Published online by Cambridge University Press: 05 September 2013
Charles Stein shocked the statistical world in 1955 with his proof that maximum likelihood estimation methods for Gaussian models, in common use for more than a century, were inadmissible beyond simple one- or two-dimensional situations. These methods are still in use, for good reasons, but Stein-type estimators have pointed the way toward a radically different empirical Bayes approach to high-dimensional statistical inference. We will be using empirical Bayes ideas for estimation, testing, and prediction, beginning here with their path-breaking appearance in the James—Stein formulation.
Although the connection was not immediately recognized, Stein's work was half of an energetic post-war empirical Bayes initiative. The other half, explicitly named “empirical Bayes” by its principal developer Herbert Robbins, was less shocking but more general in scope, aiming to show how frequentists could achieve full Bayesian efficiency in large-scale parallel studies. Large-scale parallel studies were rare in the 1950s, however, and Robbins' theory did not have the applied impact of Stein's shrinkage estimators, which are useful in much smaller data sets.
All of this has changed in the 21st century. New scientific technologies, epitomized by the microarray, routinely produce studies of thousands of parallel cases — we will see several such studies in what follows — well-suited for the Robbins point of view. That view predominates in the succeeding chapters, though not explicitly invoking Robbins' methodology until the very last section of the book.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.