Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T15:18:39.934Z Has data issue: false hasContentIssue false

22 - Rockfall characterization and modeling

Published online by Cambridge University Press:  05 May 2013

John J. Clague
Affiliation:
Simon Fraser University, British Columbia
Douglas Stead
Affiliation:
Simon Fraser University, British Columbia
Get access

Summary

Abstract

Rockfalls pose a significant threat to life and property, although significant advances in rockfall protection have been made in the past decade. Determining rockfall processes and related hazard, however, remains a difficult task because of the complexity and intrinsic stochastic nature of the physics involved. The appropriate application of rockfall modeling tools requires a thorough understanding of their logic, assumptions, advantages, and limitations, as well as careful assessment of rockfall sources, block and slope characteristics, and model calibration data. This chapter provides a discussion of major issues in rockfall definition, characterization, and modeling, with special emphasis on rockfall runout. Our discussion is supported by modeling examples carried out using the 3D simulator Hy-STONE. Different modeling approaches are critically evaluated, including the empirical shadow angle method, and 2D and 3D mathematical models. Application of the shadow angle concept requires the user to be aware of several issues related to definition of the shadow angle and the effects of morphological constraints. Most limitations of empirical approaches can be overcome with mathematical models that account for slope morphology and roughness, energy dissipation at impact or by rolling, and the effects of vegetation, block fragmentation, and block–structure interaction. We discuss different modeling approaches and calibration problems and the important dependency of model parameters and results on correct characterization of the topography.

Type
Chapter
Information
Landslides
Types, Mechanisms and Modeling
, pp. 267 - 281
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×