Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T13:26:45.657Z Has data issue: false hasContentIssue false

6 - Retinoic acid during limb regeneration

Published online by Cambridge University Press:  11 August 2009

M. Maden
Affiliation:
MRC Centre for Developmental Neurobiology, 4th floor New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
Manuel Marí-Beffa
Affiliation:
Universidad de Málaga, Spain
Jennifer Knight
Affiliation:
University of Colorado, Boulder
Get access

Summary

OBJECTIVE OF THE EXPERIMENT The objective of the experiment is to demonstrate the existence of the phenomenon known as positional information. Within an organ such as the regenerating limb, the administration of retinoic acid (RA) at different doses can change this property and induce the regeneration of extra limb segments. This experiment is an excellent introduction to this basic principle in developmental biology.

DEGREE OF DIFFICULTY Easy. The experiment requires the limbs of anaesthetised axolotl larvae to be amputated with a razor blade or scissors at different levels, followed by the application of a powder to the water in which they live. After 4 weeks the regenerated limbs are stained as whole mounts for cartilage to reveal the regenerated structures.

INTRODUCTION

Urodeles (tailed amphibians) have the remarkable ability to regenerate their limbs throughout life, even as adults. Wherever a limb is amputated, the precise parts that were removed are replaced by a series of well-described processes. Firstly, the wound rapidly heals over by epithelial migration and a thickened epithelial cap appears over the stump (Figure 6.1a). Secondly, the cells of the tissues at the amputation plane (muscle, cartilage, nerve and connective tissue) dedifferentiate and return to a single-celled, embryonic state (Figure 6.1b). Thirdly, these dedifferentiated cells begin to proliferate and together form a conical structure at the tip of the stump, called a blastema (Figure 6.1c). Fourthly, as the blastema elongates, the structures of the limb that were amputated begin to redifferentiate in a proximal to distal direction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chambon, P. (1996). A decade of molecular biology of retinoic acid receptors. FASEB J., 10, 940–54CrossRefGoogle ScholarPubMed
da Silva, S. M., Gates, P. B., and Brockes, J. P. (2002). The newt orthologue CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev. Cell, 3, 547–55CrossRefGoogle Scholar
Gardiner, D. M., Blumberg, B., Komine, Y., and Braynt, S. V. (1995). Regulation of HoxA expression in developing and regenerating axolotl limbs. Development, 121, 1731–41Google ScholarPubMed
Jangir, O. P., and Niazi, I. A. (1978). Stage dependent effects of vitamin A excess on limbs during ontogenesis and regeneration in tadpoles of the toad Bufo melanosticus (Schneider). Indian J. Exp. Biol., 16, 438–45Google Scholar
Keeble, S., and Maden, M. (1989). The relationship among retinoid structure, affinity for retinoic acid-binding protein, and ability to respecify pattern in the regenerating limb. Dev. Biol., 132, 26–34CrossRefGoogle Scholar
Koussoulakos, S., Kiortsis, V., and Anton, H. J. (1986). Vitamin A induces dorsoventral duplications in regenerating Urodele limbs. IRCS Med. Sci., 14, 1093–4Google Scholar
Koussoulakos, S., Sharma, K. K., and Anton, H. J. (1988). Vitamin A induced bilateral asymmetries in Triturus forelimb regenerates. Biol. Struct. Morphog., 1, 43–8Google ScholarPubMed
Lheureux, E., Thoms, S. D., and Carey, F. (1986). The effects of two retinoids in limb regeneration in Pleurodeles waltl and Triturus vulgaris. J. Embryol. exp. Morph., 92, 165–82Google ScholarPubMed
Maden, M. (1982). Vitamin A and pattern formation in the regenerating limb. Nature, 295, 672–5CrossRefGoogle ScholarPubMed
Maden, M. (1983a). The effect of vitamin A on the regenerating axolotl limb. J. Embryol. exp. Morph., 77, 273–95Google Scholar
Maden, M. (1983b). The effect of vitamin A on limb regeneration in Rana temporaria. Dev. Biol., 98, 409–16CrossRefGoogle Scholar
Niazi, I. A., and Saxena, S. (1978). Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess Vitamin A. Folia Biol. (Krakow), 26, 3–8Google ScholarPubMed
Niazi, I. A., Pescitelli, M. J., and Stocum, D. L. (1985). Stage-dependent effects of retinoic acid on regenerating Urodele limbs. Roux's Arch. Dev. Biol., 194, 355–63CrossRefGoogle Scholar
Pecorino, L. T., Entwistle, A., and Brocker, J. P. (1996). Activation of a single retinoic acid receptor isoforms mediates proximodistal respecification. Current Biol., 6, 563–9CrossRefGoogle ScholarPubMed
Scadding, S. R., and Maden, M. (1986). Comparison of the effects of vitamin A on limb development and regeneration in tadpoles of Xenopus laevis. J. Embryol. Exp. Morph., 91, 55–63Google ScholarPubMed
Sharma, K. K., and Niazi, I. A. (1979). Regeneration induced in the forelimbs by treatment with vitamin A in the froglets of Rana breviceps. Experientia, 35, 1571–2CrossRefGoogle ScholarPubMed
Sharma, K. K., and Anton, H. J. (1986). Biochemical and ultrastructural studies on vitamin A induced proximalization of limb regeneration in axolotl. In Progress in Developmental Biology. Part A, ed. H. C. Slavkin, pp. 105–8. New York: Alan R. Liss Inc
Thoms, S. D., and Stocum, D. L. (1984). Retinoic acid-induced pattern duplication in regenerating Urodele limbs. Dev. Biol., 103, 319–28CrossRefGoogle ScholarPubMed
Torok, M. A., Gardiner, D. M., Shubin, N. H., and Bryant, S. V. (1998). Expression of HoxD gnes in developing and regenerating axolotl limbs. Dev. Biol., 200, 225–33CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Retinoic acid during limb regeneration
    • By M. Maden, MRC Centre for Developmental Neurobiology, 4th floor New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
  • Edited by Manuel Marí-Beffa, Universidad de Málaga, Spain, Jennifer Knight, University of Colorado, Boulder
  • Book: Key Experiments in Practical Developmental Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546204.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Retinoic acid during limb regeneration
    • By M. Maden, MRC Centre for Developmental Neurobiology, 4th floor New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
  • Edited by Manuel Marí-Beffa, Universidad de Málaga, Spain, Jennifer Knight, University of Colorado, Boulder
  • Book: Key Experiments in Practical Developmental Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546204.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Retinoic acid during limb regeneration
    • By M. Maden, MRC Centre for Developmental Neurobiology, 4th floor New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
  • Edited by Manuel Marí-Beffa, Universidad de Málaga, Spain, Jennifer Knight, University of Colorado, Boulder
  • Book: Key Experiments in Practical Developmental Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546204.008
Available formats
×