Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-28T11:01:59.361Z Has data issue: false hasContentIssue false

21 - The Gödel Phenomenon in Mathematics: A Modern View

Published online by Cambridge University Press:  07 September 2011

Avi Wigderson
Affiliation:
New Jersey, United States
Matthias Baaz
Affiliation:
Technische Universität Wien, Austria
Christos H. Papadimitriou
Affiliation:
University of California, Berkeley
Hilary W. Putnam
Affiliation:
Harvard University, Massachusetts
Dana S. Scott
Affiliation:
Carnegie Mellon University, Pennsylvania
Charles L. Harper, Jr
Affiliation:
Vision-Five.com Consulting, United States
Get access

Summary

What are the limits of mathematical knowledge? The purpose of this chapter is to introduce the main concepts from computational complexity theory that are relevant to algorithmic accessibility of mathematical understanding. In particular, I'll discuss the P versus NP problem, its possible impact on research in mathematics, and how interested Gödel himself was in this computational viewpoint.

Much of the technical material will be necessarily sketchy. The interested reader is referred to the standard texts on computational complexity theory, primarily Arora and Barak (2009), Goldreich (2008), Papadimitriou (1994a), and Sipser (1997).

Overview

Hilbert believed that all mathematical truths are knowable, and he set the threshold for mathematical knowledge at the ability to devise a “mechanical procedure.” This dream was shattered by Gödel and Turing. Gödel's incompleteness theorem exhibited true statements that can never be proved. Turing formalized Hilbert's notion of computation and of finite algorithms (thereby initiating the computer revolution) and proved that some problems are undecidable – they have no such algorithms.

Though the first examples of such unknowables seemed somewhat unnatural, more and more natural examples of unprovable or undecidable problems were found in different areas of mathematics. The independence of the continuum hypothesis and the undecidability of Diophantine equations are famous early examples. This became known as the Gödel phenomenon, and its effect on the practice of mathematics has been debated since.

Type
Chapter
Information
Kurt Gödel and the Foundations of Mathematics
Horizons of Truth
, pp. 475 - 508
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×