Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T05:05:35.777Z Has data issue: false hasContentIssue false

19 - Bicoid and Dorsal: Two transcriptions factor gradients which specify cell fates in the early Drosophila embryo

Published online by Cambridge University Press:  11 August 2009

S. Roth
Affiliation:
Institut für Entwicklungsbiologie, Universität zu Köln, Gyrhofstr. 17, 50923 Köln, Germany
Manuel Marí-Beffa
Affiliation:
Universidad de Málaga, Spain
Jennifer Knight
Affiliation:
University of Colorado, Boulder
Get access

Summary

OBJECTIVE OF THE EXPERIMENT The early Drosophila embryo is patterned by two types of morphogen gradients which are organized by maternally expressed genes. Intracellular morphogens spread within the egg cytoplasm from mRNA sources that are tightly localized to the anterior or posterior egg cortex. Extracellular morphogens spread within the extraembryonic space (perivitelline space) surrounding the embryo and depend on localized cues within the eggshell or extracellular matrix. bicoid, an intracellular morphogen, is required to specify the head and thorax of the embryo. Spätzle, an extracellular morphogen, activates the Toll receptor at the surface of the embryo, ultimately leading to a concentration gradient of the Dorsal protein, which is required to establish the dorsoventral axis of the embryo.

The following experiments explore the morphogen concept by showing how changes in concentrations of the transcription factors Bicoid and Dorsal affect the cell fates of the early embryo. Alterations of cell fates in mutant as compared to wild-type embryos will be monitored by looking at gastrulation and cuticle patterns. The observed shifts in cell fates will be correlated to the expression of zygotic genes which are targets of concentration-dependent activation and/or repression by Bicoid or Dorsal. Together, these experiments should provide an understanding of how each gradient specifies a polar sequence of stripe-like expression domains, which in turn determine the pattern of cell fates along the two major body axes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K. V., Jürgens, G., and Nüsslein-Volhard, C. (1985). Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. Cell, 42, 779–89CrossRefGoogle ScholarPubMed
Armstrong, N. J., Steinbeisser, H., Prothmann, C., DeLotto, R., and Rupp, R. A. (1998). Conserved Spätzle/Toll signalling in dorsoventral patterning of Xenopus embryos. Mech. Dev., 71, 99–105CrossRefGoogle Scholar
Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M., and Nüsslein-Volhard, C. (1988). The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J., 7, 1749–56Google ScholarPubMed
Burz, D. S., Rivera-Pomar, R., Jäckle, H., and Hanes, S. D. (1998). Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J., 17, 5998–6009CrossRefGoogle ScholarPubMed
Busturia, A., and Lawrence, P. A. (1994). Regulation of cell number in Drosophila. Nature, 370, 561–3CrossRefGoogle ScholarPubMed
Casanova, J., Furriols, M., McCormick, C. A., and Struhl, G. (1995). Similarities between trunk and spätzle, putative extracellular ligands specifying body pattern in Drosophila. Genes Dev., 9, 2539–44CrossRefGoogle ScholarPubMed
Chen, G., Handel, K., and Roth, S. (2000). The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: Dynamics of early dorsoventral patterning in a short-germ beetle. Development, 127, 5145–56Google Scholar
Crick, F. (1970). Diffusion in embryogenesis. Nature, 5231, 420–2CrossRefGoogle Scholar
Driever, W. (2004). The bicoid morphogen papers (II). Account from Wolfgang Driever. Cell, 5116, 57–59
Driever, W., and Nüsslein-Volhard, C. (1988a). The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell, 54, 95–104CrossRefGoogle Scholar
Driever, W., and Nüsslein-Volhard, C. (1988b). A gradient of bicoid protein in Drosophila embryos. Cell, 54, 83–93CrossRefGoogle Scholar
Driever, W., and Nüsslein-Volhard, C. (1989). The Bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature, 337, 138–43CrossRefGoogle ScholarPubMed
Driever, W., Thoma, G., and Nüsslein-Volhard, C. (1989). Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature, 340, 363–7CrossRefGoogle ScholarPubMed
Ephrussi, A., and Johnston, St. D. (2004). Seeing is believing: The bicoid morphogen gradient matures. Cell. 116, 143–52CrossRefGoogle ScholarPubMed
Finkelstein, R., and Perrimon, N. (1990). The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature, 346, 485–8CrossRefGoogle ScholarPubMed
Freeman, M., and Gurdon, J. B. (2002). Regulatory principles of developmental signaling. Annu. Rev. Cell Dev. Biol., 18, 515–39CrossRefGoogle ScholarPubMed
Friedman, R., and Hughes, A. L. (2002). Molecular evolution of the NF-kappaB signaling system. Immunogenetics, 53, 964–74Google ScholarPubMed
Frohnhöfer, H. G., and Nüsslein-Volhard, C. (1986). Organisation of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature, 324, 120–5CrossRefGoogle Scholar
Frohnhöfer, H. G., and Nüsslein-Volhard, C. (1987). Maternal genes required for the anterior localisation of bicoid activity in the embryo of Drosophila. Genes Dev., 1, 880–90CrossRefGoogle Scholar
Gao, Q., and Finkelstein, R. (1998). Targeting gene expression to the head: The Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development, 125, 4185–93Google ScholarPubMed
Gierer, A., and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12, 30–9CrossRefGoogle ScholarPubMed
Greenspan, R. J. (1997). Fly Pushing. The Theory and Practice of Drosophila Genetics. New York: Cold Spring Harbor Laboratory Press
Gurdon, J. B., and Bourillot, P. Y. (2001). Morphogen gradient interpretation. Nature, 413, 797–803CrossRefGoogle ScholarPubMed
Hashimoto, C., Hudson, K. L., and Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell, 52, 269–79CrossRefGoogle ScholarPubMed
Hashimoto, C., Gerttula, S., and Anderson, K. V. (1991). Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: Importance of transmembrane signaling for dorsal-ventral pattern formation. Development, 111, 1021–8Google ScholarPubMed
Hiromi, Y., Kuroiwa, A., and Gehring, W. J. (1985). Control elements of the Drosophila segmentation gene fushi tarazu. Cell, 43, 603–13CrossRefGoogle ScholarPubMed
Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. (1999). Phylogenetic perspective in innate immunity. Science, 284, 1313–8CrossRefGoogle Scholar
Houchmandzadeh, B., Wieschaus, E., and Leibler, S. (2002). Establishment of developmental precision and proportions in the early Drosophila embryo. Nature, 415, 798–802CrossRefGoogle ScholarPubMed
Jackson, P. D., and Hoffmann, F. M. (1994). Embryonic expression patterns of the Drosophila decapentaplegic gene: Separate regulatory elements control blastoderm expression and lateral ectodermal expression. Dev. Dyn., 199, 28–44CrossRefGoogle ScholarPubMed
Jiang, J., Kosman, D., Ip, Y. T., and Levine, M. (1991). The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–91CrossRefGoogle ScholarPubMed
Jiang, J., and Levine, M. (1993). Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell, 72, 741–52CrossRefGoogle ScholarPubMed
Jiang, J., Cai, H., Zhou, Q., and Levine, M. (1993). Conversion of a dorsal-dependent silencer into an enhancer: Evidence for dorsal corepressors. EMBO J., 12, 3201–9Google ScholarPubMed
Kirov, N., Zhelnin, L., Shah, J., and Rushlow, C. (1993). Conversion of a silencer into an enhancer: Evidence for a co-repressor in dorsal-mediated repression in Drosophila. EMBO J., 12, 3193–9Google ScholarPubMed
Lecuit, T., Brook, W. J., Ng, M., Calleja, M., Sun, H., and Cohen, S. M. (1996). Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature, 381, 387–93CrossRefGoogle ScholarPubMed
Lewis, J., Slack, J. M., and Wolpert, L. (1977). Thresholds in development. J. Theor. Biol., 65, 579–90CrossRefGoogle ScholarPubMed
Ma, X., Yuan, D., Diepold, K., Scarborough, T., and Ma, J. (1996). The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development, 122, 1195–06Google ScholarPubMed
Markstein, M., Markstein, P., Markstein, V., and Levine, M. S. (2002). Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl. Acad. Sci. USA, 99, 763–8CrossRefGoogle ScholarPubMed
Meinhardt, H. (1982). Models of Biological Pattern Formation. London: Academic Press
Morisato, D., and Anderson, K. V. (1994). The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell, 76, 677–88CrossRefGoogle ScholarPubMed
Morisato, D., and Anderson, K. V. (1995). Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet., 29, 371–99CrossRefGoogle ScholarPubMed
Namba, R., Pazdera, T. M., Cerrone, R. L., and Minden, J. S. (1997). Drosophila embryonic pattern repair: How embryos respond to bicoid dosage alteration. Development, 124, 1393–403Google ScholarPubMed
Nellen, D., Burke, R., Struhl, G., and Basler, K. (1996). Direct and long-range action of a DPP morphogen gradient. Cell, 85, 357–68CrossRefGoogle ScholarPubMed
Niessing, D., Blanke, S., and Jäckle, H. (2002). Bicoid associates with the 5ʹ-cap-bound complex of caudal mRNA and represses translation. Genes Dev., 16, 2576–82CrossRefGoogle ScholarPubMed
Nüsslein-Volhard, C. (1979a). Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. In Determinants of Spatial Organisation, eds. I. Koenigsberg and S. Subtelney, pp. 185–211. New York: Academic Press
Nüsslein-Volhard, C. (1979b). Pattern mutants in Drosophila embryogenesis. In Cell Lineage, Stem Cells and Cell Determination, ed. N. Le Douarin, pp. 69–82. New York: North-Holland
Nüsslein-Volhard, C. (2004). The bicoid morphogen papers (I). Account from CNV. Cell, 5116, 51–55
Nüsslein-Volhard, C., Lohs-Schardin, M., Sander, K., and Cremer, C. (1980). A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature, 283, 474–6CrossRefGoogle Scholar
Prothmann, C., Armstrong, N. J., and Rupp, R. A. (2000). The Toll/IL-1 receptor binding protein MyD88 is required for Xenopus axis formation. Mech. Dev., 97, 85–92CrossRefGoogle ScholarPubMed
Rivera-Pomar, R., and Jäckle, H. (1996). From gradients to stripes in Drosophila embryogenesis: Filling in the gaps. Trends Genet., 12, 478–83CrossRefGoogle ScholarPubMed
Roth, S., Stein, D., and Nüsslein-Volhard, C. (1989). A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell, 59, 1189–202CrossRefGoogle ScholarPubMed
Rushlow, C. A., Han, K., Manley, J. L., and Levine, M. (1989). The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell, 59, 1165–77CrossRefGoogle ScholarPubMed
Sander, K. (1976). Specification of the basic body pattern in insect embryogenesis. Adv. Insect Physiol. 12, 125–238CrossRefGoogle Scholar
Schneider, D. S., Hudson, K. L., Lin, T. Y., and Anderson, K. V. (1991). Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev., 5, 797–807CrossRefGoogle ScholarPubMed
Schneider, D. S., Jin, Y., Morisato, D., and Anderson, K. V. (1994). A processed form of the Spätzle protein defines dorsal-ventral polarity in the Drosophila embryo. Development, 120, 1243–50Google ScholarPubMed
Schröder, R. (2003). The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature, 422, 621–5CrossRefGoogle ScholarPubMed
Simpson-Brose, M., Treisman, J., and Desplan, C. (1994). Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila. Cell, 78, 855–65CrossRefGoogle ScholarPubMed
St Johnston, D., Driever, W., Berleth, T., Richstein, S., and Nüsslein-Volhard, C. (1989). Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development, 107, 13–9Google ScholarPubMed
St Johnston, D., and Nüsslein-Volhard, C. (1992). The origin of pattern and polarity in the Drosophila embryo. Cell, 68, 201–19CrossRefGoogle ScholarPubMed
Stathopoulos, A., and Levine, M. (2002). Dorsal gradient networks in the Drosophila embryo. Dev. Biol., 246, 57–67CrossRefGoogle ScholarPubMed
Stathopoulos, A., Drenth, M., Erives, A., Markstein, M., and Levine, M. (2002). Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell, 111, 687–01CrossRefGoogle ScholarPubMed
Stauber, M., Jäckle, H., and Schmidt-Ott, U. (1999). The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc. Natl. Acad. Sci. USA, 96, 3786–9CrossRefGoogle ScholarPubMed
Stauber, M., Taubert, H., and Schmidt-Ott, U. (2000). Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). Proc. Natl. Acad. Sci. USA, 97, 10844–9CrossRefGoogle Scholar
Stauber, M., Prell, A., and Schmidt-Ott, U. (2002). A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies. Proc. Natl. Acad. Sci. USA, 99, 274–9CrossRefGoogle ScholarPubMed
Steward, R. (1987). Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science, 238, 692–4CrossRefGoogle ScholarPubMed
Steward, R. (1989). Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell, 59, 1179–88CrossRefGoogle ScholarPubMed
Steward, R., and Nüsslein-Volhard, C. (1986). The genetics of the dorsal-Bicaudal-D region of Drosophila melanogaster. Genetics, 113, 665–78Google ScholarPubMed
Steward, R., Zusman, S. B., Huang, L. H., and Schedl, P. (1988). The dorsal protein is distributed in a gradient in early Drosophila embryos. Cell, 55, 487–95CrossRefGoogle Scholar
Struhl, G., Struhl, K., and Macdonald, P. M. (1989). The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell, 57, 1259–73CrossRefGoogle ScholarPubMed
Tickle, C.,Summerbell, D., and Wolpert, L. (1975). Positional Signaling and specification of digits in chick limb morphogenesis. Nature, 254, 199–202CrossRefGoogle Scholar
Turing, A. M. (1990). The chemical basis of morphogenesis. 1953. Bull. Math. Biol., 52, 153–97CrossRefGoogle ScholarPubMed
Wieschaus, E., and Nüsslein-Volhard, C. (1998). Looking at embryos. In Drosophila: A Practical Approach, ed. D. B. Roberts, pp. 199–228. Oxford: IRL Press
Wimmer, E. A., Carleton, A., Harjes, P., Turner, T., and Desplan, C. (2000). Bicoid-independent formation of thoracic segments in Drosophila. Science, 287, 2476–9CrossRefGoogle ScholarPubMed
Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25, 1–47CrossRefGoogle ScholarPubMed
Wolpert, L. (1971). Positional information and pattern formation. Curr. Top. Dev. Biol., 6, 183–224CrossRefGoogle ScholarPubMed
Wolpert, L. (1996). One hundred years of positional information. Trends Genet., 12, 359–64CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×