Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:32:06.520Z Has data issue: false hasContentIssue false

10 - The Activation of Skeletal Muscle

Published online by Cambridge University Press:  07 November 2020

Christopher L.-H. Huang
Affiliation:
University of Cambridge
Get access

Summary

Vertebrate skeletal muscle has a negative, -90 mV, resting potential arising from Na+-K+-ATPase-generated transmembrane ionic gradients and inwardly rectifying K+, and Cl- membrane conductances. Three-electrode and loose-patch voltage-clamp experiments demonstrated that, as in nerve, muscle action potentials involve voltage-dependent Na+ followed by K+ channel activation. An additional transverse tubular action potential contributes a discrete and separable delayed component to the recorded voltage change. It is triggered by low-frequency components of the surface-membrane action-potential leaving high-frequency components to ensure rapid propagation of the surface wave. Tubular Cl- conductances decrease in both fast and slow twitch muscle and ATP-dependent K+ channel conductances increase in fast twitch muscle, in early and prolonged exercise. Mathematical modelling demonstrates that these respectively enhance and reduce tubular excitability and its triggering of contractile activity. They potentially furnish enhancing and fatiguing mechanisms for muscle activation and for clinical myotonia congenita.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×