Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T14:12:32.267Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  21 October 2021

Daniel Sutherland
Affiliation:
University of Illinois, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Kant's Mathematical World
Mathematics, Cognition, and Experience
, pp. 286 - 293
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. 1994. Leibniz: Determinist, Theist, Idealist. Oxford: Oxford University Press.Google Scholar
Allais, L. 2015. Manifest Reality. Oxford: Oxford University Press.Google Scholar
Allais, L. 2016. “Conceptualism and Nonconceptualism in Kant: Survey of the Recent Debate.” In Stanford Encyclopedia of Philosophy, accessed fall 2020.Google Scholar
Allais, L. 2017. “Synthesis and Binding.” In Kantian Nonconceptualism, Schulting, Dennis, ed. London: Palgrave Macmillan.Google Scholar
Allison, H. 2004. Kant’s Transcendental Idealism: An Interpretation and Defense. New Haven, CT: Yale University Press.Google Scholar
Anderson, L. 2005. “The Wolffian Paradigm and Its Discontents.” Archiv für Geschichte der Philosophie 87 (1): 2274.Google Scholar
Anderson, R. L. 2015. The Poverty of Conceptual Truth. Oxford: Oxford University Press.Google Scholar
Annas, J. 1975. “Aristotle, Number and Time.” The Philosophical Quarterly 25: 97112.Google Scholar
Aristotle. 1984. The Complete Works of Aristotle. Barnes, Jonathan, ed. Princeton, NJ: Princeton University Press.Google Scholar
Aristotle. 1990 . Aristotle’s Categories and De Interpretatione. J. Ackrill, trans. Oxford: Oxford University Press.Google Scholar
Aristotle. 1993. Metaphysics: Books Γ, Δ, and Ε. 2nd ed. Christopher Kirwan, trans. and notes. Oxford: Clarendon PressGoogle Scholar
Baumgarten, A. 2014. Metaphysics. Fugate, Courtney and Hymers, John, eds. and trans. London: Bloomsbury.Google Scholar
Bennett, J. 1966. Kant’s Analytic. London: Cambridge University Press.CrossRefGoogle Scholar
Beth, E. W. 1956–7. “Über Lockes ‘Allgemeines Dreieck.’Kant-Studien 49: 361–80.Google Scholar
Boniface, J. 2007. “The Concept of Number from Gauss to Kronecker.” In Goldstein et al. (2007), pp. 315–42.Google Scholar
Brittan, G. 1978. Kant’s Theory of Science. Princeton, NJ: Princeton University Press.Google Scholar
Campbell, N. R. 1928. An Account of the Principles of Measurement and Calculation. London: Longmans Green.Google Scholar
Carson, E. 1997. “Kant on Intuition in Geometry.” Canadian Journal of Philosophy 27 (4): 489512.CrossRefGoogle Scholar
Carson, E. 1999. “Kant on the Method of Mathematics.” Journal of the History of Philosophy 37 (4): 629–52.Google Scholar
Carson, E. 2006. “Locke and Kant on Mathematical Knowledge.” In Intuition and the Axiomatic Method, E. Carson and R. Huber, eds. Kluwer Academic Publishers, pp. 321.Google Scholar
Carson, E. 2012. “Pure Intuition and Kant’s Synthetic a priori.” In Debates in Modern Philosophy, LoLordo, Antonia and Duncan, Stewart, eds. Routledge.Google Scholar
Carson, E. Forthcoming. “Arithmetic and the possibility of experience.” To appear in a volume on Kant’s philosophy of mathematics edited by Carl Posy and Ofra Rechter, Cambridge University Press.Google Scholar
Carson, E. (unpublished manuscript) “Number, the Category of Quantity, and Non-conceptual Content in Kant.”Google Scholar
Cassirer, E. 1954. Kant’s First Critique: An Appraisal of the Permanent Significance of Kant’s Critique of Pure Reason. New York: Macmillan.Google Scholar
Clagett, Marshall. 1959. The Science of Mechanics in the Middle Ages. Madison: University of Wisconsin Press.Google Scholar
Cohen, M., and Nagel, Ernst. 1968. An Introduction to Logic and Scientific Method. Mumbai: Allied Publishers.Google Scholar
Couturat, L. 1901. La logique de Leibniz. Paris: Ancienne Librairie Germer Bailliére et Cie.Google Scholar
Dedekind, R. 1872. “Stetigkeit und irrationale Zahlen.” Braunschweig: Vieweg. Repr. in Gesammelte mathematische Werke, Fricke, R., Noether, E., and Ore, O., eds., vol. 3, pp. 315–34. Braunschweig: Vieweg, 1932. English trans. in Ewald (1996), pp. 765–79.Google Scholar
De Risi, V. 2016. “The Development of Euclidean Axiomatics.” Archive for the History of the Exact Sciences 70 (6): 591676.Google Scholar
Dunlop, Katherine. 2009. “‘The Unity of Time’s Measure: Kant’s Reply to Locke.Philosophical Imprint 9: 131.Google Scholar
Dunlop, Katherine. 2012. “Kant and Strawson on the Content of Geometrical Concepts.Nous 46: 86126.Google Scholar
Einstein, A. 1922. “Geometry and Experience.” In Sidelights on Relativity: Ether and Relativity II: Geometry and Experience. London: Methuen.Google Scholar
Ellis, B. 1966. Basic Concepts of Measurement. Cambridge: Cambridge University Press.Google Scholar
Euclid. 1956. Euclid The Thirteen Books of The Elements. 2nd ed. Sir T. Heath, trans. and commentator. New York: Dover.Google Scholar
Euler, L. 1738. Einleitung zur Rechen-Kunst zum Gebrauch des Gymnasii bei der Kaiserlichen Academie der Wissenschaft in St. Petersburg. Also reprinted in Euler Opera Omnia, ser. 3 v. 2, pp. 1303. Berlin: Springer Verlag.Google Scholar
Euler, L. 1802. Vollständige Einleitung zur Algebra. Vol. 1. St. Petersburg: Kaiserlichen Academie der Wissenschaften.Google Scholar
Euler, L. 1911–2015. Opera Omnia. Schweizerische Naturforschende Gesellschaft. Berlin: B. G. Teubneri.Google Scholar
Euler, L. 1984. Elements of Algebra. Reprint of 1890 of John Hewlett, trans. of Vollstäntige Einleitung zur Algebra. Berlin: Springer Verlag.CrossRefGoogle Scholar
Ewald, W. 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. 2. Oxford: Oxford University Press.Google Scholar
Friedman, M. 1992. Kant and the Exact Sciences. Cambridge, MA: Harvard University Press.Google Scholar
Friedman, M. 2000. “Geometry, Construction and Intuition in Kant and His Successors.” In Between Logic and Intuition: Essays in Honor of Charles Parsons, Sher, G. and Tieszen, R., eds. New York: Cambridge University Press.Google Scholar
Friedman, M. 2012. “Kant on Geometry and Spatial Intuition.” Synthese 186: 231–55.Google Scholar
Friedman, M. 2013. Kant’s Construction of Nature: A Reading of Kant’s Metaphysical Foundations of Natural Science. Cambridge: Cambridge University Press.Google Scholar
Friedman, M. 2020. “Space and Geometry in the B-Deduction.” In Posy and Rechter (2020).CrossRefGoogle Scholar
Gardner, Sebastian. 1999. Kant and the Critique of Pure Reason. New York: Routledge.Google Scholar
Goldstein, C. et al., eds. 2007. The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones arithmeticae. Berlin: Springer Verlag.Google Scholar
Golob, S. 2011. “Kant on Intentionality, Magnitude, and the Unity of Perception.” European Journal of Philosophy 22 (4): 505–28.Google Scholar
Grattan-Guiness, I. 1996. “Numbers, Magnitudes, Ratios and Proportions in Euclid’s Elements: How Did He Handle Them?Historia Mathematica 23: 355–75. Google Scholar
Guyer, P. 1987. Kant and the Claims of Knowledge. New York: Cambridge University Press.Google Scholar
Guyer, P. 1992. The Cambridge Companion to Kant. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hahn, H. 1956. “The Crisis of Intuition.” Translated in The World of Mathematics, Newman, James R., ed. New York: Simon and Schuster. (From lectures given in 1933.)Google Scholar
Heis, J. 2014. “Kant (versus Leibniz, Wolff, and Lambert) on Real Definitions in Geometry.” Canadian Journal of Philosophy 44 (5–6): 605–30.Google Scholar
Heis, J. Forthcoming. “Kant on Parallel Lines.” In Kant’s Philosophy of Mathematics: Modern Essays. Vol. 1: The Critical Philosophy and Its Background, Ofra Rechter and Carl Posy, eds.Google Scholar
Hintikka, J. 1969. “On Kant’s Notion of Intuition (Anschauung).” In The First Critique: Reflections on Kant’s Critique of Pure Reason, MacIntosh, J. J. and Penelhum, T., eds. Belmont, CA: Wadsworth Publishing Company.Google Scholar
Hintikka, J. 1972. “Kantian Intuitions.” Inquiry 15: 341–5.CrossRefGoogle Scholar
Hintikka, J. 1974a. “Kant’s ‘New Method of Thought’ and His Theory of Mathematics.” In Knowledge and the Known. Dordrecht: D. Reidel.Google Scholar
Hintikka, J. 1974b. “Kant on the Mathematical Method.” In Knowledge and the Known. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Hogan, D. 2009. “Three Kinds of Rationalism and the Non-spatiality of Things in Themselves.” Journal of the History of Philosophy 47 (3): 355–82.Google Scholar
Hume, D. 1978. A Treatise of Human Nature. 2nd ed. Selby-Bigge, L. A. and Nidditch, P. H., eds. Oxford: Clarendon Press.Google Scholar
Ishiguro, H. 1990. Leibniz’s Philosophy of Logic and Language. Cambridge: Cambridge University Press.Google Scholar
Jolley, N., ed. 1995. The Cambridge Companion to Leibniz. Cambridge: Cambridge University PressGoogle Scholar
Kant, I. 1902–. Kant’s Gesammelte Schriften. 29 vols. Berlin: G. Reimer, subsequently Walter de Gruyter & Co.Google Scholar
Kant, I. 1926. Kritik der reinen Vernunft. Schmidt, Raymund, ed. Leipzig: F. Meiner.Google Scholar
Kant, I. 1965. The Critique of Pure Reason. Norman Kemp Smith, trans. New York: St. Martin’s Press.Google Scholar
Kant, I. 1992. Theoretical Philosophy, 1755–1770. Walford, D., trans. and ed. The Cambridge Edition of the Works of Immanuel Kant. New York: Cambridge University Press.Google Scholar
Kant, I. 1996. The Metaphysics of Morals. M. Gregor, trans. and ed. The Cambridge Edition of the Works of Immanuel Kant. New York: Cambridge University Press.Google Scholar
Kant, I. 1997. Kant’s Lectures on Metaphyics. K. Ameriks and S. Naragon, trans. and ed. The Cambridge Edition of the Works of Kant. New York: Cambridge University PressGoogle Scholar
Kant, I. 1998. Critique of Pure Reason. Guyer, P. and Wood, A. W., trans. The Cambridge Edition of the Works of Immanuel Kant. New York: Cambridge University Press.Google Scholar
Kästner, A. 1796. Geschichte der Mathematik. Göttingen: Johan Georg Rosenbusch.Google Scholar
Kästner, A. 1800. Mathematische Anfangsgründe Teil I: Anfangsgründe der Arithmetik: Geometrie, ebenen und sphärischen Trigonometrie, und Perspektiv. Göttingen: Johan Georg Rosenbusch.Google Scholar
Kitcher, P. 1975. “Kant’s Foundations of Mathematics.” Philosophical Review 84: 2350.Google Scholar
Kitcher, P. 1982. “How Kant Almost Wrote ‘Two Dogmas of Empiricism.’” In Essays on Kant’s Critique of Pure Reason, Mohanty, J. N. and Shahan, R. W., eds. Norman: University of Oklahoma Press.Google Scholar
Klein, J. 1992. Greek Mathematical Thought and the Origin of Algebra. New York: Dover.Google Scholar
Krantz, D. Lee, P. Suppes, , and Tversky, A.. 1971. Foundations of Measurement, vol. 1. New York: Academic Press.Google Scholar
Land, T. 2013. “Intuition and Judgment: How Not to Think about the Singularity of Intuition (and the Generality of Concepts) in Kant.” In Kant and Philosophy in a Cosmopolitan Sense, La Rocca, Claudio et al., eds. Berlin: De Gruyter, 221–31.Google Scholar
Land, T. 2014. “Spatial Representation, Magnitude, and the Two Stems of Cognition.” Canadian Journal of Philosophy 44: 524–50.Google Scholar
Land, T. 2016. “Moderate Conceptualism and Spatial Representation.” In Schulting (2016).Google Scholar
Leibniz, G. W. 1956. Philosophical Papers and Letters, vols. I and II. Loemker, L., trans. and ed. Boston: Kluwer Publishing.Google Scholar
Leibniz, G. W. 1961. Opuscules et fragments inédits de Leibniz: Extraits des manuscrits de la Bibliothèque royale de Hanovre. Couturat, L., ed. Hildesheim: G. Olms.Google Scholar
Leibniz, G. W. 1971. Mathematische Schriften. Vols. 1–7. Gerhardt, C. I., ed. Hildesheim: Georg Olms.Google Scholar
Leibniz, G. W. 1989. Philosophical Papers and Letters. Vols. 1 and 2. Loemker, L., trans. and ed. Boston: Kluwer Publishing.Google Scholar
Leibniz, G. W. 1995a. La caractéristique géométrique. Echeverría, J. and Parmentier, M., eds. and trans. Paris: J. Vrin.Google Scholar
Leibniz, G. W. 1995b. Philosophical Writings. G. H. R. Parkinson, trans. and ed. Rutland, VT: Rowman and Littlefield.Google Scholar
Liang, Chen. 2020. “Form of Intuition and Formal Intuition.” PhD dissertation, University of Illinois at Chicago.Google Scholar
Longuenesse, B. 1998. Kant and the Capacity to Judge: Sensibility and Discursivity in the Transcendental Analytic of the Critique of Pure Reason. Princeton, NJ: Princeton University Press.Google Scholar
Longuenesse, B. 2009. Kant on the Human Standpoint. Cambridge: Cambridge University Press.Google Scholar
Mates, B. 1989. The Philosophy of Leibniz: Metaphysics and Language. Oxford: Oxford University Press.Google Scholar
McLear, Colin. 2014. “The Kantian (Non)-conceptualism Debate.” Philosophical Compass 9 (11): 769–90. Google Scholar
McLear, Colin. 2015. “Two Kinds of Unity in the Critique of Pure Reason.” Journal of the History of Philosophy 53 (1): 79110.Google Scholar
McLear, Colin. 2020. “Kantian Conceptualism/Nonconceptualism.” In Stanford Encyclopedia of Philosophy. Accessed September 2020.Google Scholar
Melnick, Arthur. 1973. Kant’s Analogies of Experience. Chicago: University of Chicago Press.Google Scholar
Michell, J. 2006. “Psychophysics, Intensive Magnitudes, and the Psychometrician’s Fallacy.” Studies in History and Philosophy of Biological and Biomedical Sciences 17: 414–32.Mueller, I. 1970a. “Aristotle on Geometrical Objects.” Archiv für Geschichte der Philosophie 52: 156–71.Google Scholar
Michell, J. 1970b “Homogeneity in Eudoxus’ Theory of Proportion.” Archive for History of Exact Sciences 7: 16.Google Scholar
Michell, J. 1981. Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. New York: Dover.Google Scholar
Parsons, C. 1983. Mathematics in Philosophy. Ithaca, NY: Cornell University Press.Google Scholar
Parsons, C. 1983a. “Infinity and Kant’s Conception of the “Possibility of Experience.” In Mathematics in Philosophy.Google Scholar
Parsons, C. 1983b. “Kant’s Philosophy of Arithmetic.” In Mathematics in Philosophy.Google Scholar
Parsons, C. 1984. “Arithmetic and the Categories.” Topoi (3): 109–21.Google Scholar
Parsons, C. 1992. “The Transcendental Aesthetic.” In Guyer (1992).Google Scholar
Parsons, C. 2012. From Kant to Husserl: Selected Essays. Cambridge, MA: Harvard University Press.Google Scholar
Paton, H. J. 1965. Kant’s Metaphysic of Experience: A Commentary on the First Half of the Kritik der reinen Vernunft. 2 vols. London: Allen & Unwin.Google Scholar
Penelhum, T., and MacIntosh, J., eds. 1969. The First Critique. Belmont, CA: Wadsworth.Google Scholar
Petri, B., and Schappacher, N.. 2007. “On Arithmetization.” In Goldstein et al. (2007), pp. 243374.Google Scholar
Place, U. T. 1956. “Is Consciousness a Brain Process?British Journal of Psychology 47 (1): 4450.Google Scholar
Popkin, R. 1966. The Philosophy of the Sixteenth and Seventeenth Centuries. New York: Free Press.Google Scholar
Posy, C., and Rechter, Ofra, eds. 2020. Kant’s Philosophy of Mathematics, vol. 1: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press.Google Scholar
Proclus. 1970. A Commentary on the First Book of Euclid’s Elements. G. Morrow, trans. Princeton, NJ: Princeton University Press.Google Scholar
Rechter, O. 2006. “The View From 1763: Kant on the Arithmetical Method before Intuition.” In Intuition and the Axiomatic Method, Carson, Emily and Huber, Renate, eds. Springer, pp. 2146.Google Scholar
Rosen, G. 2017. “Abstract Objects.” In Stanford Encyclopedia of Philosophy. Accessed online November 2019.Google Scholar
Rusnock, P., and George, Rolf. 1995. “A Last Shot at Kant on Incongruent Counterparts.” Kant-Studien 86 (3): 257–77.Google Scholar
Russell, B. 1903. The Principles of Mathematics. Cambridge: Cambridge University Press.Google Scholar
Rutherford, D. 1995. “Philosophy and Language in Leibniz.” In The Cambridge Companion to Leibniz, Jolley, N., ed. Cambridge: Cambridge University Press, pp. 224–69.Google Scholar
Ryle, G. 1949. The Concept of Mind. Chicago, IL: University of Chicago Press.Google Scholar
Schepers, H. 1966. “Leibniz’s Arbeiten zu einer Reformation der Kategorien.” Zeitschrift für philosophische Forschung 20 (vols. 3 and 4): 539–67.Google Scholar
Schepers, H. 1969. “Begriffsanalyse und Kategorialsynthese Zur Verflechtung von Logik and Metaphysik bei Leibniz.” In Studia Leibnitiana Supplementa, Vol. III, Akten des Internationalen Leibniz-Kongresses Hannover, 14–19 November 1966. Wiesbaden: Franz Steiner Verlag: 34–9. Google Scholar
Schulting, D. 2016. Kantian Nonconceptualism. London: Palgrave Macmillan.Google Scholar
Sellars, W. 1968. Science and Metaphysics: Variations on Kantian Themes. London: Routledge and Kegan Paul.Google Scholar
Shabel, L. 1998. “Kant on the ‘Symbolic Construction’ of Mathematical Concepts.” Studies in the History and Philosophy of Science 29: 589621.Google Scholar
Smit, H. 2000. “Kant on Marks and the Immediacy of Intuition.” The Philosophical Review 109 (2): 23566.Google Scholar
Smith, N. K. 1979. A Commentary to Kant’s Critique of Pure Reason. 2nd ed. London: Macmillan.Google Scholar
Smyth, D. 2014. “Infinity and Givenness: Kant on the Intuitive Origin of Spatial Representation.” Canadian Journal of Philosophy 44 (5–6): 551–7.Google Scholar
Stein, H. 1990. “Eudoxus and Dedekind: On the Ancient Greek Theory of Ratios and Its Relation to Modern Mathematics.” Synthese 84: 163211. Google Scholar
Stevens, S. S. 1946. “On the Theory of Scales and Measurement.” Science 103: 677–80.Google Scholar
Stevens, S. S. 1951. “Mathematics, Measurement, and Psychophysics.” In Handbook of Experimental Psychology, Stevens, S. S., ed. New York: Wiley, pp. 149.Google Scholar
Strawson, P. F. 1989. The Bounds of Sense: An Essay on Kant’s Critique of Pure Reason. London: Routledge.Google Scholar
Suppes, P.A. 1951. “A Set of Independent Axioms for Extensive Quantities.” Portugaliae Mathematica 10: 163–72.Google Scholar
Sutherland, D. 2004a. “The Role of Magnitude in Kant’s Critical Philosophy.” Canadian Journal of Philosophy 34(4): 411–42.Google Scholar
Sutherland, D. 2004b. “Kant’s Philosophy of Mathematics and the Greek Mathematical Tradition.” Philosophical Review 113 (2): 157201.Google Scholar
Sutherland, D. 2005a. “Kant on Fundamental Geometrical Relations.” Archiv für Geschichte der Philosophie 87 (2): 117–58.Google Scholar
Sutherland, D. 2005b. “The Point of Kant’s Axioms of Intuition.” Pacific Philosophical Quarterly 86: 135–59.Google Scholar
Sutherland, D. 2006. “Kant on Arithmetic, Algebra, and the Theory of Proportions.” Journal of the History of Philosophy 44 (4): 533–58.Google Scholar
Sutherland, D. 2008. “From Kant to Frege: Numbers, Pure Units, and the Limits of Conceptual Representation.” Royal Institute of Philosophy Supplement 63.Google Scholar
Sutherland, D. 2010. “Philosophy and Geometrical Practice in Leibniz, Wolff, and the Early Kant.” In Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science, Dickson, Michael and Domski, Mary, eds. Chicago: Open Court.Google Scholar
Sutherland, D. 2014. “Kant on Construction and Composition of Motion in the Phoronomy.” Special supplement to Canadian Journal of Philosophy 44 (5–6): 686718.Google Scholar
Sutherland, D. 2017. “Kant’s Conception of Number.” Philosophical Review 126 (2).Google Scholar
Sutherland, D. 2020a. “Kant’s Philosophy of Arithmetic: A New Approach.” In Posy (2020).Google Scholar
Sutherland, D. 2020b. “Continuity and Intuition in 18th Century Analysis and in Kant.” In The History of Continua: Philosophical and Mathematical Perspectives. Oxford: Oxford University Press.Google Scholar
Tait, W. 2005. “Frege versus Cantor and Dedekind: On the Concept of Number.” In The Provenance of Pure Reason. Oxford: Oxford University Press.Google Scholar
Thompson, Manley 1972. “Singular Terms and Intuitions in Kant’s Epistemology.” Review of Metaphysics 26 (2): 31443.Google Scholar
Vaihinger, H. 1900. “Siebzig textkritische Randglossen zur Analytik.” Kant-Studien 4: 452–63.Google Scholar
Vaihinger, H. 1922. Kommentar zu Kant’s Kritik der reinen Vernunft. 2 vols. Aalen: Scientia Verlag.Google Scholar
Walsh, W. H. 1975. Kant’s Criticism of Metaphysics. Edinburgh: Edinburgh University Press.Google Scholar
Warren, D. 2001. Reality and Impenetrability in Kant’s Philosophy of Nature. New York: Routledge.Google Scholar
Wilson, J. 2017. “Determinables and Determinates.” In Stanford Encyclopedia of Philosophy, first published February 7, 2017.Google Scholar
Wilson, K. D. 1975. “Kant on Intuition.” Philosophical Quarterly 25: 247–65.Google Scholar
Wolff, C. 1736. Philosophia Prima Sive Ontologia. 3. Auflage. Verona: Dionisio Ramanzini.Google Scholar
Wolff, C. 1962–2009. Christian Wolff: Gesammelte Werke. Hildesheim: G. Olms.Google Scholar
Wolff, C. 1962. Philosophia Prima Sive Ontologia. 1736. In Christian Wolff, Gesammelte Werke. II. Abteilung Lateinische Schriften, Band 3.Google Scholar
Wolff, C. 1965. Mathematisches Lexikon. 1716. In Christian Wolff, Gesammelte Werke. I. Abteilung Deutsche Schriften, Band 11.Google Scholar
Wolff, C. 1968. Elementa Matheseos Universae. 1742. In Christian Wolff, Gesammelte Werke. II. Abteilung Lateinische Schriften, Band 29.Google Scholar
Wolff, C. 1973. Anfangsgründe aller Mathematischen Wissenschaften. Erstausgabe 1710–17. (7. Auflage 1750–7). In Christian Wolff, Gesammelte Werke, I. Abteilung Deutsche Schriften, Band 12.Google Scholar
Wolff, C. 2009. Auszug aus den Anfangs-Gründen aller Mathematischen Wissenschaften, in multiple editions. Auflage 1728. In Christian Wolff, Gesammelte Werke, 1. Abteilung, Deutsche Schriften, Band 25.Google Scholar
Wolff, R. P. 1963. Kant’s Theory of Mental Activity. Cambridge, MA: Harvard University Press.Google Scholar
Wood, A. 1979. Kant’s Rational Theology. Ithaca, NY: Cornell University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Daniel Sutherland, University of Illinois, Chicago
  • Book: Kant's Mathematical World
  • Online publication: 21 October 2021
  • Chapter DOI: https://doi.org/10.1017/9781108555746.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Daniel Sutherland, University of Illinois, Chicago
  • Book: Kant's Mathematical World
  • Online publication: 21 October 2021
  • Chapter DOI: https://doi.org/10.1017/9781108555746.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Daniel Sutherland, University of Illinois, Chicago
  • Book: Kant's Mathematical World
  • Online publication: 21 October 2021
  • Chapter DOI: https://doi.org/10.1017/9781108555746.015
Available formats
×