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants. J. Phys. A: Math. Gen., 9: 499–505, 1976.
Zucker, I. J.The evaluation in terms of Γ-functions of the periods of elliptic curves admitting complex multiplication. Math. Proc. Camb. Phil. Soc., 82: 111–118, 1977.
Zucker, I. J.The summation of series of hyperbolic functions. SIAM J. Math. Anal., 10: 192–206, 1979.
Zucker, I. J.Some infinite series of exponential and hyperbolic functions. SIAM J. Math. Anal., 15:406–413, 1984.
Zucker, I. J.Further relations amongst infinite series and products II. The evaluation of 3-dimensional lattice sums. J. Phys. A, 23:117–132, 1990.
Zucker, I. J.Stability of the Wigner electron crystal on the perovskite lattice. J. Phys: Condens. Matter, 3:2595–2596, 1991.
Zucker, I. J.70 years of the Watson integrals. J. Stat. Phys., 143: 591–612, 2011.
Zucker, I. J. and R. C., McPhedran.Problem 11294. Amer. Math. Monthly, 114:452, 2007.
Zucker, I. J. and M. M., Robertson.Some properties of Dirichlet L-series. J. Phys. A, 9: 1207–1214, 1976.
Zucker, I. J. and M. M., Robertson.Systematic approach to the evaluation of. J. Phys. A, 9: 1215–1225, 1976.
Zucker, I. J. and M. M., Robertson.Further aspects of the evaluation of. Math. Proc. Camb. Phil. Soc., 95: 5–13, 1984.
Zvengrowski, P. and F., Saidak. On the modulus of the Riemann zeta function in the critical strip. Math. Slovaca, 53: 145–272, 2003.