Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T16:23:41.876Z Has data issue: false hasContentIssue false

10 - Knots and transcendentals

Published online by Cambridge University Press:  04 August 2010

Dirk Kreimer
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

In this chapter we describe results which were obtained recently [Kreimer 1995, Broadhurst and Kreimer 1995, Broadhurst et al. 1996a, Broadhurst et al. 1996b]. In these publications a fascinating connection between field theory, number theory, and knot theory emerges. The starting point of this connection is the results described in Chapters 4 and 5, connecting topologically simple graphs with the absence of knots in their link diagrams, and with the corresponding absence of transcendentals in their counterterms, and the results reported in Chapters 7 and 8, connecting ζ(2l – 3) to (2, 2l – 3) torus knots.

Those previous chapters suggest that the transcendental coefficients in the expansion of regularized counterterms are related to the topology of the diagram. This relation should be via knot theory, which began to emerge in Chapters 7 and 8. As we will see, field theory initiated the invention of a knot-to-number dictionary, which in turn spurred new findings in number theory and opened a new route for calculations in field theory.

We will comment in detail on the four publications mentioned above, following the lines of [Kreimer 1997a]. Each of them gives new insights and support to the connection between renormalization, knot theory and number theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Knots and transcendentals
  • Dirk Kreimer, Johannes Gutenberg Universität Mainz, Germany
  • Book: Knots and Feynman Diagrams
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564024.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Knots and transcendentals
  • Dirk Kreimer, Johannes Gutenberg Universität Mainz, Germany
  • Book: Knots and Feynman Diagrams
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564024.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Knots and transcendentals
  • Dirk Kreimer, Johannes Gutenberg Universität Mainz, Germany
  • Book: Knots and Feynman Diagrams
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564024.010
Available formats
×