Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T16:03:33.215Z Has data issue: true hasContentIssue false

References

Published online by Cambridge University Press:  28 September 2023

A. B. Watts
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, P. H., 1998. Ross Gunn. May 12, 1897–October 15, 1966, Biographical Memoirs, Washington, DC, National Academy Press, pp. 110–25.Google Scholar
Abercrombie, R. E., and Ekstrom, G., 2007. Earthquake slip on oceanic transform faults, Nature, v. 410, pp. 74–7.Google Scholar
Abers, G. A., and Lyon-Caen, H., 1990. Regional gravity anomalies, depth of the foreland basin and isostatic compensation of the New Guinea Highlands, Tectonics, v. 9, pp. 1479–93.Google Scholar
Adam, C., and Bonneville, A., 2008. No thinning of the lithosphere beneath northern part of the Cook-Austral volcanic chains, J. Geophys. Res., v. 113, B10104. https://doi.org/10.1029/2007JB005313.Google Scholar
Airy, G. B., 1855. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations of geodetic surveys, Phil. Trans. R. Soc., v. 145, pp. 101–4.Google Scholar
Ali, M. Y., and Watts, A. B., 2009. Subsidence history, gravity anomalies and flexure of the United Arab Emirates (UAE) foreland basin, GeoArabia, v. 14, pp. 1744, https://doi.org/10.2113/geoarabia140217.Google Scholar
Ali, M. Y., Watts, A. B., and Hill, I., 2003. A seismic reflection profile study of lithospheric flexure in the vicinity of the Cape Verde islands, J. Geophys. Res., v. 108, https://doi.org/10.1029/2002JB002155.CrossRefGoogle Scholar
Ali, M. Y., Watts, A. B., Searle, M. P. et al., 2020. Geophysical imaging of ophiolite structure in the United Arab Emirates, Nat. Comm., v. 11, https://doi.org/10.1038/s41467-020-16521-0.CrossRefGoogle ScholarPubMed
Allen, M. B., Jones, S., Ismail-Zadah, A., Simmons, M., and Anderson, L., 2002. Onset of subduction as the cause of rapid Pliocene-Quaternary subsidence in the south Caspian basin, Geology, v. 30, pp. 775–8.Google Scholar
Anderson, D. L., and Minster, J. B., 1980. Seismic velocity, attenuation, and rheology of the upper mantle, in Allègre, C., ed., Coulomb Volume, Paris, Centre National de la Recherche Scientifique, pp. 1322.Google Scholar
Anderson, R. N., and Noltimier, H. C., 1973. A model for the horst and graben structure of mid-ocean ridge crests based upon spreading velocity and basalt delivery to the oceanic crust, Geophys. J. R. Astr. Soc., v. 34, pp. 137–47.Google Scholar
Anonymous, 1878. The interior of the Earth. Abstract of an address given at the Cumberland Association for the Advancement of Science by Sir George B. Airy. Revised by the author, Nature, v. 18, pp. 41–4, https://doi.org/10.1038/018041b0.Google Scholar
Anonymous, 1919. Joseph Barrell (1869–1919), Am. J. Sci., v. 48, pp. 251–80.Google Scholar
Antoine, J. W., Martin, R. G., Pyle, T. G., and Bryant, W. R., 1974. Continental margins of the Gulf of Mexico, in Burk, C. A., and Drake, C. L., eds., The Geology of Continental Margins, Springer, Berlin, pp. 683–94.Google Scholar
Apple, R. A., and Macdonald, G. A., 1966. The Rise of Sea Level in Contemporary Times at Honaunau, Hawaii, Pacific Science, v. 20, pp. 125–36.Google Scholar
Araki, H., Tazawa, S., Noda, H. et al., 2009. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry, Science, v. 323, pp. 897900, https://doi.org/10.1126/science.1164146.CrossRefGoogle ScholarPubMed
Armin, R. A., and Mayer, L., 1983. Subsidence analysis of the Cordillera miogeocline: Implications for timing of late Proterozoic rifting and amount of extension, Geology, v. 11, pp. 702–5.2.0.CO;2>CrossRefGoogle Scholar
Armstrong, G. D., 1997. Potential field signatures and flexural rigidity of the lithosphere in Ireland, Ph.D. thesis, National University of Ireland, 184 pp.Google Scholar
Armstrong, G. D., and Watts, A. B., 2001. Spatial variations in Te in the southern Appalachians, eastern United States, J. Geophys. Res.,v. 106, pp. 22,009–26.CrossRefGoogle Scholar
Artemjev, M. E., and Artyushkov, E. V., 1971. Structure and isostasy of the Baikal rift and the mechanism of rifting, J. Geophys. Res., v. 76, pp. 1197–211.Google Scholar
Artemjev, M. E., and Kaban, M. K., 1994. Density inhomogeneities, isostasy and flexural rigidity of the lithosphere in the Transcaspian region, Tectonophysics, v. 240, pp. 281–97.Google Scholar
Asada, T., and Shimamura, H., 1975. A structure of the oceanic lithosphere as revealed by ocean-bottom seismography. Abstracts of Papers Presented at the Interdisciplinary Symposia, Grenoble, 16th General Assembly, International Union of Geodesy and Geophysics, p. 91.Google Scholar
Audet, P., 2011. Directional wavelet analysis on the sphere: Application to gravity and topography of the terrestrial planets, J. Geophys. Res., v. 116, https://doi.org/10.1029/2010JE003710.Google Scholar
Audet, P., and Burgmann, R., 2011. Dominant role of tectonic inheritance in supercontinent cycles, Nat. Geosci., v. 4, pp. 184–7, https://doi.org/10.1038/NGEO1080.Google Scholar
Audet, P., and Mareschal, J.-C., 2007. Wavelet analysis of the coherence between Bouguer gravity and topography: Application to the elastic thickness anisotropy in the Canadian Shield, Geophys. J. Int., v. 168, pp. 287–98, https://doi.org/10.1111/j.1365-246X.2006.03231.x.Google Scholar
Avouac, J. P., and Burov, E., 1996. Erosion as a driving mechanism of intracontinental mountain growth?, J. Geophys. Res., v. 101, pp. 17747–69.Google Scholar
Babbage, C., 1847. Observations on the Temple of Serapis, at Pozzuoli, near Naples, with remarks on certain causes which may produce geological cycles of great extent, Quart. J. Geol. Soc. Lond., v. 3, pp. 186217.Google Scholar
Bai, Y., Dong, D., Kirby, J. F., Williams, S.E., & Wang, Z., 2018. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study, Geophys. J. Int., 214, 623–34, https://doi: 10.1093/gji/ggy162.Google Scholar
Baines, A. G., Cheadle, M. J., Dick, H. J. B. et al., 2003. Mechanism for generating the anomalous of oceanic core complexes: Atlantis Bank, southwest Indian Ridge, Geology, v. 31, pp. 1105–8, https://doi.org/10.1130/G19829.1.Google Scholar
Baird, D. J., Knapp, J. H., Steer, D. N., Brown, L. D., and Nelson, K. D., 1995. Upper-mantle reflectivity beneath the Williston basin, phase-change Moho, and the origin of intracratonic basins, Geology, v. 23, pp. 431–4.Google Scholar
Baker, B. H., and Wohlenberg, J., 1971. Structure and evolution of the Kenya rift valley, Nature, v. 229, pp. 538–42.Google Scholar
Baldwin, R. B., 1971. The question of isostasy on the Moon, Phys. Earth Planet. Interiors, v. 4, pp. 167–79.Google Scholar
Banks, R. J., and Swain, C. J., 1978. The isostatic compensation of East Africa, Proc. R. Soc. London, v. 364, pp. 331–52.Google Scholar
Banks, R. J., Parker, R. L., and Huestis, S. P., 1977. Isostatic compensation on a continental scale: Local versus regional mechanisms, Geophys. J. R. Astr. Soc., v. 51, pp. 431–52.Google Scholar
Bargar, K. E., and Jackson, E. D., 1974, Calculated volumes of individual shield volcanoes along the Hawaiian-Emperor chain, Jour. Research U.S. Geol. Survey, v. 2, pp. 545–50.Google Scholar
Barrell, J., 1914a, The strength of the Earth’s crust. I. Geologic tests of the limits of strength, J. Geol., v. 22, pp. 2848.Google Scholar
Barrell, J., 1914b, The strength of the Earth’s crust. II. Regional distribution of isostatic compensation, J. Geol., v. 22, pp. 145–65.Google Scholar
Barrell, J., 1914c, The strength of the Earth’s crust. III. Influence of variable rate of isostatic compensation, J. Geol., v. 22, pp. 209–36.Google Scholar
Barrell, J., 1914d, The strength of the Earth’s crust. IV. Heterogeneity and rigidity of the crust as measured by departures from isostasy, J. Geol., v. 23, pp. 289314.Google Scholar
Barrell, J., 1914e, The strength of the Earth’s crust. V. The depth of masses producing gravity anomalies and deflection residuals: Section A, Development of criteria for spheroidal masses. Section B, Applications of criteria to determine the limits of depth, form and mass, J. Geol., v. 22, pp. 441–68, 537–55.Google Scholar
Barrell, J., 1914f, The strength of the Earth’s crust. VI. Relations of isostatic movements to a sphere of weakness – the asthenosphere, J. Geol., v. 22, pp. 655–83.Google Scholar
Barrell, J., 1914g, The strength of the Earth’s crust. VII. Variations of strength with depth as shown by the nature of departures from isostasy, J. Geol, v. 22, pp. 729–41.Google Scholar
Barrell, J., 1914h, The strength of the Earth’s crust. VIII. Physical conditions controlling the nature of lithosphere and asthenosphere: Section A, Relations between rigidity, strength and igneous activity. Section B, Relations with other fields of geophysics, J. Geol., v. 23, pp. 424–43 and pp. 499515.Google Scholar
Barrell, J., 1919a, The nature and bearings of isostasy, Am. J. Sci., v. XLVIII, pp. 281–90.Google Scholar
Barrell, J., 1919b, The status of the theory of isostasy, Am. J. Sci., v. XLVIII, pp. 291338.Google Scholar
Barton, P. J., and Wood, R. J., 1984, Tectonic evolution of the North Sea basin: Crustal stretching and subsidence, Geophys. J. R. Astr. Soc., v. 79, pp. 9871022.CrossRefGoogle Scholar
Basile, C., Mascle, J., Popoff, M., Bouillin, J. P., and Mascle, G., 1993, The Ivory Coast-Ghana transform margin: A marginal ridge structure deduced from seismic data, Tectonophysics, v. 222, pp. 119.Google Scholar
Bassi, G., Keen, C. E., and Potter, P., 1993, Contrasting styles of rifting: Models and examples from the eastern Canadian margin, Tectonics, v. 12, pp. 639–55.Google Scholar
Bassin, C., Laske, G., and Masters, G., 2000, The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, v. 81, http://igppweb.ucsd.edu/~gabi/rem.html.Google Scholar
Bauer, K., Neben, S. Schreckenber, B. et al. 2000, Deep structure of the Namibia continental margin as derived from integrated geophysical studies, J. Geophys. Res., v. 105, pp. 25829–53.Google Scholar
Beaumont, C., 1978, The evolution of sedimentary basins on a viscoelastic lithosphere: Theory and examples, Geophys. J. R. Astr. Soc., v. 55, pp. 471–97.Google Scholar
Beaumont, C., 1979, On rheological zonation of the lithosphere during flexure, Tectonophysics, v. 59, pp. 347–65.Google Scholar
Beaumont, C., 1981, Foreland basins, Geophys. J. R. Astr. Soc., v. 65, pp. 291329.CrossRefGoogle Scholar
Bécel, A., Shillington, D. J., Nedimović, M. R., Webb, S. C., and Kuehn, H., 2015, Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data, Earth Planet. Sci. Lett., v. 424, pp. 2637, https://doi.org/10.1016/j.epsl.2015.05.016.Google Scholar
Bechtel, T. D., Forsyth, D. W., and Swain, C. J., 1987, Mechanisms of isostatic compensation in the vicinity of the East African Rift, Kenya, Geophys. J. R. Astr. Soc., v. 90, pp. 445–65.Google Scholar
Bechtel, T. D., Forsyth, D. W., Sharpton, V. L., and Grieve, R. A. F., 1990, Variations in effective elastic thickness of the North American lithosphere, Nature, v. 343, pp. 636–8.Google Scholar
Becker, R. H., and Sultan, M., 2009, Land subsidence in the Nile Delta: inferences from radar interferometry, The Holocene, v. 19, pp. 949–54, https://doi.org/10.1177/0959683609336558.Google Scholar
Behn, M. D., Lin, J., and Zuber, M. T., 2002, A continuum mechanics model for normal faulting using a strain-rate softening rheology: implications for thermal and rheological controls on continental and oceanic rifting, Earth Planet. Sci. Lett., v. 202, pp. 725–40.Google Scholar
Bell, R., Karner, G. D., and Steckler, M. S., 1988, Early Mesozoic rift basins of Eastern North America and their gravity anomalies: The role of detachments during extension, Tectonics, v. 7, pp. 447–62.CrossRefGoogle Scholar
Bellas, A., and Zhong, S., 2022, Effects of a Weak Lower Crust on the Flexure of Continental Lithosphere, J. Geophys. Res., v. 126, https://doi.org/10.1029/2021JB022678Google Scholar
Belleguic, V., Lognonne, P., and Wieczorek, M., 2005, Constraints on the Martian lithosphere from gravity and topography data, J. Geophys. Res., v. 110, https://doi.org/10.1029/2005JE002437.CrossRefGoogle Scholar
Bendick, R., and Flesch, L., 2007, Reconciling lithospheric deformation and lower crustal flow beneath central Tibet, Geology, v. 35, pp. 895–8.Google Scholar
Benjamin, M. T., Johnson, N. M., and Naeser, C. W., 1987, Rapid uplift in the Bolivian Andes, Geology, v. 15, pp. 680–3.Google Scholar
Beuthe, M., 2008, Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets, Geophys. J. Int., v. 172, 817–41.Google Scholar
Beuthe, M., Le Maistre, S., Rosenblatt, P., Pätzold, M., and V. Dehant, V., 2012, Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data, J. Geophys. Res., v. 117, https://doi.org/10.1029/2011JE003976.Google Scholar
Bhattacharji, S., and Singh, R. N., 1984, Thermo-mechanical structure of the southern part of the Indian shield and its relevance to Precambrian basin evolution, Tectonophysics, v. 105, pp. 103–20.CrossRefGoogle Scholar
Bianco, T. A., Ito, G., Becker, J. M., and Garcia, M. O., 2005, Secondary Hawaiian volcanism formed by flexural arch decompression, Geochem. Geophys. Geosystems, v. 6, https://doi.org/10.1029/2005GC000945.Google Scholar
Billen, M. I., and Gurnis, M., 2005. Constraints on subducting plate strength within the Kermadec trench. J. Geophys. Res., v. 110, https://doi.org/10.1029/2004JB003308.Google Scholar
Bills, B. G., 1979, Planetary isostasy: Topographic and gravitational variance spectra, Lunar Sci., v. 10, pp. 132–4.Google Scholar
Bird, P., 1979, Continental delamination and the Colorado Plateau, J. Geophys. Res., v. 84, pp. 7561–71.Google Scholar
Bishop, P., 2007, Long-term landscape evolution: linking tectonics and surface processes, Earth Surf. Process. Landforms, v. 32, pp. 329–65.Google Scholar
Bittencourt, A. C. da S. P., Dominguez, J. M. L., and Ussami, N., 1999, Flexure as a control on the large-scale geomorphic characteristics of the eastern Brazil coastal zone, J. Coastal Research, v. 15, pp. 505–19.Google Scholar
Blasius, K. R., and Cutts, J. A., 1981, Topography of Martian central volcanoes, Icarus, v. 45, pp. 87112.Google Scholar
Bloom, A., 1967, Pleistocene shorelines: A new test of isostasy, Geol. Soc. Am. Bull., v. 78, pp. 1477–94.Google Scholar
Blum, M. D., and Roberts, H. H., 2009, Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise, Nature Geoscience, v. 2, pp. 488–91, https://doi.org/10.1038/NGEO553.Google Scholar
Bodine, J. H., 1980, Numerical Computation of Plate Flexure in Marine Geophysics, Technical Report No. 1, New York, Lamont-Doherty Geological Observatory of Columbia University.Google Scholar
Bodine, J. H., and Watts, A. B., 1979, On lithospheric flexure seaward of the Bonin and Mariana Trenches, Earth Planet. Sci. Lett., v. 43, pp. 132–48.Google Scholar
Bodine, J. H., Steckler, M. S., and Watts, A. B., 1981, Observations of flexure and the rheology of the oceanic lithosphere, J. Geophys. Res., v. 86, pp. 3695–707.Google Scholar
Bogdanov, I., Huaman, D., Thovert, J.-F., Genthon, P., and Adler, P. M., 2007. A model for fracturation in the Loyalty Islands, C. R. Geoscience, 339, 840848.Google Scholar
Bohannon, R. G., Naeser, C. W., and Schmidt, D. L., 1989, The timing of uplift, volcanism and rifting peripheral to the Red Sea: A case of passive rifting?, J. Geophys. Res., v. 94, pp. 10315–30.CrossRefGoogle Scholar
Bohnenstiehl, D. R., and Kleinrock, M. C., 2000, Evidence for spreading-rate dependence in the displacement-length ratios of abyssal hill faults at mid-ocean ridges, Geology, v. 28, pp. 395–8.Google Scholar
Boland, J. N., and Tullis, T. E., 1986, Deformation behaviour of wet and dry clinopyroxenite in the brittle to ductile transition region, Geophys. Mon. Am. Geophys. Union, v. 36, pp. 3550.Google Scholar
Bonatti, E., Ligi, M., Gasperini, L. et al. 1994, Transform migration and vertical tectonics at the Romanche fracture zone, equatorial Atlantic, J. Geophys. Res., v. 99, pp. 21779–802.Google Scholar
Bond, G. C., and Kominz, M. A., 1984, Construction of tectonic subsidence curves for the early Paleozoic Miogeocline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup and crustal thinning, Geol. Soc. Am. Bull., v. 95, pp. 155–73.Google Scholar
Bonneville, A., Barriot, J.-P., and Bayer, R., 1988. Evidence from geoid data of a hot spot origin from the southern Mascarene Plateau and Mascarene Islands (Indian Ocean), J. Geophys. Res., 93, 41994212.CrossRefGoogle Scholar
Boscovich, R. G., 1755, De litteraria expeditione per Pontificam ditionem, Rome, Typographio Palladis, 475 pp.Google Scholar
Bosworth, W., 1985, Geometry of propagating continental rifts, Nature, v. 316, pp. 625–7.Google Scholar
Bott, M. H. P., 1960, The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins, Geophys. J. R. Astr. Soc., v. 3, pp. 63–7.Google Scholar
Bott, M. H. P., 1971, The Interior of the Earth, London, Edward Arnold, 316 pp.Google Scholar
Bott, M. H. P., 1976, Formation of sedimentary basins of graben type by extension of the continental crust, Tectonophysics, v. 36, pp. 7786.Google Scholar
Bott, M. H. P., 1997, Modeling the formation of a half graben using realistic upper crustal rheology, J. Geophys. Res., v. 102, pp. 24,605–17.CrossRefGoogle Scholar
Bott, M. H. P., 1996, Flexure associated with planar faulting, Geophys. J. Int. v. 126, pp. F21F24.Google Scholar
Bott, M. H. P., and Dean, D. S., 1973, Stress diffusion from plate boundaries, Nature, v. 243, pp. 339–41.Google Scholar
Bouguer, P., 1749, La figure de la terre, Paris, Quay des Augustins, 364 pp.Google Scholar
Bowie, W., 1922, The Earth’s crust and isostasy, Geograph. Rev., v. XII, no. 4, pp. 613627.Google Scholar
Bowie, W., 1926, Isostasy in western Siberia, Am. J. Sci., v. 211, pp. 113–18.Google Scholar
Bowie, W., 1927, Isostasy – The Science of the Equilibrium of the Earth’s Crust, New York, E. P. Dutton, 275 pp.Google Scholar
Bowie, W., 1929, Possible origin of oceans and continents, Gerlands Beitrage zur Geophysik, v. XXI, pp. 178–82.Google Scholar
Bowie, W. (Compiler), 1932, Comments on Isostasy Made by Authors of Geological and Geophysical Books and Papers, National Research Council, Washington, DC, 49 pp.Google Scholar
Bowin, C., 1983, Gravity, topography, and crustal evolution of Venus, Icarus, v. 56, pp. 345–71.Google Scholar
Bowin, C., and Milligan, J., 1985, Negative gravity anomaly over spreading rift valleys: Mid-Atlantic ridge at 26° N, Tectonophysics, v. 113, pp. 233–56.Google Scholar
Bowin, C., Abers, G., and Shure, L., 1985, Gravity field of Venus at constant altitude and comparisons with Earth, J. Geophys. Res., v. 90, pp. C757C770.CrossRefGoogle Scholar
Brace, W. F., and Kohlstedt, D. L., 1980, Limits on lithospheric stress imposed by laboratory experiments,J. Geophys. Res., v. 85, pp. 6248–52.CrossRefGoogle Scholar
Braga, L. F. S., 1991, Isostatic evolution and crustal structure of the Amazon continental margin determined by admittance analyses and inversion of gravity data, Ph.D thesis, Oregon State University, 197 pp.Google Scholar
Braitenberg, C., Wang, Y., Fang, J., and Hsu, H. T., 2003. Spatial variations of flexure parameters over the Tibet-Quinghai plateau, Earth Planet. Sci. Lett., v. 205, pp. 211–24.Google Scholar
Braun, J., and Beaumont, C., 1987, Styles of continental rifting: results from dynamic models of lithospheric extension, in Beaumont, C., and Tankard, A. J., eds., Sedimentary Basins and Basin-Forming Mechanisms, Calgary, Alberta, Canadian Society of Petroleum Geologists, pp. 241–58.Google Scholar
Braun, J., and Willett, S. D., 2013, A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, v. 180–181, pp. 170–9, https://doi.org/10.1016/j.geomorph.2012.10.008.Google Scholar
Brigham, E. O., 1974, The Fast Fourier Transform, Englewood Cliffs, NJ, Prentice-Hall, 251 pp.Google Scholar
Broecker, W. S., 1966, Glacial rebound and the deformation of the shorelines of proglacial lakes, J. Geophys. Res., v. 71, pp. 4777–83.Google Scholar
Broecker, W. S., Kennett, J. P., Flower, B. P. et al. 1989, Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode, Nature, v. 341, pp. 318–21.Google Scholar
Brooks, M., 1970, Positive Bouguer anomalies in some orogenic belts, Geol. Mag., v. 111, pp. 399400.Google Scholar
Brotchie, J. F., and Silvester, R., 1969, On crustal flexure, J. Geophys. Res, v. 74, pp. 5240–5.Google Scholar
Brown, C. D., and Phillips, R. J., 1999, Flexural rift flank uplift at the Rio Grande rift, New Mexico, Tectonics, v. 18, pp. 1275–91.Google Scholar
Brown, I. C., 1872, The Venerable Archdeacon Pratt, Archdeacon of Calcutta: A Sketch, Mission Life, v. 3, Part 1 (New Series), pp. 163–9.Google Scholar
Brune, S., Heine, C., Clift, P. D., and Pérez-Gussinyé, M., 2017, Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea, Marine and Petroleum Geology, v. 79, pp. 257281, https://doi.org/10.1016/j.marpetgeo.2016.10.018.Google Scholar
Brunet, M.-F., 1986, The influence of the evolution of the Pyrenees on adjacent basins, Tectonophysics, v. 129, pp. 343–54.Google Scholar
Brunet, M.-F., and Le Pichon, X., 1982, Subsidence of the Paris Basin, J. Geophys. Res., v. 87, pp. 8547–60.Google Scholar
Bry, M., and White, N., 2007, Reappraising elastic thickness variation at oceanic trenches, J. Geophys. Res., v. 112, https://doi.org/10.1029/2005JB004190.Google Scholar
Buck, W. R., 1991, Modes of continental lithospheric extension, J. Geophys. Res., v. 96, pp. 20,161–78.Google Scholar
Buck, W. R., 1988, Flexural rotation of normal faults, Tectonics, v. 7, pp. 959–73.Google Scholar
Buck, W. R., 2001, Accretional curvature of lithosphere at magmatic spreading centers and flexural support of axial highs, J. Geophys. Res., v. 106, pp. 3953–60.Google Scholar
Buck, W. R., 2017, The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins, Earth Planet. Sci. Lett., v. 466, pp. 62–9, https://doi.org/10.1016/j.epsl.2017.02.041.Google Scholar
Bullard, E. C., 1936, Gravity measurements in East Africa, Phil. Trans. R. Soc., v. 235, pp. 445531.Google Scholar
Burbank, D. W., 1992, Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin, Nature, v. 357, pp. 680–3.Google Scholar
Burgess, P. M., Gurnis, M., and Moresi, L., 1997, Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes, Geol. Soc. Am. Bull., v. 108, pp. 1515–35.Google Scholar
Burov, E. B., and Diament, M., 1992, Flexure of the continental lithosphere with multilayered rheology, Geophys. J., v. 109, pp. 449–68.CrossRefGoogle Scholar
Burov, E. B., and Diament, M., 1995, The effective elastic thickness (Te) of continental lithosphere: What does it really mean?, J. Geophys. Res., v. 100, pp. 3905–27.Google Scholar
Burov, E. B., and Molnar, P., 1998, Gravity anomalies over the Ferghana Valley (central Asia) and intracontinental deformation, J. Geophys. Res., v. 103, pp. 18,137–52.Google Scholar
Burov, E. B., and Watts, A. B., 2006. The long-term strength of continental lithosphere: jelly sandwich or creme brulee?, GSA Today, 16, 410, https://doi: 10.1130/1052-5173(2006)016<4:TLT SOC>2.0.CO;2Google Scholar
Burov, E. B., Kogan, M. G., Lyon-Caen, H., and Molnar, P., 1990, Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan, Earth Planet. Sci. Lett, v. 96, pp. 367–83.Google Scholar
Burrard, S., 1920, A brief review of the evidence upon which the theory of isostasy has been based, Geog. J., v. 56, pp. 4752.Google Scholar
Byerlee, J. D., 1978, Friction of rocks, Pageoph, v. 116, pp. 615–26.Google Scholar
Caldwell, J. G., and Turcotte, D. L., 1979, Dependence of the elastic thickness of the oceanic lithosphere on age, J. Geophys. Res., v. 84, pp. 7572–6.Google Scholar
Caldwell, J. G., Haxby, W. F., Karig, D. E., and Turcotte, D. L., 1976, On the applicability of a universal elastic trench profile, Earth Planet. Sci. Lett., v. 31, pp. 239–46.Google Scholar
Calmant, S., 1987, The elastic thickness of the lithosphere in the Pacific Ocean, Earth Planet. Sci. Lett., v. 85, pp. 277–88.Google Scholar
Calmant, S., and Cazenave, A., 1986, The effective elastic lithosphere under the Cook-Austral and Society islands, Earth Planet. Sci. Lett., v. 77, pp. 187202.Google Scholar
Calmant, S., Francheteau, J., and Cazenave, A., 1990, Elastic layer thickening with age of the oceanic lithosphere, Geophys. J., v. 100, pp. 5967.Google Scholar
Campanile, D., Nambiar, C. G., Bishop, P., Widdowson, M., and Brown, R., 2008. Sedimentation record in the Konkan-Kerala basin: Implications for the evolution of the Western Ghats and the Western Indian passive margin, Basin Research, v. 20, pp. 322, https://doi.org/10.1111/j.1365-2117.2007.00341.x.Google Scholar
Canals, M., Puig, P., Durrieu de Madron, X. et al. 2006, Flushing submarine canyons, Nature, v. 444, pp. 354–7, https://doi.org/10.1038/nature05271.Google Scholar
Canales, J. P., Dañobeitia, J. J., Detrick, R. S. et al. 1997, Variations in axial morphology along the Galápagos spreading center and the influence of the Galápagos hotspot, J. Geophys. Res., v. 102, pp. 27341–54.Google Scholar
Canales, J. P., Danobeitia, J. J., and Watts, A. B., 2000, Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands, J. Volcan. Geotherm. Res., v. 103, pp. 6581.Google Scholar
Caporali, A., 1995, Gravity anomalies and the flexure of the lithosphere in the Karakoram, Pakistan,J. Geophys. Res., v. 100, pp. 15075–85.Google Scholar
Caress, D. W., McNutt, M. K., Detrick, R. S., and Mutter, J. C., 1995, Seismic imaging of hotspot-related crustal underplating beneath the Marquesas Islands, Nature, v. 373, pp. 600–3.Google Scholar
Caristan, Y., 1982, The transition from high-temperature creep to fracture in Maryland diabase, J. Geophys. Res., v. 87, pp. 6781–90.Google Scholar
Carlson, R. L., and Raskin, G. S., 1984, The density of the ocean crust: Nature, v. 311, pp. 555–8.Google Scholar
Carr, M. H., 1974, Tectonism and volcanism of the Tharsis region of Mars, J. Geophys. Res., v. 79, pp. 3943–9.Google Scholar
Carslaw, H. S., and Jaeger, J. C., 1959, Heat Conduction in Solids, Oxford, Oxford University Press.Google Scholar
Carter, N. L., and Tsenn, M. C., 1987, Flow properties of continental lithosphere, Tectonophysics, v. 136, pp. 2763.Google Scholar
Cathles, L. M., 1975, The Viscosity of the Earth’s Mantle, Princeton, Princeton University Press, 386 pp.Google Scholar
Cattin, R., Martelet, G., Henry, P. et al. 2001. Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of Central Tibet, Geophys. J. Int., v. 147, pp. 381–92.Google Scholar
Cazenave, A., and Dominh, K., 1981, Elastic thickness of the Venus lithosphere, Geophys. Res. Lett., v. 8, pp. 1039–42.Google Scholar
Cazenave, A., and Dominh, K., 1984, Geoid heights over the Louisville Ridge (South Pacific), J. Geophys. Res., v. 89, pp. 11171–9.Google Scholar
Cazenave, A., Lago, B., Dominh, K., and Lambeck, K., 1980, On the response of the ocean lithosphere to seamount loads from Geos 3 satellite radar altimeter observations, Geophys. J. R. Astr. Soc., v. 63, pp. 233–52.Google Scholar
Cederborn, C. E., Sinclair, H. D., Schlunegger, F., and Rahn, M. K., 2004, Climate-induced rebound and exhumation of the European Alps, Geology, v. 32, pp. 709–12, https://doi.org/10.1130/G20491.1.Google Scholar
Chamberlin, R. T., 1931, Isostasy from the geological point of view, J. Geology, v. 39, pp. 1–23.Google Scholar
Champagnac, J. D., Molnar, P., and Anderson, R. S., 2007, Quaternary erosion-induced isostatic rebound in the western Alps, Geology, v. 35, pp. 195–8, https://doi.org/10.1130/G23053A.1.Google Scholar
Champagnac, J. D., van der Beek, P., Diraison, G., and Dauphin, S., 2008, Flexural isostatic response of the Alps to increased Quaternary erosion recorded by foreland basin remnants, SE France, Terra Nova, v. 20, pp. 213–20, https://doi.org/10.1111/j.1365-3121.2008.00809.x.Google Scholar
Chapman, L. G., 1954, An outlet of Lake Algonquin at Fossmill, Ontario, Proc. Geol. Assoc. Can., v. 6, pp. 61–8.Google Scholar
Chapman, M. E., and Bodine, J. H., 1984, Considerations of the indirect effect in marine gravity modelling, J. Geophys. Res., v. 84, pp. 3889–92.Google Scholar
Chappell, J., 1974, Late Quaternary glacio- and hydro-isostasy, on a layered Earth, Quatern. Res., v. 4, pp. 429–40.Google Scholar
Chapple, W. M., 1978, Mechanics of thin-skinned fold-and-thrust belts, Geol. Soc. Am. Bull., v. 89, pp. 1189–98.Google Scholar
Charvis, P., Laesanpura, A., Gallart, J. et al. 1999, Spatial distribution of hotspot material added to the lithosphere under La Réunion, from wide-angle seismic data, J. Geophys. Res., v. 104, pp. 2875–93.Google Scholar
Chen, W. P., and Molnar, P., 1983, Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere, J. Geophys. Res., v. 88, pp. 4183–214.Google Scholar
Chian, D., Louden, K. E., and Reid, I., 1995, Crustal structure of the Labrador Sea conjugate margin and implications for the formation of nonvolcanic continental margins, J. Geophys. Res., v. 100, pp. 24239–53.Google Scholar
Chopra, P. N., and Paterson, M. S., 1981, The experimental deformation of dunite, Tectonophysics, v. 78, pp. 453–73.Google Scholar
Cisne, J. L., 1984, Depth-dependant sedimentation and the flexural edge effect in epeiric seas: Measuring water depth relative to the lithosphere’s flexural wavelength,J. Geology, v. 93, pp. 567–76.Google Scholar
Cita, M. B., and Zocchi, M., 1978, Distribution patterns of benthic foraminifera on the floor of the Mediterranean Sea, Oceanologica Acta, v. 1, pp. 445–62.Google Scholar
Clague, D. A., and Jarrard, R. D., 1973, Tertiary Pacific Plate motion deduced from the Hawaiian – Emperor Chain, Geol. Soc. Am. Bull., v. 84, pp. 1135–54.Google Scholar
Clague, D. A., and Dalrymple, G. B., 1987, The Hawaiian-Emperor volcanic chain. Part I. Geologic evolution, in Decker, R. W., Wright, T. L., and Stauffer, P. H., eds., Volcanism in Hawaii, Chapter 1, U.S. Geological Survey Professional Paper 1350, pp. 554.Google Scholar
Clark, J. A., 1980, A numerical model of worldwide sea level changes on a viscoelastic Earth, in Morner, N.-A., ed., Earth Rheology, Isostasy and Eustasy, New York, John Wiley & Sons, pp. 525–34.Google Scholar
Clark, J. A., Farrell, W. E., and Peltier, W. R., 1978, Global changes in postglacial sea level, Quatern. Res., v. 9, pp. 265–87.Google Scholar
Clift, P. D., Turner, J., and Ocean Drilling Program Leg 152 Scientific Party, 1995, Dynamic support by the Icelandic plume and vertical tectonics of the northeast Atlantic continental margins, J. Geophys. Res., v. 100, pp. 24,47386.Google Scholar
Clift, P. D., and Lorenzo, , J. M., 1999, Flexural unloading and uplift along the cote d’Ivoire-Ghana transform margin, equatorial Atlantic, J. Geophys. Res., v. 104, pp. 25257–74.Google Scholar
Cloetingh, S., and Burov, E. B., 1996, Thermomechanical structure of European continental lithosphere: Constraints from rheological profiles and EET estimates, Geophys. J. Int., v. 124, pp. 695723.Google Scholar
Cloetingh, S. A. P. L., Wortel, M. J. R., and Vlaar, N. J., 1982, Evolution of passive continental margins and initiation of subduction zones, Nature, v. 297, pp. 139–42.Google Scholar
Cloetingh, S., Van Wees, J. D., van der Beek, P. A., and Spadini, G., 1995, Role of pre-rift rheology in kinematics of extensional basin formation: Constraints from thermomechanical models of Mediterranean and intracratonic basins, Mar. Pet. Geol., v. 12, pp. 793807.Google Scholar
Cloetingh, S., and Burov, E., 2011, Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms, Basin Research, v. 23, pp. 257–90, https://doi.org/10.1111/j.1365-2117.2010.00490.x.Google Scholar
Clouard, V., Campos, J., Lemoine, A., Perez, A., and Kausel, E., 2007. Outer rise stress changes related to the subduction of the Juan Fernandez Ridge, central Chile, J. Geophys. Res., v. 112, doi: https://doi:10.1029/2005JB003999.Google Scholar
Coakley, B. J., and Gurnis, M., 1995, Far-field tilting of Laurentia during the Ordovician and constraints on the evolution of a slab under an ancient continent, J. Geophys. Res., v. 100, pp. 6313–27.Google Scholar
Coakley, B. J., and Watts, A. B., 1991, Tectonic controls on the development of unconformities: The North Slope, Alaska, Tectonics, v. 10, pp. 101–30.Google Scholar
Cochran, J. R., 1973, Gravity and magnetic investigations in the Guiana Basin, Western Equatorial Atlantic, Geol. Soc. Am. Bull., v. 84, pp. 3249–68.Google Scholar
Cochran, J. R., 1979, An analysis of isostasy in the world’s oceans 2. Midocean ridge crests, J. Geophys. Res., v. 84, pp. 4713–29.Google Scholar
Cochran, J. R., 1980, Some remarks on isostasy and the long-term behavior of the continental lithosphere, Earth Planet. Sci. Lett., v. 46, pp. 266–74.Google Scholar
Cochran, J. R., 1981, Simple models of diffuse extension and the pre-seafloor spreading development of the continental margin of the northwestern Gulf of Alden, Proceedings of the 26th International Cong Symposium on Continental Margins, Oceanologica Acta, pp. 154–65.Google Scholar
Cochran, J. R., and Talwani, M., 1977, Free-air gravity anomalies in the world’s oceans and their relationship to residual elevation, Geophys. J. Roy. Astr. Soc., v. 50, pp. 495552.Google Scholar
Cogan, J., Rigo, L., Grasso, M., and Lerche, I., 1989, Flexural tectonics of southeastern Sicily,J. Geodyn., v. 11, pp. 189241.Google Scholar
Cohen, S. C., and Darby, D. J., 2003, Tectonic plate coupling and elastic thickness derived from the inversion of a steady state viscoelastic model using geodetic data: Application to southern North Island New Zealand, J. Geophys. Res., v. 108, https://doi.org/10.1029/2002JB001687.Google Scholar
Cohen, T. J., and Meyer, R. P., 1966, The midcontinent gravity high: Gross crustal structure, in Steinhardt, J. S., and Smith, T. J., eds., The Earth beneath the Continents, Monograph 10, Washington, DC, American Geophysical Union, pp. 141–65.Google Scholar
Coleman, J. M., 1988, Dynamic changes and processes in the Mississippi River delta, Geol. Soc. Amer. Bull., v. 100, pp. 9991015.Google Scholar
Collette, B. J., 1974, Thermal contraction joints in a spreading seafloor as origin of fracture zones, Nature, v. 251, pp. 299300.Google Scholar
Collier, J. S., and Watts, A. B. 2001. Lithospheric response to volcanic loading by the Canary Islands: Constraints from seismic reflection data in their flexural moats, Geophys. J. Int. v. 147, pp. 660–76Google Scholar
Comer, R. P., 1983, Thick plate flexure, Geophys. J. R. Astr. Soc., v. 72, pp. 101–13.Google Scholar
Comer, R. P., 1986, Comments on: ‘Thick-plate flexure re-examined’, Geophys. J. R. Astr. Soc., v. 85, pp. 467–8.Google Scholar
Comer, R. P., Solomon, S. C., and Head, J. W., 1985, Mars: Thickness of the lithosphere from the tectonic response to volcanic loads, Rev. Geophys. and Space Phys., v. 23, pp. 6192.Google Scholar
Conel, J. E., and Holstrom, G. B., 1968, Lunar mascons: A near-surface interpretation, Science, v. 162, pp. 1403–5.Google Scholar
Conte, S. D., and De Boor, C., 1965, Elementary Numerical Analysis, An Algorithmic Approach, New York, McGraw-Hill.Google Scholar
Contreras-Reyes, E., Grevemeyer, I., Watts, A. B. et al. 2010a, Crustal intrusion beneath the Louisville hotspot track, Earth and Planet. Sci. Lett., v. 289, pp. 323–33, https://doi.org/10.1016/j.epsl.2009.11.020.Google Scholar
Contreras-Reyes, E., and Osses, A., 2010b, Lithospheric flexure modelling seaward of the Chile trench: Implications for oceanic plate weakening in the trench outer rise region, Geophys. J. Int., v. 182, pp. 97112, https://doi.org/10.1111/j.1365-246X.2010.04629.x.Google Scholar
Corfield, R. I., Watts, A. B., and Searle, M. P., 2005, Subsidence of the North Indian Continental Margin, Zanskar Himalaya, NW India, J. Geol. Soc. London, v. 162, pp. 135–46.Google Scholar
Courtney, R. C., and Beaumont, C., 1983, Thermally-activated creep and flexure of the oceanic lithosphere, Nature, v. 305, pp. 201–4.Google Scholar
Cox, K. G., 1980, A model for flood basalt volcanism, J. Petrol., v. 21, pp. 629–50.Google Scholar
Cox, K. G., 1993, Continental magmatic underplating, Phil. Trans. R. Soc. Lond., v. 342, pp. 155–66.Google Scholar
Crisp, J. A. 1984, Rates of magma emplacement and volcanic output, Journal of Volcanology and Geothermal Research, v. 20, pp. 177211.Google Scholar
Crittenden, M. D., 1963, Effective viscosity of the Earth derived from isostatic loading of Pleistocene Lake Bonneville, J. Geophys. Res., v. 68, pp. 5517–30.Google Scholar
Crittenden, M. D., 1967, Viscosity and finite strength of the mantle as determined from water and ice loads, Geophys. J. R. Astr. Soc., v. 14, pp. 261–79.Google Scholar
Crosby, A. G., 2007, An assessment of the accuracy of admittance and coherence estimates using synthetic data, Geophys. J. Int., v. 171, pp. 2554, https://doi.org/10.1111/j.1365-246X.2007.03520.x.Google Scholar
Crosby, A. G., McKenzie, D., and Sclater, J. G., 2006, The relationship between depth, age and gravity in the oceans, Geophys. J. Int., v. 166, pp. 553–73, https://doi.org/10.1111/j.1365-246X.2006.03015.x.Google Scholar
Crucifix, M., Loutre, M.-F., Lambeck, K., and Berger, A., 2001, Effect of isostatic rebound on modelled ice volume variations during the last 200 kyr, Earth Planet. Sci. Letts., v. 184, pp. 623–33.Google Scholar
Curray, J. R., and Moore, D. G., 1971, Growth of the Bengal deep-sea fan and denudation in the Himalayas, Geol. Soc. Am. Bull., v. 82, pp. 563–72.Google Scholar
D’Agostino, A., and McKenzie, D., 1999, Convective support of long-wavelength topography in the Apennines (Italy), Terra Nova, v. 11, pp. 234–8.Google Scholar
Dalloubeix, C., Fleitout, L., and Diament, M., 1988, A new analysis of gravity and topography data over the Mid-Atlantic Ridge: Non-compensation of the axial valley, Earth Planet. Sci. Lett., v. 88, pp. 308–20.Google Scholar
Dalwood, R. E. T., 1996, A seismic study of lithospheric flexure in the vicinity of the Canary Islands, D.Phil. thesis, Oxford University.Google Scholar
Daly, E., Brown, C., Stark, C. P., and Ebinger, C. J., 2004, Wavelet and multitaper coherence methods for assessing the elastic thickness of the Irish Atlantic margin, Geophys. J. Int., v. 159, pp. 445–59, https://doi.org/10.1111/j.1365-246X.2004.02427.x.Google Scholar
Daly, M. C., Lawrence, S. R., Diemu-Tshiband, K., and Matouana, B., 1992, Tectonic evolution of the Cuvette Centrale, Zaire, J. Geol. Soc. Lond., v. 149, pp. 539–46.Google Scholar
Daly, R. A., 1934, The Changing World of the Ice Age, New Haven, CT, Yale University Press, 271 pp.Google Scholar
Daly, R. A., 1939, Regional departures from ideal isostasy, Bull. Geol. Soc. Am., v. 50, pp. 387420.CrossRefGoogle Scholar
Damuth, J. E., 1975, Amazon Cone: Morphology, sediments, age and growth pattern, Geol. Soc. Am. Bull., v. 86, pp. 863–78.Google Scholar
Dana, J. D., 1896, Manual of Geology, New York, American Book Co, 1087 pp.Google Scholar
Dañobeitia, J. J., Canales, J. P., and Dehghani, G. A., 1994, An estimation of the elastic thickness of the lithosphere in the Canary archipelago using admittance function, Geophys. Res. Lett., v. 21, pp. 2649–52.Google Scholar
Darwin, C. R., 1842, The Structure and Distribution of Coral Reefs. Being the First Part of the Geology of the Voyage of the Beagle, under the Command of Capt. Fitzroy, R.N. during the Years 1832 to 1836, London, Smith Elder and Co., https://bit.ly/3eFnA5g.Google Scholar
Darwin, C. R., 1844, Geological Observations on the Volcanic Islands Visited during the Voyage of H.M.S. Beagle, Together with Some Brief Notices of The Geology of Australia and the Cape of Good Hope. Being the Second Part of the Geology of the Voyage of the Beagle, under the Command of Capt. Fitzroy, R.N. during the Years 1832 to 1836, London, Smith Elder and Co., https://bit.ly/3euiMzq.Google Scholar
Darwin, G. H., 1908, On the stresses caused in the interior of the Earth by the weight of continents and mountains, in Scientific Papers, v. II, Tidal Friction and Cosmogony, Cambridge, Cambridge University Press, pp. 459514. https://bit.ly/3L7bEWc.Google Scholar
Davies, G. F., 1981, Regional compensation of subducted lithosphere: Effects on geoid, gravity and topography from a preliminary model, Earth Planet. Sci. Lett., v. 54, pp. 431–41.Google Scholar
De Bremaecker, J. C., 1977, Is the oceanic lithosphere elastic or viscous?, J. Geophys. Res., v. 82, pp. 2001–4.Google Scholar
De Rito, R. F., Cozzarelli, F. A., and Hodge, D. S., 1986, A forward approach to the problem of viscoelasticity and the thickness of the mechanical lithosphere, J. Geophys. Res., v. 91, pp. 8295–313.Google Scholar
DeCelles, P. G., and Giles, K. A., 1996, Foreland basin systems, Basin Research, v. 8, pp. 105–23.Google Scholar
DeCelles, P. G., Robinson, D. M., and Zandt, G., 2002, Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau, Tectonics, v. 21, https://doi.org/10.1029/2001TC001322.Google Scholar
Delaney, J. P., 1940, Leonardo da Vinci on isostasy, Science, v. 91, pp. 546–7.Google Scholar
de Lyndon, F., 1932, Discussion of ‘The isostasy of the Uinta Mountains’ by Andrew C. Lawson, J. Geology, v. 40, pp. 664–9.Google Scholar
Densmore, A. L., Yong, L., Ellis, M. A., and Rongjun, Z., 2005, Active tectonics and erosional unloading at the eastern margin of the Tibetan plateau, Journal of Mountain Science, v. 2, pp. 146–54.Google Scholar
Desegaulx, P., Kooi, H., and Cloetingh, S., 1991, Consequences of foreland basin development on thinned continental lithosphere: Application to the Aquitaine basin (SW France), Earth Planet. Sci. Lett., v. 106, pp. 116–32.Google Scholar
Detrick, R. S., 1981, An analysis of geoid anomalies across the Mendocino fracture zone: Implications for thermal models of the lithosphere, J. Geophys. Res., v. 86, pp. 11751–62.Google Scholar
Detrick, R. S., and Watts, A. B., 1979, An analysis of isostasy in the world’s oceans, 3. Aseismic ridges, J. Geophys. Res., v. 84, pp. 3637–53.Google Scholar
Dewey, J. F., and Bird, J. M., 1970, Mountain belts and the new global tectonics, J. Geophys. Res., v. 75, no. 14, pp. 2625–47.Google Scholar
Dewey, J. F., and Pitman, W. C., 1982, Late Palaeozoic basins of the southern U. S. continental interior, Phil. Trans. R. Soc., v. 305, pp. 145–8.Google Scholar
de Voogd, B., Palome, S. P., Hirn, A. et al., 1999. Vertical movements and material transport during hotspot activity: Seismic reflection profiling offshore La Reunion, J. Geophys. Res., 104, 2855–74.Google Scholar
Diament, M., Sibuet, J. C., and Hadaoui, A., 1986, Isostasy of the Northern Bay of Biscay continental margin, Geophys. J. R. Astr. Soc., v. 86, pp. 893907.Google Scholar
Dickinson, W. R., 1998, Geomorphology and geodynamics of the Cook-Austral Island-Seamount Chain in the South Pacific Ocean: Implications for hotspots and plumes, Int. Geol. Rev., v. 40, pp. 1039–75, https://doi.org/10.1080/00206819809465254.Google Scholar
Dickinson, W. R., 2001, Paleoshoreline record of relative Holocene sea levels on Pacific islands, Earth. Sci. Rev., v. 55, pp. 191234.Google Scholar
Dickinson, W. R., 2004, Picture essay of Pacific Island coasts, J. of Coastal Research, v. 204, pp. 1012–34.Google Scholar
Dickinson, W. R., and Green, R. C., 1998, Geoarchaeological context of Holocene subsidence at the ferry berth Lapita site, Mulifanua, Upolu, Somoa, Geoarchaeol., v. 13, pp. 239–63.Google Scholar
Dietz, R. S., 1961, Continent and ocean basin evolution by spreading of the sea floor, Nature, v. 190, pp. 854–7.Google Scholar
Ding, M., Lin, J., Gu, C., Huang, Q., and Zuber, M. T., 2019, Variations in Martian lithospheric strength based on gravity/topography analysis, J. Geophys. Res. Planets, v. 124, pp. 3095–118, https://doi.org/10.1029/2019JE005937.Google Scholar
Dixon, J. E., Dixon, T. H., Bell, D. R., and Malservisi, R., 2004, Lateral variation in upper mantle viscosity: role of Water, Earth Planet. Sci. Lett., v. 222, pp. 451–67.Google Scholar
Dorman, L. M., and Lewis, B. T. R., 1970, Experimental Isostasy 1: Theory of determination of the Earth’s response to a concentrated load, J. Geophys. Res., v. 75, pp. 3357–65.Google Scholar
Dorman, L. M., and Lewis, B. T. R., 1972, Experimental Isostasy 3: Inversion of the Isostatic Green Function and Lateral Density Changes, J. Geophys. Res., v. 77, pp. 3068–77.Google Scholar
Doucouré, C. M., de Wit, M. J., and Mushayandebru, M. F., 1996, Effective elastic thickness of the continental lithosphere in South Africa, J. Geophys. Res., v. 101, pp. 11291–303.Google Scholar
Downey, N. J., and Gurnis, M., 2009, Instantaneous dynamics of the cratonic Congo basin, J. Geophys. Res., v. 114, https://doi.org/10.1029/2008JB006066.Google Scholar
Driscoll, N. W., and Karner, G. D., 1994, Flexural deformation due to Amazon Fan loading: A feedback mechanism affecting sediment delivery to margins, Geology, v. 22, pp. 1015–18.Google Scholar
Dubois, J., Launay, J., and Recy, J., 1974, Uplift movements in New Caledonia – Loyalty Islands area and their plate tectonics interpretation, Tectonophysics, v. 24, pp. 133–50.Google Scholar
Dubois, J., Launay, J., and Recy, J., 1975, Some new evidence on lithospheric bulges close to island arcs, Tectonophysics, v. 26, pp. 189–96.Google Scholar
Duroy, Y., Farah, A., and Lillie, R. J., 1989, Subsurface densities and lithospheric flexure of the Himalayan foreland in Pakistan, in Malinconico, L. L., and Lillie, R. J., eds., Tectonics of the Western Himalaya, Special Paper 232, Geological Society of America, pp. 217–36.Google Scholar
Dutton, C. E., 1882, Physics of the Earth’s Crust by the Rev. Osmond Fisher, Am. J. Science, v. 23, no. 136, pp. 283–90.Google Scholar
Dutton, C. E., 1889, On some of the greater problems of physical geology, Bull. Phil. Soc. Washington, v. 2, pp. 5164.Google Scholar
Dykstra, M., 2005, Dynamics of submarine sediment mass-transport, from the shelf to the deep-sea, Ph.D. thesis, University of California, Santa Barbara.Google Scholar
Dyment, J., 1990, Some complimentary approaches to improve the deep seismic reflection studies in sedimentary basin environment, The Celtic Sea basin, in Pinet, B., and Bois, C., eds., The Potential of Deep Seismic Profiling for Hydrocarbon Exploration, Paris, Editions Technip, pp. 403–23.Google Scholar
Ebinger, C. J., and Hayward, N. J., 1996, Soft plates and hot spots: Views from Afar, J. Geophys. Res., v. 101, pp. 21,859–76.Google Scholar
Ebinger, C. J., Bechtel, T. D., Forsyth, D. W., and Bowin, C. O., 1989, Effective elastic plate thickness beneath the East African and Afar plateaus and dynamic compensation of the uplifts, J. Geophys. Res., v. 94, pp. 2883–901.Google Scholar
Ebinger, C. J., Crow, M. J., Rosendahl, B. R., Livingstone, D. A., and LeFournier, J., 1984, Structural evolution of Lake Malawi, Africa, Nature, v. 308, pp. 627–9.Google Scholar
Ebinger, C. J., Karner, G. D., and Weissel, J. K., 1991, Mechanical strength of extended continental lithosphere: Constraints from the western rift system, Tectonics, v. 10, pp. 1239–56.Google Scholar
Eddy, D. R., Van Avendonk, H. J. A., Christeson, G. L. et al. 2014, Deep crustal structure of the northeastern Gulf of Mexico: Implications for rift evolution and seafloor spreading, J. Geophys. Res., v. 119, pp. 6802–22, https://doi.org/10.1002/2014JB011311.Google Scholar
Eddy, D. R., Van Avendonk, H. J. A., Christeson, G. L., and Norton, I. O., 2018, Structure and origin of the rifted margin of the northern Gulf of Mexico Geosphere, v. 14, pp. 1804–17, https://doi.org/10.1130/GES01662.1.Google Scholar
Eldholm, O., Skogseid, J., Planke, S., and Gladczenko, T. P., 1995, Volcanic margin concepts, in Banda, E., Torné, M., and Talwani, M., eds., Rifted Ocean-Continent Boundaries, Dordrecht, Kluwer Academic Publishers, pp. 116.Google Scholar
Elliott, D., 1976, The motion of thrust sheets, J. Geophys. Res., v. 81, pp. 949–62.Google Scholar
Elliott, T., 1986, Deltas, in Reading, H. G., ed., Sedimentary Environments and Facies, Oxford, Blackwell Scientific Publications, pp. 113–54.Google Scholar
Emery, K. O., and Garrison, L. E., 1967, Sea level 7000 to 20,000 years ago, Science, v. 157, pp. 684–7.Google Scholar
England, P. C., 1981, Metamorphic pressure estimates and sediment volumes for the Alpine orogeny: An independent control on geobarometers, Earth Planet. Sci. Lett., v. 56, pp. 387–97.Google Scholar
England, P. C., and McKenzie, D. P., 1982, A thin viscous sheet model for continental deformation, Geophys. J. R. Astr. Soc., v. 70, pp. 295321.Google Scholar
Erickson, S. G., 1993, Sedimentary loading, lithospheric flexure, and subduction initiation at passive margins, Geology, v. 21, pp. 125–8.Google Scholar
Evangelidis, C. P., Minshull, T. A., and Henstock, T. J., 2004, Three-dimensional crustal structure of Ascension Island from active source seismic tomography, Geophys. J Int., v. 159, pp. 311–25, https://doi.org/10.1111/j.1365-246X.2004.02396.x.Google Scholar
Everest, G., 1847, An Account of the Measurement of Two Sections of the Meridional Arc of India, London, The Court of Directors of the Hon. East-India Company, Great Queen Street.Google Scholar
Farr, H. K., 1980, Multibeam bathymetric sonar: Sea beam and hydro chart, Marine Geodesy, v. 4, pp. 7793, https://doi.org/10.1080/15210608009379375.Google Scholar
Fan, G., Wallace, T. C., Beck, S. L., and Chase, C. G., 1996, Gravity anomaly and flexural model: Constraints on the structure beneath the Peruvian Andes, Tectonophysics, v. 255, pp. 99109.Google Scholar
Feighner, M. A., and Richards, M. A., 1994, Lithospheric structure and compensation mechanism of the Galápogos Arc, J. Geophys. Res., v. 99, pp. 6711–29.Google Scholar
Fernandez, J., Tizzani, P., Manzo, M. et al., 2009. Gravity-driven deformation of Tenerife measured by InSAR time series analysis, Geophysical Res. Lett., v. 36, https://doi.org/10.1029/2008GL036920.Google Scholar
Ferrari, A. J., 1977, Lunar gravity: A harmonic analysis, J. Geophys. Res., v. 82, pp. 3065–84.Google Scholar
Ferrari, A. J., and Bills, B. G., 1979, Planetary geodesy, Rev. Geophys. Space Phys., v. 17, pp. 1663–77.Google Scholar
Fielding, E., Isaacs, B., Barazangi, M., and Duncan, C., 1994, How flat is Tibet?, Geology, v. 22, pp. 163–7.Google Scholar
Filmer, P. E., and McNutt, M. K., 1989, Geoid anomalies over the Canary Islands group, Mar. Geophys. Res., v. 11, pp. 7787.Google Scholar
Fischer, K. M., McNutt, M. K., and Shure, L., 1986, Thermal and mechanical constraints on the lithosphere beneath the Marquesas swell: Nature, v. 322, pp. 733–6.Google Scholar
Fisher, O., 1881, Physics of the Earth’s Crust, London, Macmillan and Co.Google Scholar
Flemings, P. B., and Jordan, T. E., 1990, Stratigraphic modelling of foreland basins: Interpreting thrust deformation and lithosphere rheology, Geology, v. 18, pp. 430–4.Google Scholar
Flinch, J. F., Bally, A. W., and Wu, S., 1996, Emplacement of a passive-margin evaporitic allochthon in the Betic Cordillera of Spain, Geology, v. 24, pp. 6770.Google Scholar
Fluck, P., Hyndman, R. D., and Lowe, C., 2003. Effective elastic thickness Te of the lithosphere in western Canada, J. Geophys. Res., v. 108, https://doi.org/10.1029/2002JB002201.Google Scholar
Forsyth, D. W., 1975, The early structural evolution and anisotropy of the oceanic upper mantle, Geophys. J. R. Astr. Soc., v. 43, pp. 103–62.Google Scholar
Forsyth, D. W., 1985, Subsurface loading and estimates of the flexural rigidity of continental lithosphere, J. Geophys. Res., v. 90, pp. 12,62332.Google Scholar
Foucher, J. P., and Pichon, X. L., 1972, Comments on ‘Thermal effects of the formation of Atlantic continental margins by continental break up’ by N. H. Sleep, Geophys J. Roy. Astr. Soc., v. 29, 4346.Google Scholar
Fowler, C. M. R., and Nisbet, E. G., 1985, The subsidence of the Williston basin, Can. J. Earth Sci., v. 22, pp. 408–15.Google Scholar
Fowler, S. R., White, R. S., Spence, G. D., and Westbrook, G. K., 1989, The Hatton Bank continental margin – II. Deep structure from two-ship expanding spread seismic profiles, Geophys. J. Int., v. 96, pp. 295309.Google Scholar
Franke, D., 1968. Curvature of island arcs, Nature, v. 220, pp. 363–4.Google Scholar
Freedman, A. P., and Parsons, B., 1986. Seasat-derived gravity over the Musician seamounts, J. Geophys. Res., v. 91, pp. 8325–40Google Scholar
Frey, F. A., Clague, D., Mahoney, J. J., and Sinton, J. M., 2000, Volcanism at the edge of the Hawaiian Plume: Petrogenesis of submarine alkalic lavas from the North Arch volcanic field, J. of Petrology, v. 41, pp. 667–91.Google Scholar
Fulton, R. J., and Walcott, R. I., 1975, Lithospheric flexure as shown by deformation of glacial lake shorelines in southern British Columbia, Geol. Soc. Am. Memoir, v. 142, pp. 163–73.Google Scholar
Gadd, S. A., and Scrutton, R. A., 1997, An integrated thermomechanical model for transform continental margin evolution, Geo-Mar. Lett., v. 17, pp. 2130.Google Scholar
Galgana, G. A., McGovern, P. J., and Grosfils, E. B., 2009. Coupled models of lithospheric flexure and magma chamber pressurization at large volcanoes on Venus, Proceedings of the COMSOL Conference 2009 Boston, www.comsol.com/paper/download/44556/Galgana.pdf.Google Scholar
Gallart, J., Driad, L., Charvis, P. et al. 1999, Pertubation to the lithosphere along the hotspot track of La Réunion from an off-shore on-shore seismic transect, J. Geophys. Res., v. 104, pp. 2895–908.Google Scholar
Gangopadhyay, A., and Talwani, P., 2003, Symptomatic features of intraplate earthquakes, Seismological Research Letters, v. 74, pp. 864–82.Google Scholar
Garcia, M. O., Haskins, E. H., Stolper, E. M., and Baker, M., 2007, Stratigraphy of the Hawai‘i Scientific Drilling Project core (HSDP2): Anatomy of a Hawaiian shield volcano, Geochem. Geophys., v. 8, https://doi.org/10.1029/2006GC001379.Google Scholar
Garcia-Castellanos, D., 2002. Interplay between lithospheric flexure and river transport in foreland basins, Basin Research, 14, 89104.Google Scholar
Garcia-Castellanos, D., Fernandez, M., and Torné, M., 1997, Numerical modeling of foreland basin formation: A program relating thrusting, flexure, sediment geometry and lithosphere rheology, Computers & Geosciences, v. 23, pp. 9931003.Google Scholar
Garcia-Castellanos, D., Vergés, J., Gaspar-Escribano, J., and Cloetingh, S., 2003, Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia), J. Geophys. Res., v. 108, https://doi.org/10.1029/2002JB002073.Google Scholar
Garner, D. L., and Turcotte, D. L., 1984, The thermal and mechanical evolution of the Anadarko basin, Tectonophysics, v. 107, pp. 124.Google Scholar
Gaspar-Escribano, J. M., van Wees, J. D., ter Voorde, M. et al. 2001. Three-dimensional flexural modelling of the Ebro Basin (NE Iberia), Geophys. J. Int., v. 145, pp. 349–67.Google Scholar
Genova, A., Goossens, S., Lemoine, F. G. et al. 2016, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science, Icarus, v. 272, pp. 228–45, http://dx.doi.org/10.1016/j.icarus.2016.02.050.Google Scholar
Genova, A., Goossens, S., Mazarico, E. et al., 2019, Geodetic evidence that Mercury has a solid inner core, Geophys. Res. Letters, v. 46, pp. 3625–33, https://doi.org/10.1029/2018GL081135.Google Scholar
Gerrard, I., and Smith, G. C., 1982, Post-Paleozoic succession and structure of the south-western African continental margin, in Watkins, J. S., and Drake, C. L., eds., Studies in Continental Margin Geology, Tulsa, OK, American Association of Petroleum Geologists, pp. 4974.Google Scholar
Gibb, R. A., and Thomas, M. D., 1976, Gravity signature of fossil plate boundaries in the Canadian Shield, Nature, v. 262, pp. 199200.Google Scholar
Gibson, I. L., 1966, Crustal flexures and flood basalts, Tectonophysics, v. 3, pp. 447–56.Google Scholar
Gilbert, G. K., 1889, The strength of the Earth’s crust, Bull. Geol. Soc. Am., v. 1, pp. 23–7.Google Scholar
Gilbert, G. K., 1890, Lake Bonneville, United States Geological Survey Memoir v. 1, Washington, DC, Government Printing Office, 438 pp.Google Scholar
Gilbert, G. K., 1893, The Moon’s face, Bull. Phil. Soc. Washington, v. 12, pp. 241–92.Google Scholar
Gilbert, G. K., 1895a, New light on isostasy, J. Geol., v. 3, pp. 331–4.Google Scholar
Gilbert, G. K., 1895b, Notes on the gravity determinations reported by G. R. Putnam, Bull. Phil. Soc. Washington, v. 13, pp. 6175.Google Scholar
Gilbert, G. K., 1913, Interpretation of anomalies of gravity, U.S. Geol. Surv. Prof. Paper, v. 85, pp. 2937.Google Scholar
Gilchrist, A. R., and Summerfield, M. A., 1990, Differential denudation and flexural isostasy in formation of rifted-margin upwarps, Nature, v. 346, pp. 739–42.Google Scholar
Gilchrist, A. R., Summerfield, M. A., and Cockburn, H. A. P., 1994, Landscape dissection, isostatic uplift, and the morphologic development of orogens, Geology, v. 22, pp. 963–6.Google Scholar
Gilvarry, J. J., 1969, Nature of the lunar mascons, Nature, v. 221, pp. 732–6.Google Scholar
Girdler, R. W., 1963, Geophysical studies of rift valleys, Phys. Chem. Earth, v. 5, pp. 121–56.Google Scholar
Goetze, C., 1978, The mechanisms of creep in olivine, Phil. Trans. R. Soc. Lond., v. 288, pp. 99119.Google Scholar
Goetze, C., and Evans, B., 1979, Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. R. Astr. Soc., v. 59, pp. 463–78.Google Scholar
Gögüs, O. H., and Pysklywec, R. N., 2008, Near-surface diagnostics of dripping or delaminating lithosphere, J. Geophys. Res., v. 113, https://doi.org/10.1029/2007JB005123.Google Scholar
Golombek, M. P., and McGill, G. E., 1983, Grabens, basin tectonics, and maximum total expansion of the Moon, J. Geophys. Res., v. 88, pp. 3563–78.Google Scholar
Gong, S., Wieczorek, M. A., Nimmo, F. et al. 2016, Thicknesses of mare basalts on the Moon from gravity and topography, J. Geophys. Res. Planets, v. 121, pp. 854–70, https://doi.org/10.1002/2016JE005008.Google Scholar
Goodbred, S. L., and Kuehl, S. A., 2000, The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta, Sedimentary Geology, v. 133, pp. 227–48.Google Scholar
Goodwillie, A. M., and Watts, A. B., 1993, An altimetric and bathymetric study of elastic thickness in the central Pacific Ocean, Earth Planet. Sci. Lett., v. 118, pp. 311–26.Google Scholar
Goossens, S., Sabaka, T. J., Wieczorek, M. A. et al., 2020, High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust, J. Geophys. Res. Planets, v. 125, https://doi.org/10.1029/2019JE006086.Google Scholar
Gordon, R. G., 1998, The plate tectonic approximation: Plate nonrigidity, diffuse plate boundaries, and global plate reconstructions, Ann. Rev. Earth Planet. Sci., v. 26, pp. 615–42.Google Scholar
Got, J.-L., Monteiller, V., Monteux, J., Hassani, R., and Okubo, P., 2008, Deformation and rupture of oceanic crust may control growth of Hawaiian volcanoes, Nature, 451, 453–6, https://doi.org/10.1038/nature06481.Google Scholar
Govers, R., Meijer, P., and Krijgsman, W., 2009, Regional isostatic response to Messinian Salinity Crisis events, Tectonophysics, v. 463, pp. 109–29, https://doi.org/10.1016/j.tecto.2008.09.026.Google Scholar
Grand, S. P., and Helmberger, D. V., 1984, Upper mantle shear structure beneath the Northwest Atlantic Ocean, J. Geophys. Res., v. 89, pp. 11465–75.Google Scholar
Greely, R., 1994, Planetary Landscapes, New York, Chapman & Hall, 286 pp.Google Scholar
Greene, M. T., 1982, Geology in the Nineteenth Century, Ithaca, NY, Cornell University Press, 324 pp.Google Scholar
Greenlee, S. M., and Moore, T. C., 1988, Recognition and interpretation of depositional sequences and calculation of sea-level changes from stratigraphic data – offshore New Jersey and Alabama Tertiary, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. S. C., Posamentier, H. W., Ross, C. A., and Wagoner, J. C. V., eds., Sea-Level Changes: An Integrated Approach, Broken Arrow, OK, Society of Economic Paleontologists and Mineralogists, pp. 329–53.Google Scholar
Greenroyd, C. J., Peirce, C., Rodger, M., Watts, A. B., and Hobbs, R. W., 2008, Demerara Plateau – the structure and evolution of a transform passive margin, Geophys. J. Int., v. 172, pp. 549–64, https://doi.org/10.1111/j.1365-246X.2007.03662.x.Google Scholar
Grevemeyer, I., Weigel, W., Schussler, S., and Avedik, F., 2001. Crustal and upper mantle structure and lithospheric flexure along the Society Island hotspot chain, Geophys. J. Int., v. 147, pp. 123–40.Google Scholar
Grevemeyer, I., Kaul, N., Diaz-Naveas, J. L. et al., 2005, Heat flow and bending-related faulting at subduction trenches: Case studies offshore of Nicaragua and Central Chile, Earth Planet. Sci. Lett., v. 236, pp. 238–48, https://doi.org/10.1016/j.epsl.2005.04.048.Google Scholar
Grevemeyer, I., Ranero, C. R., and Ivandic, M., 2018, Structure of oceanic crust and serpentinization at subduction trenches, Geosphere, v. 14, pp. 395418, https://doi.org/10.1130/GES01537.1.Google Scholar
Grevemeyer, I., Rüpke, L. H., Morgan, J. P., Iyer, K., and Devey, C. W., 2021, Extensional tectonics and two-stage crustal accretion at oceanic transform faults, Nature, v. 591, pp. 402–7, https://doi.org/10.1038/s41586-021-03278-9.Google Scholar
Grigg, R. W., and Jones, A. T., 1997, Uplift caused by lithospheric flexure in the Hawaiian Archipelago as revealed by elevated coral deposits, Mar. Geol., v. 141, pp. 1125.Google Scholar
Grimm, R. E., and Solomon, S. C., 1988, Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient, J. Geophys. Res., v. 93, pp. 11191–929.Google Scholar
Grotzinger, J., and Royden, L., 1990, Elastic strength of the Slave craton at 1.9 Gyr and implications for the thermal evolution of the continents, Nature, v. 347, pp. 64–6.Google Scholar
Gubler, E., Kahle, H.-G., Klingelé, E., Mueller, S., and Oliver, R., 1981, Recent crustal movements in Switzerland and their geophysical interpretation, Tectonophysics, v. 71, pp. 125–52.Google Scholar
Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J., and Munch, J., 2020, Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus, Nature Geoscience, v. 13, pp. 547–54, https://doi.org/10.1038/s41561-020-0606-1.Google Scholar
Gunn, R., 1937, A quantitative study of mountain building on an unsymmetrical Earth, J. Franklin Inst., v. 224, pp. 1953.Google Scholar
Gunn, R., 1943a, A quantitative evaluation of the influence of the lithosphere on the anomalies of gravity, J. Franklin Institute, v. 236, pp. 4765.Google Scholar
Gunn, R., 1943b, A quantitative study of isobaric equilibrium and gravity anomalies in the Hawaiian Islands, J. Franklin Institute, v. 236, pp. 373–90.Google Scholar
Gunn, R., 1944, A quantitative study of the lithosphere and gravity anomalies along the Atlantic coast, J. Franklin Inst., v. 237, pp. 139–54.Google Scholar
Gunn, R., 1947, Quantitative aspects of juxtaposed ocean deeps, mountain chains and volcanic ranges, Geophysics, v. 12, pp. 238–55.Google Scholar
Gunn, R., 1949, Isostasy extended, J. Geol., v. 57, pp. 263–79.Google Scholar
Gunn, R., 1962, Autobiographical Notes, New York, American Institute of Physics.Google Scholar
Gurnis, M., 1990, Ridge spreading, subduction, and sea level fluctuations, Science, v. 250, pp. 970–72.Google Scholar
Gurnis, M., and Müller, R. D., 2003, Origin of the Australian-Antarctic Discordance from an ancient slab and mantle wedge, Geol. Soc. Amer. Special Papers, v. 372, pp. 417–29, https://doi.org/10.1130/0-8137-2372-8.417.Google Scholar
Haddad, D., and Watts, A. B. 1999, Subsidence history, gravity anomalies, and flexure of the northeast Australian margin in Papua New Guinea, Tectonics, v. 18, pp. 827–42.Google Scholar
Haddad, D., Watts, A. B., and Lindsay, J., 2001, Evolution of the intracratonic Officer Basin, central Australia: implications from subsidence analysis and gravity modelling, Basin Research, v. 13, pp. 217–38.Google Scholar
Hager, B. H., 1984, Subducted slabs and the geoid: Constraints on mantle rheology and flow, J. Geophys. Res., v. 89, pp. 6003–15.Google Scholar
Hager, B. H., Clayton, R. A., Richards, M. A., Cromer, R. P., and Dziewonski, A. M., 1985, Lower mantle heterogeneity, dynamic topography and the geoid, Nature, v. 313, pp. 541–5.Google Scholar
Hajnal, Z., Fowler, C. M. R., Mereu, R. F. et al., 1984, An initial analysis of the Earth’s crust under the Williston Basin: 1979 CO-CRUST experiment, J. Geophys. Res., v. 89, pp. 9381–400.Google Scholar
Hammer, P. T. C, Dorman, L. M., Hildebrand, J. A., and Cornuelle, B. D., 1994, Jasper seamount structure: Seafloor seismic refraction tomography, J. Geophys. Res., v. 99, pp. 6731–52.Google Scholar
Hampel, A., Karow, T., Maniatis, G., and Hetzel, R., 2010, Slip rate variations on faults during glacial loading and post-glacial unloading: implications for the viscosity structure of the lithosphere, J. Geol. Soc. London, v. 167, pp. 385–99, https://doi.org/10.1144/0016-76492008-137.Google Scholar
Hanks, T. C., 1971, The Kuril trench-Hokkaido rise system: Large shallow earthquakes and simple models of deformation, Geophys. J. R. Astr. Soc., v. 23, pp. 173–89.Google Scholar
Hansen, F. D., 1982, Semibrittle creep of selected crustal rocks at 1000 MPa, Ph.D. thesis, Texas A&M University, College Station.Google Scholar
Hansen, F. D., and Carter, N. L., 1983, Semibrittle creep of dry and wet Westerly granite at 1000 MPa, US Symposium on Rock Mechanics, 24th, Texas A&M University, College Station, pp. 429–47.Google Scholar
Haq, B. U., Harbenbol, J., and Vail, P. R., 1987, Chronology of fluctuating sea levels since the Triassic, Science, v. 235, pp. 1156–67.Google Scholar
Harris, R. N., and Chapman, D. S., 1994, A comparison of mechanical thickness estimates from trough and seamount loading in the southeastern Gulf of Alaska, J. Geophys. Res., v. 99, pp. 9297–317.Google Scholar
Harrison, J. C., and Brisbin, W. C, 1959, Gravity anomalies off the west coast of North America, 1: Seamount Jasper, Bull. Geol. Soc. Am., v. 70, pp. 929–34.Google Scholar
Harry, D. L., and Mickus, K. L., 1998, Gravity constraints on lithosphere flexure and the structure of the late Paleozoic Ouachita orogen in Arkansas and Oklahoma, south central North America, Tectonics, v. 17, pp. 187202.Google Scholar
Harry, D. L., Oldow, J. S., and Sawyer, D. S., 1995, The growth of orogenic belts and the role of crustal heterogeneities in decollement tectonics, Bull. Geol. Soc. Am., v. 107, pp. 1411–26.Google Scholar
Hartley, A. J., 2003, Andean uplift and climate change, J. Geol. Soc. London, v. 160, pp. 710.Google Scholar
Hartley, R., 1995, Isostasy of Africa: Implications for the thermo-mechanical behaviour of the continental lithosphere, D.Phil. thesis, Oxford University.Google Scholar
Hartley, R. W., and Allen, P. A., 1994, Interior cratonic basins of Africa: Relation to continental break-up and role of mantle convection, Basin Res., v. 6, pp. 95113.Google Scholar
Hartley, R., Watts, A. B., and Fairhead, J. D., 1996, Isostasy of Africa, Earth Planet. Sci. Lett., v. 137, pp. 118.Google Scholar
Haskell, N. A., 1935, The motion of a fluid under the surface load, Physics, v. 6, pp. 265–9.Google Scholar
Haskell, N. A., 1937, The viscosity of the asthenosphere, Am. J. Sci., v. 33, pp. 22–8.Google Scholar
Haxby, W. F., and Parmentier, E. M., 1988, Thermal contraction and the state of stress in the oceanic lithosphere, J. Geophys. Res., v. 93, pp. 6419–29.Google Scholar
Haxby, W. F., and Turcotte, D. L., 1978, On isostatic geoid anomalies, J. Geophys. Res. v. 83, pp. 5473–8.Google Scholar
Haxby, W. F., Turcotte, D. L., and Bird, J. M., 1976, Thermal and mechanical evolution of the Michigan Basin, Tectonophysics, v. 36, pp. 5775.Google Scholar
Haxby, W. F., and Weissel, J. K., 1986, Evidence for small-scale mantle convection from Seasat altimeter data, J. Geophys. Res., v. 91, 3507–20.Google Scholar
Hayford, J. F., 1909, The Figure of the Earth and Isostasy from Measurements in the United States, Washington, DC, Government Printing Office, 178 pp.Google Scholar
Hayford, J. F., and Bowie, W., 1912, The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity, Washington DC, Coast and Geodetic Service, Government Printing Office, 132 pp.Google Scholar
He, Y., Wen, L., and Zheng, T., 2006, Geographic boundary and shear wave velocity structure of the “Pacific anomaly” near the core-mantle boundary beneath the western Pacific, Earth Planet. Sci. Lett., v. 244, pp. 302–14, https://doi.org/10.1016/j.epsl.2006.02.007.Google Scholar
Head, J. W., Vorder Bruegge, R. W., and Crumpler, L. S., 1990, Venus orogenic belt environments: Architecture and origin, Geophys. Res. Lett., v. 17, pp. 1337–400.Google Scholar
Heard, H. C., and Carter, N. L., 1968, Experimentally induced ‘natural’ intragranular flow in quartz and quartzite, Am. J. Sci., v. 266, pp. 142.Google Scholar
Heezen, B. C, Tharp, M., and Ewing, M., 1959, The floors of the oceans 1. The North Atlantic Ocean, Geol. Soc. Am. Spec. Papers, v. 65, p. 122.Google Scholar
Hegarty, K. A., Weissel, J. K., and Mutter, J. C., 1988, Subsidence history of Australia’s Southern margin: Constraints on basin models, Am. Assoc. Pet. Geol., v. 72, pp. 615633.Google Scholar
Heine, C., Müller, R. D., Steinberger, B., and Torsvik, T. H., 2008, Subsidence in intracontinental basins due to dynamic topography, Phys. Earth Planet. Inter., v. 171, pp. 252–64, https://doi.org/10.1016/j.pepi.2008.05.008.Google Scholar
Heiskanen, W. A., 1931 , Isostatic tables for the reduction of gravimetric observations calculated on the basis of Airy’s hypothesis, Bull. Géodésique, v. 30, pp. 110–29.Google Scholar
Heiskanen, W. A., 1966, Isostasy, in Hedgpeth, J. W., ed., Encyclopedia of Science, New York, McGraw-Hill, pp. 776–82.Google Scholar
Heiskanen, W. A., and Vening Meinesz, F. A., 1958, The Earth and Its Gravity Field, New York, Toronto and London, McGraw-Hill, 470 pp.Google Scholar
Herschel, J., 1836, Letter to C. Lyell, in Babbage, C., ed., The Ninth Bridgewater Treatise, A Fragment, London, John Murray, pp. 202–17.Google Scholar
Hertz, H., 1884, On the Equilibrium of Floating Elastic Plates: Wiedmann’s Annalen, v. 22, pp. 449–55.Google Scholar
Hess, H., 1962, History of ocean basins, in Engel, A. E. J., James, H. L., and Leonard, B. F., eds., Petrologic Studies: A Volume in Honor of A. F. Buddington, Boulder, CO, Geological Society of America, pp. 599620.Google Scholar
Hetényi, M., 1979, Beams on Elastic Foundations, Ann Arbor, MI, University of Michigan Press, 255 pp.Google Scholar
Hetényi, G., Cattin, R., Vergne, J., and Nábêlek, J. L., 2006. The effective elastic thickness of the India plate from receiver function imaging, gravity anomalies and thermomechanical modelling, Geophys. J. Int., v. 167, pp. 1106–18, https://doi.org/10.11/j.365-246X.2006.03198.x.Google Scholar
Hieronymus, C. F., and Bercovici, D., 2000, Non-hotspot formation of volcanic chains: control of tectonic and flexural stresses on magma transport, Earth Planet. Sci. Lett., v. 181, pp. 539–54.Google Scholar
Higgins, S. A., Overeem, I., Steckler, M. S. et al., 2014, InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh, v. 119, pp. 1768–81, https://doi.org/10.1002/2014JF003117.Google Scholar
Hildenbrand, A., Gillot, P.-Y., and Le Roy, I., 2004, Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia), Earth Planet. Sci. Lett., v. 217, 349–65, https://doi.org/10.1016/S0012-821X(03)00599-5.Google Scholar
Hill, K. C., 1991, Structure of the Papuan Fold Belt, Papua New Guinea, Am. Assoc. Pet. Geol., v. 75, pp. 857–72.Google Scholar
Hillaire-Marcel, C., and Fairbridge, R. W., 1978, Isostasy and eustasy in Hudson Bay, Geology, v. 7, pp. 117–22.Google Scholar
Hillier, J. K., and Watts, A. B., 2007, Global distribution of seamounts from ship-track bathymetry data, Geophys. Res. Letts., v. 34, https://doi.org/10.1029/2007GL029874.Google Scholar
Hinojosa, J. H., and Mickus, K. L., 2002, Thermoelastic modeling of lithospheric uplift: A finite difference numerical solution, Computers & Geosciences, v. 28, pp. 155–67.Google Scholar
Hinz, K., 1981, A hypothesis on terrestrial catastrophes: Wedges of very thick oceanward dipping layers beneath passive margins – their origin and paleoenvironment significance, Geol. Jahrb., v. E22, pp. 345–63.Google Scholar
Hinze, W. J., Allen, D. J., Fox, A. J. et al. 1992. Geophysical investigations and crustal structure of the North American Midcontinent Rift system, Tectonophysics, v. 213, 1732.Google Scholar
Hirano, M., 1976, Mathematical model and the concept of equilibrium in connection with slope shear ratio, Z. Geomorph. N. F., Suppl. Bd, v. 25, pp. 5071.Google Scholar
Hirano, N. Takahashi, E., Yamamoto, J. et al., 2006, Volcanism in response to plate flexure, Science, v. 313, https://doi.org/10.1126/science.1128235.Google Scholar
Hiroa, T. R., 1957, Arts and Crafts of Hawaii, Honolulu, HI, B. P. Bishop Museum Press, pp. 369–72.Google Scholar
Hirth, G., and Kohlstedt, D. L., 2003. The rheology of the upper mantle and the mantle wedge: a view from the experimentalists, in Eiler, J., ed., Inside the Subduction Factory, AGU Geophysical Monograph Series, v. 138, Washington, DC, American Geophysical Union, pp. 83105.Google Scholar
Hoernle, K., Hauff, F., Werner, R. et al., 2011, Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere, Nature Geoscience, 4, 883–87, https://doi.org/10.1038/NGEO1331.Google Scholar
Hoffmann, G., Silver, E., Day, S., Driscoll, N., and Appelgate, B., 2010, Drowned carbonate platforms in the Bismarck Sea, Papua New Guinea, Marine Geophysical Researches, https://doi.org/10.1007/s11001-010-9079-8.Google Scholar
Holeman, J. H., 1968, The sediment yield of the major rivers of the world, Water Resources Res., v. 4, pp. 737–47.Google Scholar
Holmes, A., 1931. Radioactivity and earth movements. Trans. Geol. Soc. Glasgow, v. 18, pp. 559606.Google Scholar
Holt, W. E., and Stern, T. A., 1991, Sediment loading on the western platform of the New Zealand continent: Implications for the strength of a continental margin, Earth Planet. Sci. Lett., v. 107, pp. 523–38.Google Scholar
Holt, W. E., and Stern, T. A., 1994, Subduction, platform subsidence, and foreland thrust loading: The late Tertiary development of Taranaki Basin, New Zealand, Tectonics, v. 13, pp. 1068–92.Google Scholar
Hood, L. L., Mitchell, D. L., Lin, R. P., Acuna, M. H., and Binder, A. B., 1999, Initial measurements of the lunar induced magetic dipole moment using lunar prospector magnetometer data, Geophys. Res. Letters, v. 26, pp. 2327–30.Google Scholar
Hoogenboom, T., and Houseman, G. A., 2006, Rayleigh-Taylor instability as a mechanism for corona formation on Venus, Icarus, v. 180, pp. 292307, https://doi.org/10.1016/j.icarus.2005.11.001.Google Scholar
Hoogenboom, T., Smrekar, S. E., Anderson, F. S., and Houseman, G., 2004. Admittance survey of type 1 coronae on Venus, J. Geophys. Res., 109, https://doi.org/10.1029/2003JE002171.Google Scholar
Hospers, J., 1965, Gravity field and structure of the Niger Delta, West Africa, Geol. Soc. Am. Bull., v. 76, pp. 407–22.Google Scholar
Houtz, R. E., Ludwig, W. J., Milliman, J. D., and Grow, J. A., 1978, Structure of the northern Brazilian continental margin, Geol. Soc. Am. Bull., v. 88, pp. 711–19.Google Scholar
Huang, P. Y., and Solomon, S. C., 1988, Centroid depths of mid-ocean ridge earthquakes; dependance on spreading rate, J. Geophys. Res., v. 93, pp. 13445–77.Google Scholar
Huang, J., and Zhong, S., 2005, Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model, J. Geophys. Res., v. 110, https://doi.org/10.1029/2004JB003153.Google Scholar
Huang, Q., Xiao, Z., and Xiao, L., 2014, Subsurface structures of large volcanic complexes on the nearside of the Moon: A view from GRAIL gravity, Icarus, v. 243, pp. 4857, https://doi.org/10.1016/j.icarus.2014.09.009.Google Scholar
Hulme, G., 1972, Mascons and isostasy, Nature, v. 238, pp. 448–50.Google Scholar
Hunter, J., and Watts, A. B., 2016, Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches, Geophys. J. Int., v. 207, pp. 288316, https://doi.org/10.1093/gji/ggw275.Google Scholar
Hutchinson, D. R., Golmshtok, A. J., Zonenshain, L. P. et al., 1992, Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data, Geology, v. 20, pp. 589–92.Google Scholar
Hyndman, R. D., Christensen, N. I., and Drury, M. J., 1979, Seismic velocities, densities, electrical resistivities, porosities and thermal conductivities of core samples from boreholes into the islands of Bermuda and the Azores, in Talwani, M., Harrison, C. G., and Hayes, D. E., eds., Deep Drilling Results in the Atlantic Ocean: Oceanic Crust, Maurice Ewing Series 2, Washington, DC, American Geophysical Union Monograph, pp. 94112.Google Scholar
Illies, J. H., 1970, Graben tectonics as related to crust-mantle interaction, in Illies, J. H., and Mueller, S., eds., Graben Problems, Stuttgart, Schweizerbart’sche Verlagsbuchhandlung, pp. 426.Google Scholar
Ito, G., McNutt, M. K., and Gibson, R. L., 1995, Crustal structure of the Tuamotu Plateau, 15°S, and implications for its origin, J. Geophys. Res., v. 100, pp. 8097–114.Google Scholar
Ito, G., and Taira, A., 2000, Compensation of the Ontong Java Plateau by surface and subsurface loading, J. Geophys. Res., v. 105, pp. 11171–83.Google Scholar
Iwasaki, T., and Matsu’ura, M., 1982, Quasi-static crustal deformations due to a surface load: Rheological structure of the Earth’s crust and upper mantle, J. Phys. Earth, v. 30, pp. 469508.Google Scholar
Jackson, J., 2002, Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today, v. September, pp. 410, doi: https://doi.org/10.1130/1052-5173(2002)012<0004:SOTCLT>2.0.CO;2.2.0.CO;2.>Google Scholar
Jackson, M., and Bilham, R., 1994, Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet, J. Geophys. Res., v. 99, pp. 13,897–912, https://doi.org/10.1029/94JB00714.Google Scholar
Jacobi, R. D., 1981, Peripheral bulge – a causal mechanism for the Lower/Middle Ordovician unconformity along the western margin of the Northern Appalachians, Earth Planet. Sci. Lett., v. 56, pp. 245–51.Google Scholar
Jaeger, J. C., 1969, Elasticity, Fracture and Flow with Engineering and Geological Applications, Frome and London, Menthuen & Co. Ltd and Science Paperbacks, 268 pp.Google Scholar
James, D. E., 1971, Andean crustal and upper mantle structure, J. Geophys. Res., v. 76, pp. 3246–71.Google Scholar
James, E. A., and Evans, P. R., 1971, The stratigraphy of the offshore Gippsland basin, Aust. Pet. Exp. Assoc. J., v. 11, pp. 71–4.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J., and Solomon, S. C., 2015, Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography, J. Geophys. Res. Planets, v. 120, pp. 287310, https://doi.org/10.1002/2014JE004713.Google Scholar
James, T. S., 1992, The Hudson Bay free-air gravity anomaly and glacial rebound, Geophys. Res. Lett., v. 19, pp. 861–4.Google Scholar
Janle, P., 1981, A crustal model of the mare Serenitatis, J. Geophys., v. 49, pp. 5765.Google Scholar
Jarrard, R. D., and Turner, D. L., 1979, Comments on ‘Lithospheric flexure and uplifted atolls’ by M. K. McNutt and H. W. Menard, J. Geophys. Res., v. 84, pp. 5691–4.Google Scholar
Jeffreys, H., 1926, On the nature of isostasy, Beitrage zur Geophysik, v. XV, no. Heft 2, pp. 153–74.Google Scholar
Jeffreys, H., 1928, Isostasy by William Bowie, Geol. Mag., v. 65, 279–82, https://doi.org/210.1017/S0016756800107745.Google Scholar
Jeffreys, H., 1954, Types of isostatic adjustment, Am. J. Sci., v. 243-A (Daly volume), pp. 352–9.Google Scholar
Jiang, X., Jin, Y., and McNutt, M. K., 2004. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys, J. Geophys. Res., v. 109, https://doi.org/10.1029/2003JB002444.Google Scholar
Jiménez-Díaz, A., Ruiz, J., Kirby, J. F. et al., 2015, Lithospheric structure of Venus from gravity and topography, Icarus, v. 260, pp. 215–31, https://doi.org/10.1016/j.icarus.2015.07.020.Google Scholar
Jiménez-Munt, I., Fernàndez, M., Saura, E., Vérges, J., and Garcia-Castellanos, D., 2012, 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran), Geophys. J. Int., v. 190, pp. 1311–24, https://doi.org/10.1111/j.1365-246X.2012.05580.x.Google Scholar
Jin, Y., McNutt, M. K., and Zhu, Y., 1994, Evidence from gravity and topography data for folding in Tibet: Nature, v. 371, pp. 669–74.Google Scholar
Johnson, C. L., and Sandwell, D. T., 1994, Lithospheric flexure on Venus, Geophys. J. Int., v. 119, pp. 627–47.Google Scholar
Johnson, M. E., Baarli, B. G., Cachão, M. et al., 2012, Rhodoliths, uniformitarianism, and Darwin: Pleistocene and Recent carbonate deposits in the Cape Verde and Canary archipelagos, Paleogeography, Paleoclimatology, Paleoecology, v. 329–330, pp. 83100, https://doi.org/10.1016/j.palaeo.2012.02.019.Google Scholar
Johnson, M. R. W., 1981, The erosion factor in the emplacement of the Keystone thrust sheet (South East Nevada) across a land surface, Geol. Mag., v. 118, pp. 501–7.Google Scholar
Jordan, T. A., and Watts, A. B., 2005, Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system, Earth Planet. Sci. Lett., v. 236, 732–50, https://doi.org/10.1016/j.epsl.2005.05.036.Google Scholar
Jordan, T. E., 1981, Thrust loads and foreland basin evolution, Cretaceous, western United States, Am. Assoc. Pet. Geol. Bull, v. 65, pp. 2506–20.Google Scholar
Judge, A. V., and McNutt, M. K., 1991, The relationship between plate curvature and elastic plate thickness: A study of the Peru-Chile trench, J. Geophys. Res., v. 96, pp. 16625–40.Google Scholar
Jurkowski, G., Ni, J., and Brown, L., 1984, Modern uparching of the Gulf coastal plain, J. Geophys. Res., v. 89, 6247–55.Google Scholar
Kalnins, L. M., and Watts, A. B., 2009, Spatial variations in effective elastic thickness in the western Pacific Ocean and their implications for Mesozoic volcanism, Earth and Planet. Sci. Lett., v. 286, pp. 89100, https://doi.org/10.1016/j.epsl.2009.06.018.Google Scholar
Kamp, P. J. J., and Tippett, J. M., 1993, Dynamics of Pacific Plate crust in the South Island (New Zealand) zone of oblique continent-continent convergence, J. Geophys. Res., v. 98, pp. 16,105–18.Google Scholar
Kanamori, H., 1971, Great earthquakes at island arcs and the lithosphere, Tectonophysics, v. 12, pp. 187–98.Google Scholar
Karato, S., and Wu, P., 1993, Rheology of the upper mantle, Science, v. 260, pp. 771–8.Google Scholar
Karato, S., Paterson, M. S., and FitzGerald, J. D., 1986, Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., v. 91, pp. 8151–76.Google Scholar
Karner, G. D., 1982, Spectral representation of isostatic models, BMR J. Australian Geol. Geophys., v. 7, pp. 5562.Google Scholar
Karner, G. D., and Watts, A. B., 1982, On isostasy at Atlantic-type continental margins, J. Geophys. Res., v. 87, pp. 2923–48.Google Scholar
Karner, G. D., and Watts, A. B., 1983, Gravity anomalies and flexure of the lithosphere at mountain ranges, J. Geophys. Res., v. 88, pp. 10449–77.Google Scholar
Karner, G. D., and Weissel, J. K., 1990, Factors controlling the location of compressional deformation of oceanic lithosphere in the Central Indian Ocean, J. Geophys. Res., v. 95, pp. 19,795–810.Google Scholar
Karner, G. D., Egan, S. S., and Weissel, J. K., 1992, Modeling the tectonic development of the Tucano and Sergipe-Alagonas rift basins, Brazil, Tectonophysics, v. 215, pp. 133–60.Google Scholar
Karner, G. D., Steckler, M. S., and Thorne, J., 1983, Long-term mechanical properties of the continental lithosphere, Nature, v. 304, pp. 250–3.Google Scholar
Katayama, I., and Karato, S.-I., 2008. Low-temperature, high stress deformation of olivine under water-saturated conditions, Phys. Earth Planet. Inter., 168, 125–33, https://doi.org/10.1016/j.pepi.2008.05.019.Google Scholar
Kaula, W. M., 1967, Geophysical implications of satellite determinations of the Earth’s gravitational field, Space Science Reviews, v. 7, pp. 769–94.Google Scholar
Kawakatsu, H., Kumar, P., Takei, Y. et al., 2009, Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science, v. 324, pp. 499502, https://doi.org/10.1126/science.1169499.Google Scholar
Kay, J. P., and Dombard, A. J., 2019, Long-wavelength topography on Mercury is not from folding of the lithosphere, Icarus, v. 319, pp. 724–8, https://doi.org/10.1016/j.icarus.2018.09.040.Google Scholar
Kay, M., 1947, Geosynclinal nomenclature and the Craton, Bull. Amer. Asoc. Pet. Geologists, v. 31, pp. 1289–93.Google Scholar
Kearney, J., 2011, George Rockwell Putnam, Lighthouse DIGEST, July/August, East Machias, ME, Foghorn Publishing, https://shop.foghornpublishing.com/product-category/magazine-subscription.Google Scholar
Keen, C. E., and Dehler, S. A., 1997, Extensional styles and gravity anomalies at rifted continental margins: Some North Atlantic examples, Tectonics, v. 16, pp. 744–54.Google Scholar
Keen, C. E., Keen, M. J., Barrett, D. L., and Heffler, D. G., 1975, Some aspects of the ocean-continent transition at the continental margin of eastern North America, in Offshore Geology of Eastern Canada, Ottawa, Geological Survey of Canada, Department of Energy, Mines and Resources, pp. 189–97.Google Scholar
Kelemen, P. B., and Holbrook, W. S., 1995, Origin of thick, high-velocity igneous crust along the East Coast Margin, J. Geophys. Res., v. 100, pp. 10077–94.Google Scholar
Ker, R. A., 1994, A new portrait of Venus: thick-skinned and decrepit, Science, v. 263, pp. 759–60.Google Scholar
Kim, C. H., Park, C. H., Jeong, E. Y. et al., 2009. Flexural isostasy and loading sequence of the Dokdo seamounts on the Ulleung Basin in the East Sea (Sea of Japan), J. of Asian Earth Sciences, v. 35, pp. 459–68, https://doi.org/10.1016/j.jseaes.2009.02.009.Google Scholar
Kim, S.-S., and Wessel, P., 2010, Flexure modelling at seamounts with dense cores, Geophysical J. Int., v. 182, Issue 2, https://doi.org/10.1111/j.1365-1246X.2010.04653.x.Google Scholar
King-Hubbert, M., and Melton, F. A., 1930, Isostasy: A critical review, J. Geol., v. 38, pp. 673–95.Google Scholar
Kinsman, D. J. J., 1975, Rift valley basins and sedimentary history of trailing continental margins, in Fischer, A. G., and Judson, S., eds., Petroleum and Global Tectonics, Princeton, Princeton University Press, pp. 83126.Google Scholar
Kirby, S. H., and Kronenberg, A. K., 1987, Rheology of the lithosphere: Selected topics, Rev. Geophys., v. 25, pp. 1219–44.Google Scholar
Kirby, J. F., and Swain, C. J., 2009, A reassessment of spectral Te estimation in continental interiors: The case of North America, J. Geophys. Res., v. 114, https://doi.org/10.1029/2009JB006356.Google Scholar
Kirby, J. F., and Swain, C. J., 2011, Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform, Computers & Geosciences, v. 37, pp. 1345–54, https://doi.org/10.1016/j.cageo.2010.10.008.Google Scholar
Kirby, J. F., and Swain, C. J., 2014, The long-wavelength admittance and effective elastic thickness of the Canadian Shield, J. Geophys. Res., v. 119, pp. 5187–214, https://doi.org/10.1002/2013JB010578.Google Scholar
Kjeldstad, A., Skogseid, J., Langtangen, H. P., Bjørlykke, K., and Høeg, K., 2003, Differential loading by prograding sedimentary wedges on continental margins: An arch-forming mechanism, J. Geophys. Res., v. 108, https://doi.org/10.1029/2001JB001145.Google Scholar
Klein, A., Jacoby, W., and Smilde, P., 1997, Mining-induced crustal deformation in northwest Germany: modelling the rheological structure of the lithosphere, Earth Planet. Sci. Lett., v. 147, pp. 107–23.Google Scholar
Klemann, V., Martinec, Z., and Ivins, E. R., 2008, Glacial isostasy and plate motion, Journal of Geodynamics, v. 46, pp. 95103, https://doi.org/10.1016/j.jog.2008.04.005.Google Scholar
Kley, J., and Monaldi, C. R., 1998, Tectonic shortening and crustal thickness in the Central Andes, Geology, v. 26, pp. 723–6.Google Scholar
Klitgord, K. D., Hutchinson, D. R., and Schouten, H., 1988, US Atlantic continental margin: Structural and tectonic framework., in Sheridan, R. E., and Grow, J. A., eds., The Atlantic Continental Margin, Boulder, CO, Geological Society of America, pp. 1956.Google Scholar
Kobayashi, K., Nakanishi, M., Tamaki, K., and Ogawa, Y., 1998, Outer slope faulting associated with the western Kuril and Japan trenches, Geophys. J. Int., v. 134, pp. 356–72.Google Scholar
Kocks, W. F., 1975. Thermodynamics and Kinetics of Slip, Progress in Materials Science Thermodynamics and Kinetics of Slip, v. 19, Oxford, UK, Pergamon Press.Google Scholar
Kogan, M. G., and McNutt, M. K., 1987, Isostasy in the USSR I: Admittance data, in Fuchs, K., and Froidevaux, C., eds., Composition, Structure, and Dynamics of the Lithosphere-Asthenosphere System, Geodynamics Series, v. 16, Washington, DC, American Geophysical Union, pp. 301–7.Google Scholar
Kogan, M. G., Fairhead, J. D., Balmino, G., and Makedonskii, E. L., 1994, Tectonic fabric and lithospheric strength of northern Eurasia based on gravity data, Geophys. Res. Lett., v. 21, pp. 2653–6.Google Scholar
Kooi, H., Cloetingh, S., and Burrus, J., 1992, Lithospheric necking and regional isostasy at extensional basins 1. Subsidence and gravity modeling with an application to the Gulf of Lions Margin (SE France), J. Geophys. Res., v. 97, pp. 17553–71.Google Scholar
Koppers, A. A. P., Staudigel, H., Christie, D. M., Dieu, J. J., and Pringle, M. S., 1995, Sr-Nd-Pb isotope geochemistry of leg 144 West Pacific guyots: implications for the geochemical evolution of the “SOPITA” mantle anomaly, in Haggerty, L. A., Premoli Silva, I., Rack, F., and McNutt, M. K., eds., Proceedings of the Ocean Drilling Project Scientific Results, v. 144, pp. 535–45.Google Scholar
Koppers, A. A. P., Staudigel, H., Wijbrans, J. R., and Pringle, M. S., 1998, The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion, Earth Planet. Sci. Lett., v. 163, pp. 5368.Google Scholar
Korstgard, J. A., and Lerche, I., 1992, Flexural plate representation of Danish Central Graben evolution, J. Geodyn., v. 16, pp. 181209.Google Scholar
KRISP Working Party, 1991, Large-scale variation in lithospheric structure along and across the Kenya rift, Nature, v. 354, pp. 223–7.Google Scholar
Kristoffersen, Y., and Talwani, M., 1977, Extinct triple junction south of Greenland relative to North America, Geol. Soc. Am. Bull., v. 88, pp. 1037–49.Google Scholar
Kruse, S. E., and McNutt, M. K., 1988, Compensation of Paleozoic orogens: A comparison of the Urals to the Appalachians, Tectonophysics, v. 154, pp. 117.Google Scholar
Kruse, S. E., and Royden, L. H., 1994, Bending and unbending of an elastic lithosphere: The Cenozoic history of the Apennine and Dinaride foredeep basins, Tectonics, v. 13, pp. 278302.Google Scholar
Kruse, S. E., Liu, Z. J., Naar, D. F., and Duncan, R. A., 1997, Effective elastic thickness of the lithosphere along the Easter Seamount Chain, J. Geophys. Res., v. 102, pp. 27305–17.Google Scholar
Kuckes, A. F., 1977, Strength and rigidity of the elastic lunar lithosphere and implications for present-day mantle convection in the Moon, J. Phys. Earth Planet. Int., v. 14, pp. 112.Google Scholar
Kuhn, M., 2003, Geoid determination with density hypotheses from isostatic models and geological information, J. Geodesy, v. 77, pp. 5065, https://doi.org/10.1007/s00190-002-0297-y.Google Scholar
Kumar, N., Leyden, R., Carvalho, J., and Francisconi, O., 1979, Sediment Isopach Map: Brazilian Continental Margin, Tulsa, OK, American Association of Petroleum Geologists.Google Scholar
Kunze, A. W. G., 1976, Evidence for isostasy in the lunar mascon maria, The Moon, v. 15, pp. 415–19.Google Scholar
Kuo, B. Y., and Forsyth, D. W., 1988, Gravity anomalies of the ridge-transform system in the south Atlantic between 31 and 34. 5°S: Upwelling centers and variations in crustal thickness, Mar. Geophys. Res., v. 10, pp. 205–32.Google Scholar
Kuo, B. Y., and Parmentier, E. M., 1986, Flexure and thickening of the lithosphere at the East Pacific Rise, Geophys. Res. Lett., v. 13, pp. 681–4.Google Scholar
Kusznir, N. J., and Egan, S. S., 1990, Simple-shear and pure-shear models of extensional sedimentary basin formation: Application to the Jean d’Arc basin, Grand Banks of Newfoundland, in Tankard, A. J., and Blackwill, H. R., eds., Extensional Tectonics of the North Atlantic margins, Memoir 46, Tulsa, OK, American Association of Petroleum Geologists, pp. 305–22.Google Scholar
Kusznir, N. J., Marsden, G., and Egan, S. S., 1991, A flexural-cantilever simple-shear/pure-shear model of continental lithosphere extension: Applications to the Jeanne d’Arc basin, Grand Banks and Viking Graben, North Sea, in Roberts, A. M., Yielding, G., and Freeman, B., eds., The Geometry of Normal Faults, v. 56, Spec. Publ. Geological Society of London, pp. 4160.Google Scholar
Lago, B., and Cazenave, A., 1981, State of stress in the oceanic lithosphere in response to loading, Geophys. J. R. Astr. Soc, v. 64, pp. 785–99.Google Scholar
Lago, B., and Rabinowicz, M., 1984, Admittance for a convection in a layered spherical shell, Geophys. J. R. Astr. Soc., v. 77, pp. 461–82.Google Scholar
Lallemand, S., Culotta, R., and von Huene, R., 1989, Subduction of the Daiichi Kashima seamount in the Japan trench, Tectonophysics, v. 160, pp. 231–47.Google Scholar
Lamb, S., 2002, Is it all in the crust? Nature, v. 420, pp. 130–1.Google Scholar
Lamb, S., and Hoke, L., 1997, Origin of the high plateau in the Central Andes, Bolivia, South America, Tectonics, v. 16, pp. 623–49.Google Scholar
Lamb, S., Moore, J. D. P., Pérez-Gussinyé, M., and Stern, T., 2020, Global whole lithosphere isostasy: Implications for surface elevations, structure, strength, and densities of the continental lithosphere, geochemistry, geophysics, Geosystems, v. 21, https://doi.org/10.1029/2020GC009150.Google Scholar
Lambeck, K., 1972, Gravity anomalies over Ocean Ridges, Geophys. J. R. Astr. Soc., v. 30, pp. 3753.Google Scholar
Lambeck, K., 1981a, Flexure of the ocean lithosphere from island uplift, bathymetry and geoid height observations: The Society Islands, Geophys. J. R. Astr. Soc., v. 67, pp. 91114.Google Scholar
Lambeck, K., 1981b, Lithospheric response to volcanic loading in the Southern Cook Islands, Earth Planet. Sci. Lett., v. 55, pp. 482–96.Google Scholar
Lambeck, K., 1983, Structure and evolution of the intra-cratonic basins of central Australia, Geophys. J. R. Astr. Soc., v. 74, pp. 843–86.Google Scholar
Lambeck, K., 1984, Structure and evolution of the Amadeus, Officer and Ngalia Basins of Central Australia, Aust. J. Earth Sci., v. 31, pp. 2548.Google Scholar
Lambeck, K., and Nakiboglu, S. M., 1981, Seamount loading and stress in the ocean lithosphere 2. Viscoelastic and elastic-viscoelastic models, J. Geophys. Res., v. 86, pp. 6961–84.Google Scholar
Lambert, W. D., 1930, The form of the geoid on the hypothesis of complete isostatic compensation, Bulletin Geodesique (1922–1941), v. 26, pp. 98106.Google Scholar
Lane, N., Watts, A. B., and Farrant, A., 2007, An analysis of the Cotswolds topography: Insights into the landscape response to denudational isostasy, J. Geological Soc. London, v. 165, pp. 85103, https://doi.org/110.1144/0016-76492006-76492179.Google Scholar
LASE Study Group, 1986, The Structure of the US East Coast Passive Margin from Large Aperture Seismic Experiments (LASE), Mar. Pet. Geol., v. 3, pp. 234–42.Google Scholar
Lash, G. G., and Engelder, T., 2007, Jointing within the outer arc of a forebulge at the onset of the Alleghanian Orogeny, J. Struct. Geol., v. 29, pp. 774–86, https://doi.org/10.1016/j.jsg.2006.12.002.Google Scholar
Laske, G., Masters, G., Ma, Z., and Pasyanos, M., 2013, Update on CRUST1.0 – A 1-degree global model of Earth’s crust, Geophys. Res. Abstr., v. 15, pp. EGU20132658, http://igppweb.ucsd.edu/~gabi/rem.html.Google Scholar
Latychev, K., Mitrovica, J. X., Tamisiea, M. E., and Tromp, J., 2005, Influence of lithospheric thickness variations on 3-D crustal velocities due to glacial isostatic adjustment, Geophys. Res. Letts., v. 32, https://doi.org/10.1029/2004GL021454.Google Scholar
Lavier, L. L., and Steckler, M. S., 1997, The effect of sedimentary cover on the flexural strength of continental lithosphere, Nature, v. 389, pp. 476–9.Google Scholar
Lavier, L. L., Buck, W. R., and Poliakov, A. N. B., 1999, Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults, Geology, v. 27, pp. 1127–30.Google Scholar
Lawrence, D. T., Doyle, M., and Aigner, T., 1990, Stratigraphic simulation of sedimentary basins: Concepts and calibration, Am. Assoc. Pet. Geol., v. 74, pp. 273–95.Google Scholar
Lawson, A. C., 1938, The isostasy of large deltas, Geol. Soc. Am. Bull, v. 149, pp. 401–16.Google Scholar
Lawson, A. C., 1942, Mississippi Delta – A study in isostasy, Bull. Geol. Soc. of Am., v. 53, pp. 1231–54.Google Scholar
Le Pichon, X., 1968, Sea-floor spreading and continental drift, J. Geophys. Res., v. 73, pp. 3661–97.Google Scholar
Le Pichon, X., Francheteau, J., and Bonnin, J., 1973, Plate Tectonics, Amsterdam, Elsevier Scientific.Google Scholar
Lee, T.-G., Moon, J.-W., and Jung, M.-S., 2009. Three-dimensional flexure modelling of seamounts near the Ogasawara Fracture Zone in the western Pacific, Geophys. J. Int., v. 177, pp. 247–58, https://doi.org/10.1111/j.1365-246X.2008.04054.x.Google Scholar
Leeder, M. R., 1991, Denudation, vertical crustal movements and sedimentary basin infill, Geologische Rundschau, v. 80, pp. 441–58.Google Scholar
Leeds, A. R., Knopoff, L., and Kausel, E. G., 1974, Variations of upper-mantle structure under the Pacific Ocean, Science, v. 186, pp. 141–3.Google Scholar
Lefeldt, M., Grevemeyer, I., Gosler, J., and Bialas, J., 2009. Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise, Geophys. J. Int., v. 178, pp. 742752. https://doi.org/10.1111/j.1365.1246X.2009.04167.x.Google Scholar
Leier, A. L., DeCelles, P. G., and Pelletier, J. D., 2005, Mountains, monsoons and megafans, Geology, v. 33, pp. 289–92, https://doi.org/10.1130/G21228.1.Google Scholar
Lerner-Lam, A. L., and Jordan, T. H., 1987, How thick are the continents?, J. Geophys. Res., v. 92, pp. 14,007–26.Google Scholar
Levitt, D. A., and Sandwell, D. T., 1995 , Lithospheric bending at subduction zones based on depth soundings and satellite gravity, J. Geophys. Res., v. 100, pp. 379400.Google Scholar
Lewis, B. T. R., and Dorman, L. M., 1970 , Experimental isostasy 2: An isostatic model for the U. S. A. derived from gravity and topographic data, J. Geophys. Res., v. 75, pp. 3367–86.Google Scholar
Li, F., Dyt, C., and Griffiths, C., 2004 , 3D modelling of flexural isostatic deformation, Computers & Geosciences, v. 30, pp. 1105–15, https://doi.org/10.1016/j.cageo.2004.08.005.Google Scholar
Li, X., and Götze, H.-J., 2001, Tutorial: Ellipsoid, geoid, gravity, geodesy and geophysics, Geophysics, v. 66, pp. 1660–8.Google Scholar
Lillie, R. J., 1985, Tectonically buried continent/ocean boundary, Ouachita Mountains, Arkansas, Geology, v. 13, pp. 1821.Google Scholar
Lin, A.-T., and Watts, A. B., 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., v. 107, https://doi.org/10.1029/2001JB000669.Google Scholar
Lindsay, J. F., and Leven, J. H., 1996, Evolution of a Neoproterozoic to Paleozoic intracratonic setting, Officer Basin, South Australia, Basin Res., v. 8, pp. 403–24.Google Scholar
Lipman, P. W., Clague, D. A., Moore, J. G., and Holcomb, R. T., 1989, South Arch volcanic field – Newly identified young lava flows on the sea floor south of the Hawaiian Ridge, Geology, v. 17, 611–14.Google Scholar
Lithgow-Bertelloni, C., and Silver, P. G., 1998, Dynamic topography, plate driving forces and the African superswell, Nature, v. 395, pp. 269–72.Google Scholar
Little, T. A., Van_Dissen, R., Schermer, E., and Carne, R., 2009, Late Holocene surface ruptures on the southern Wairarapa fault, New Zealand: Link between earthquakes and the uplifting of beach ridges on a rocky coast, Lithosphere, v. 1, https://doi.org/10.1130/L7.1.Google Scholar
Liu, L., Spasojevic, S., and Gurnis, M., 2008, Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous, Science, v. 322, pp. 934–7, https://doi.org/10.1126/science.1162921.Google Scholar
Liu, S.-F., and Nummedal, D., 2004, Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component. Geology, v. 32, pp. 397400, https://doi.org/10.1130/G20318.1.Google Scholar
Loncarevic, B. D., and Ewing, G. N., 1963, Geophysical study of the Orpheus gravity anomaly, The Proceedings of the Seventh World Petroleum Congress, pp. 827–35.Google Scholar
Londoño, J., and Lorenzo, J. M., 2004. Geodynamics of continental plate collision during late tertiary foreland basin evolution in the Timor Sea: constraints from foreland sequences, elastic flexure and normal faulting, Tectonophysics, v. 392, pp. 3754, https://doi.org/10.1016/j.tecto.2004.04.007.Google Scholar
Lorenzo, J. M., and Vera, E. E., 1992, Thermal uplift and erosion across the ocean-continent boundary of the southern Exmouth Plateau, Earth Planet. Sci. Lett., v. 108, pp. 7992.Google Scholar
Lorenzo, J. M., and Wessel, P., 1997. Flexure across a continent–ocean fracture zone: the northern Falkland/Malvinas Plateau, South Atlantic, Geo-Marine Letters, v. 17, pp. 110–18.Google Scholar
Lorenzo, J. M., O’Brien, G. W., Stewart, J., and Tandon, K., 1998, Inelastic yielding and forebulge shape across a modern foreland basin: North West Shelf of Australia, Timor Sea, Geophys. Res. Lett., v. 25, pp. 1455–8.Google Scholar
Louden, K. E., and Forsyth, D. W., 1976, Thermal conduction across fracture zones and the gravitational edge effect, J. Geophys. Res., v. 81, pp. 4869–74.Google Scholar
Louden, K. E., and Forsyth, D. W., 1982, Crustal structure and isostatic compensation near the Kane fracture zone from topography and gravity measurements – I. Spectral analysis approach, Geophys. J. R. astr. Soc., v. 68, pp. 725–50.Google Scholar
Lowry, A. R., and Smith, R. B., 1994, Flexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topography, J. Geophys. Res., v. 99, pp. 20,123–40.Google Scholar
Lowry, A. R., and Smith, R. B., 1995, Strength and rheology of the western U. S. Cordillera, J. Geophys. Res., v. 100, pp. 17,947–63.Google Scholar
Ludwig, K. R., Szabo, B. J., Moore, J. G., and Simmons, K. R., 1991, Crustal subsidence rate of Hawaii determined from 234U/238U ages of drowned coral reefs, Geology, v. 19, pp. 171–4.Google Scholar
Luis, J. F., and Neves, M. C., 2006, The isostatic compensation of the Azores Plateau: A 3D admittance and coherence analysis, J. Volcan. Geothermal Res., v. 156, pp. 1022, https://doi.org/10.1016/j.jvolgeores.2006.03.010.Google Scholar
Luttrell, K., and Sandwell, D., 2012, Constraints on 3-D stress in the crust from support of mid-ocean ridge topography, J. Geophys. Res., v. 117, pp. 119, https://doi.org/10.1029/2011JB008765.Google Scholar
Lyell, C., 1832–33, Principles of Geology, London, John Murray, 1322 pp.Google Scholar
Lyon-Caen, H., and Molnar, P., 1983, Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere, J. Geophys. Res., v. 88, pp. 8171–91.Google Scholar
Lyon-Caen, H., and Molnar, P., 1984, Gravity anomalies and the structure of the western Tibet and the southern Tarim basin, Geophys. Res. Lett., v. 11, pp. 1251–4.Google Scholar
Lyon-Caen, H., Molnar, P., and Suarez, G., 1985, Gravity anomalies and flexure of the Brazilian shield beneath the Bolivian Andes, Earth Planet. Sci. Lett., v. 75, pp. 8192.Google Scholar
Lyons, S. N., Sandwell, D. T., and Smith, W. H. F., 2000. Three-dimensional estimation of elastic thickness under the Louisville Ridge, J. Geophys. Res. v. 105, pp. 13,239–52.Google Scholar
Macario, A., Malinverno, A., and Haxby, W. F., 1995, On the robustness of elastic thickness estimates using the coherence method, J. Geophys. Res., v. 100, pp. 15,163–72.Google Scholar
MacCurdy, E., 1928, The Mind of Leonardo da Vinci, London, Jonathan Cape, 360 pp.Google Scholar
MacCurdy, E., 1956, The Notebooks of Leonardo da Vinci, 2 volumes, translated by Edward MacCurdy, London, Jonathan Cape, 566 and 610 pp.Google Scholar
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L., 1998, High-temperature deformation of dry diabase with applications to tectonics on Venus, J. Geophys. Res., v. 103, pp. 975–84.Google Scholar
Maclennan, J., and Lovell, B., 2002, Control of regional sea level by surface uplift and subsidence caused by magmatic underplating of Earth’s crust, Geology, v. 30, pp. 675–8.Google Scholar
Madon, M., 2007, Overpressure development in rift basins: an example from the Malay Basin, offshore Peninsular Malaysia, Petroleum Geoscience, v. 13, pp. 169–80, https://doi.org/10.1144/1354-079307-744.Google Scholar
Madsen, J. A., Forsyth, D. W., and Detrick, R. S., 1984, A new isostatic model for the East Pacific Rise Crest, J. Geophys. Res., v. 89, pp. 999710,016.Google Scholar
Magde, L. S., Detrick, R. S., and the TERRA Group, 1995, Crustal and upper mantle contribution to the axial gravity anomaly at the southern East Pacific Rise, J. Geophys. Res., v. 100, pp. 3747–66.Google Scholar
Magnavita, L. P., Davison, I., and Kusznir, N. J., 1994, Rifting, erosion, and uplift history of the Recôncavo-Tucano-Jatobá Rift, northeast Brazil, Tectonics, v. 13, pp. 367–88.Google Scholar
Manea, M., Manea, V. C., Ferrari, L., Kostoglodov, V., and Bandy, W. L., 2005. Elastic thickness of the oceanic lithosphere beneath the Tehuantepec ridge, Earth Planet Sci. Lett., v. 238, pp. 6477, https://doi.org/10.1016/j.epsl.2005.06.060.Google Scholar
Manriquez, P., Contreras-Reyes, E., and Osses, A., 2014, Lithospheric 3-D flexure of the oceanic plate seaward of the trench using variable elastic thickness, Geophys. J. Int., v. 196, 681–93, https://doi.org/10.1093/gji/ggt464.Google Scholar
Mantovani, M. S., Shukowsky, M. W., de Freitas, S. R. C., and Neves, B. B. B., 2005, Lithosphere mechanical behaviour inferred from tidal gravity anomalies: a comparison of Africa and South America, Earth Planet. Sci. Lett., v. 230, pp. 397412, https://doi.org/10.1016/j.epsl.2004.12.007.Google Scholar
Mareschal, J. C., and Jaupart, C., 2004. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton, Earth Planet. Sci. Lett., v. 223, 6577.Google Scholar
Masek, J. G., Isacks, B. L., and Fielding, E. J., 1994, Rift flank uplift in Tibet: Evidence for a viscous lower crust, Tectonics, v. 13, pp. 659–67.Google Scholar
Mathews, K. J., Maloney, K. T., Zahirovic, S. et al. 2016, Global plate boundary evolution and kinematics since the late Paleozoic, Global and Planetary Change, v. 146, pp. 226–50, https://doi.org/10.1016/j.gloplacha.2016.10.002.Google Scholar
McAdoo, D. C., 1981, Geoid anomalies in the vicinity of subduction zones, J. Geophys. Res., v. 86, pp. 6073–90.Google Scholar
McAdoo, D. C., 1982, On the compensation of geoid anomalies due to subducting slabs, J. Geophys. Res., v. 87, pp. 8684–92.Google Scholar
McAdoo, D. C., and Martin, C. F., 1984, Seasat observations of lithospheric flexure seaward of trenches, J. Geophys. Res., v. 89, pp. 3201–10.Google Scholar
McAdoo, D. C., Caldwell, J. G., and Turcotte, D. L., 1978, On the elastic-perfectly plastic bending of the lithosphere under generalized loading with application to the Kuril Trench, Geophys. J. Int., v. 54, pp. 1126.Google Scholar
McAdoo, D. C., Martin, C. F., and Poulouse, S., 1985, Seasat observations of flexure: Evidence for a strong lithosphere, Tectonophysics, v. 116, pp. 209–22.Google Scholar
McConnell, R. K., 1965, Isostatic adjustment in a layered earth, J. Geophys. Res., v. 70, pp. 5171–88.Google Scholar
McConnell, R. K., 1968, Viscosity of the mantle from relaxation time spectra of isostatic adjustment, J. Geophys. Res., v. 73, pp. 7089–105.Google Scholar
McGill, G. E., Steenstrup, S. J., Barton, C., and Ford, P. G., 1981, Continental rifting and the origin of Beta Regio, Venus, Geophys. Res. Lett., v. 8, pp. 737–40.Google Scholar
McGinnis, L. D., 1970, Tectonics and the gravity field in the Continental Interior, J. Geophys. Res., v. 75, pp. 317–31.Google Scholar
McGinnis, J. P., Driscoll, N. W., Karner, G. D., and Brumbaugh, W. D., 1993, Flexural response of passive margins to deep-sea erosion and slope retreat: Implications for relative sea-level, Geology, v. 21, pp. 893–6.Google Scholar
McGovern, P. J., 2007, Flexural stresses beneath Hawaii: Implications for the October 15, 2006, earthquakes and magma ascent, Geophys. Res. Letts., v. 34, https://doi.org/10.1029/2007GL031305.Google Scholar
McGovern, P. J., Grosfils, E. B., Galgana, G. A. et al. 2014, Lithospheric flexure and volcano basal boundary conditions: keys to the structural evolution of large volcanic edifices on the terrestrial planets. Geol. Soc. London Special Publications, v. 401, https://doi.org/10.1144/SP401.7.Google Scholar
McKenzie, D. P., 1967, Some remarks on heat flow and gravity anomalies: J. Geophys. Res. v. 72, pp. 6261–73.Google Scholar
McKenzie, D. P., 1977, Surface deformation, gravity anomalies and convection, Geophys. J. Int., v. 48, pp. 211–38.Google Scholar
McKenzie, D. P., 1978, Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., v. 40, pp. 2532.Google Scholar
McKenzie, D. P., 1994, The relationship between topography and gravity on Earth and Venus, Icarus, v. 112, pp. 5588.Google Scholar
McKenzie, D. P., 2003, Estimating Te in the presence of internal loads, J. Geophys. Res., v. 108, https://doi.org/10.1029/2002JB001766.Google Scholar
McKenzie, D. P., 2010, The influence of dynamically supported topography on estimates of Te, Earth Planet. Sci. Lett., v. 95, pp. 127–38, https://doi.org/10.1016/j.epsl.2010.03.033.Google Scholar
McKenzie, D. P., and Bowin, C. O., 1976, The relationship between bathymetry and gravity in the Atlantic Ocean, J. Geophys. Res., v. 81, pp. 1903–15.Google Scholar
McKenzie, D. P., and Fairhead, J. D., 1997, Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free-air gravity anomalies, J. Geophys. Res., v. 102, pp. 27,523–52.Google Scholar
McKenzie, D. P., and Nimmo, F., 1997, Elastic thickness estimates for Venus from line of sight accelerations, Icarus, v. 130, pp. 198216.Google Scholar
McKenzie, D. P., and Parker, R. L., 1967, The North Pacific: An example of tectonics on a sphere, Nature, v. 216, pp. 1276–80.Google Scholar
McKenzie, D. P., Roberts, J., and Weiss, N., 1974, Numerical models of convection in the Earth’s mantle, Tectonophysics, v. 19, pp. 89103.Google Scholar
McKenzie, D., Jackson, J., and Priestley, K., 2005, Thermal structure of oceanic and continental lithosphere, Earth Planet. Sci. Lett., v. 233, pp. 337–49, https://doi.org/10.1016/j.epsl.2005.02.005.Google Scholar
McKenzie, D., Daly, M. C., and Priestley, K., 2015, The lithospheric structure of Pangea, Geology, v. 43, pp. 783–6, https://doi.org/10.1130/G36819.1.Google Scholar
McMurtry, G. M., Campbell, J. F., Fryer, G. J., and Fietzke, J., 2010, Uplift of Oahu, Hawaii, during the past 500 k.y. as recorded by elevated reef deposits, Geology, v. 38, pp. 2730, https://doi.org/10.1130/G30378.1.Google Scholar
McNutt, M. K., 1979, Compensation of oceanic topography: An application of the response function technique to the Surveyor area, J. Geophys. Res., v. 84, pp. 7589–98.Google Scholar
McNutt, M. K., 1984, Lithospheric flexure and thermal anomalies, J. Geophys. Res., v. 89, pp. 11,18094.Google Scholar
McNutt, M. K., 1988, Thermal and mechanical properties of the Cape Verde Rise, J. Geophys. Res., v. 93, pp. 2784–94.Google Scholar
McNutt, M. K., and Kogan, M., 1987, Isostasy in the USSR II: Interpretation of admittance data, in Fuchs, K., and Froidevaux, C., eds., Composition, Structure, Dynamics of the Lithosphere-Asthenosphere System, Geodynamics Series 16, Washington, DC, American Geophysical Union, pp. 309–27.Google Scholar
McNutt, M. K., and Menard, H. W., 1978, Lithospheric flexure and uplifted atolls, J. Geophys. Res., v. 83, pp. 1206–12.Google Scholar
McNutt, M. K., and Menard, H. W., 1982, Constraints on yield strength in the oceanic lithosphere derived from observations of flexure, Geophys. J. R. Astr. Soc., v. 71, pp. 363–94.Google Scholar
McNutt, M. K., and Parker, R. L., 1978, Isostasy in Australia and the evolution of the compensation mechanism, Science, v. 199, pp. 773–5.Google Scholar
McNutt, M. K., and Shure, L., 1986, Estimating the compensation depth of the Hawaiian swell with linear filters, J. Geophys. Res., v. 91, pp. 13915–23.Google Scholar
McNutt, M. K., Diament, M., and Kogan, M. G., 1988, Variations of elastic plate thickness at continental thrust belts: J. Geophys. Res., v. 93, pp. 8825–38.Google Scholar
McQueen, H. W. S., and Lambeck, K., 1989. The accuracy of some lithospheric bending parameters, Geophys. J., v. 96, pp. 401–13.Google Scholar
Mège, D., and Masson, P., 1996, A plume tectonics model for the Tharsis province, Mars, Planet. Space Sci., v. 44, pp. 1499–546.Google Scholar
Mei, S., Suzuki, A. M., Kohlstedt, D. L., Dixon, N. A., and Durham, W. B., 2010, Experimental constraints on the strength of the lithospheric mantle, J. Geophys. Res., v. 115, https://doi.org/10.1029/2009JB006873.Google Scholar
Meissner, R., and Wever, T., 1986. Intracontinental seismicity, strength of crustal units, and the seismic signature of fault zones, Phil. Trans Roy. Soc. London, 317, 4561.Google Scholar
Mello, U. T., and Bender, A. A., 1988, On isostasy at the equatorial margin of Brazil, Revista Brasileira de Geociencias, v. 18, pp. 237–46.Google Scholar
Melosh, H. J., 1978, Dynamic support of the outer rise, Geophys. Res. Lett., v. 5, pp.321–4.Google Scholar
Menard, H. W., 1964, Marine Geology of the Pacific, New York, McGraw-Hill, 271 pp.Google Scholar
Menard, H. W., 1973. Depth anomalies and the bobbing motion of drifting islands, J. Geophys. Res., 78, 5128–37.Google Scholar
Menard, H. W., 1986, Islands, Scientific American Library Series, Oxford, W. H. Freeman and Co, 230 pp.Google Scholar
Miall, A. D., 1990, Principles of Sedimentary Basin Analysis, New York, Springer-Verlag, 668 pp.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V. et al., 2005, The Phanerozoic Record of Global Sea-Level Change, Science, v. 310, pp. 1293–8, https://doi.org/10.1126/science.1116412.Google Scholar
Minshull, T. A., and Brozena, J. M., 1997, Gravity anomalies and flexure of the lithosphere at Ascension Island, Geophys. J. Int., v. 131, pp. 347–60.Google Scholar
Minshull, T. A., Ishizuka, O., Mitchell, N. C., and Evangelidis, C., 2003, Vertical motions and lithosphere rheology at Ascension Island. EOS Trans. Amer. Geophys. Union, v. 84, http://eprints.soton.ac.uk/id/eprint/1376Google Scholar
Minshull, T. A., Ishizuka, O., and Garcia-Castellanos, D., 2010. Long-term growth and subsidence of Ascension Island: Constraints on the rheology of young oceanic lithosphere, Geophys. Res. Letters, v. 37, https://doi.org/10.1029/2010GL045112.Google Scholar
Mohriak, W. U., Hobbs, R., and Dewey, J. F., 1990, Basin-forming processes and the deep structure of the Campos basin, offshore Brazil, Mar. Pet. Geol., v. 7, pp. 94122.Google Scholar
Molnar, P., and England, P. C., 1990, Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?, Nature, v. 346, pp. 2934.Google Scholar
Monsalve, G., McGovern, P., and Sheehan, A. 2009. Mantle fault zones beneath the Himalayan collision: Flexure of the continental lithosphere, Tectonophysics, v. 477, pp. 6676, https://doi.org/10.1016/j.tecto.2008.12.014.Google Scholar
Montadert, L., de Charpel, O., Roberts, D. G., Guennoc, P., and Sibuet, J., 1979, Northeast Atlantic passive continental margins: Rifting and subsidence processes, in Talwani, M., Hey, W., and Ryan, W. B. F., eds., Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, Maurice Ewing Series 3: Washington, DC, American Geophysical Union, pp. 154–86.Google Scholar
Monteverde, D. H., Mountain, G. S., and Miller, K. G., 2008, Early Miocene sequence development across the New Jersey margin, Basin Res., v. 20, pp. 249–67, https://doi.org/10.1111/j.1365-2117.2008.00351.x.Google Scholar
Montgomery, D. R., and Stolar, D. B., 2006, Reconsidering Himalayan River anticlines, Geomorphology, v. 82, pp. 415.Google Scholar
Mooney, W. D., Laske, G., and Masters, T. G., 1998, CRUST 5.1: A global crustal model at 5° × 5°, J. Geophys. Res., v. 103, pp. 727–47.Google Scholar
Moore, J. G., 1970, Relationship between Subsidence and Volcanic Load, Hawaii, Bull. Volcanologique, v. 34, pp. 562–76.Google Scholar
Moore, J. G., and Campbell, J. F., 1987, Age of tilted reefs, Hawaii, J. Geophys. Res., v. 92, pp. 2641–6.Google Scholar
Moore, J. G., Clague, D. A., Holcomb, R. T. et al., 1989, Prodigous submarine landslides on the Hawaiian Ridge, J. Geophys. Res., v. 94, pp. 17,465–84.Google Scholar
Moore, J. M., and Fornari, D. J., 1984, Drowned reefs as indicators of the rate of subsidence of the island of Hawaii, J. Geol., v. 92, pp. 752–9.Google Scholar
Moresi, L., and Parsons, B., 1995, Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity, Application to surface features on Venus, J. Geophys. Res., v. 100, pp. 21155–71.Google Scholar
Moretti, I., and Royden, L., 1988, Deflection, gravity anomalies and tectonics of doubly subducted continental lithosphere: Adriatic and Ionian Seas, Tectonics, v. 7, pp. 875–93.Google Scholar
Moretti, I., and Turcotte, D. L., 1985, A model for erosion, sedimentation, and flexure with application to New Caledonia, J. Geodyn., v. 3, pp. 155–68.Google Scholar
Morgan, J. K., Moore, G. F., and Clague, D. A., 2003, Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii, J. Geophys. Res., v. 108, https://doi.org/10.1029/2003JB002411.Google Scholar
Morgan, R. L., and Watts, A. B., 2018, Seismic and gravity constraints on flexural models for the origin of seaward dipping reflectors, Geophys. J. Int., v. 214, pp. 2073–83, https://doi.org/10.1093/gji/ggy243.Google Scholar
Morgan, W. J., 1965, Gravity anomalies and convection currents. 1. A sphere and cylinder sinking beneath the surface of a viscous fluid, J. Geophys. Res., v. 70, pp. 6175–87.Google Scholar
Morgan, W. J., 1968, Rises, trenches, great faults and crustal blocks, J. Geophys. Res., v. 73, no. 6, pp. 1959–82.Google Scholar
Morner, N.-A., 1969, The Late Quaternary history of the Kattegatt Sea and the Swedish West Coast, deglaciation, isostasy and eustasy, Sveriger Geologiska Underoskning, Arsbok 63 Ser. C, v. 640, no. 3, pp. 404–53.Google Scholar
Morris, A., and Maffione, M., 2016, Is the Troodos ophiolite (Cyprus) a complete, transform fault–bounded Neotethyan ridge segment?, Geology, v. 44, pp. 199202, https://doi.org/10.1130/G37529.1.Google Scholar
Moucha, R., Forte, A. M., Mitrovica, J. X. et al., 2008b, Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform, Earth Planet. Sci. Lett., v. 271, pp. 101–8, https://doi.org/10.1016/j.epsl.2008.03.056.Google Scholar
Moucha, R., Forte, A. M., Rowley, D. B. et al., 2008a, Mantle convection and the recent evolution of the Colorado Plateau and the Rio Grande rift valley, Geology, v. 36, pp. 439–42, https:/doi.org/10.1130/G24577A.1.Google Scholar
Muller, P. M., and Sjogren, W. L., 1968, Mascons: Lunar mass concentrations, Science, v. 161, pp. 680–4.Google Scholar
Müller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M., and Sclater, J. G., 1997, Digital isochrons of the world’s ocean floor, J. Geophys. Res., v. 102, pp. 3211–14.Google Scholar
Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C., 2008, Long-term sea-level fluctuations driven by ocean basin dynamics, Science, v. 319, pp. 1357–62, https://doi.org/10.1126/science.1151540.Google Scholar
Munk, W. H., and Cartwright, D. E., 1966, Tidal spectroscopy and prediction, J. Geophys. Res., v. 259, pp. 533–81.Google Scholar
Mussman, W. J., and Read, J. F., 1986, Sedimentology and development of a pasive- to a convergent-margin unconformity: Middle Ordovician Knox-Beekmantown unconformity, Virginia Appalachians, Bull. Geol. Soc. Am., v. 97, pp. 282–95.Google Scholar
Mutter, C. Z., and Mutter, J. C., 1993, Variations in thickness of layer 3 dominate oceanic crustal structure, Earth Planet. Sci. Lett., v. 117, pp. 295317.Google Scholar
Mutter, J. C., Talwani, M., and Stoffa, P. L., 1982, Origin of seaward-dipping reflectors in oceanic crust off the Norwegian Margin by “subaerial seafloor spreading”, Geology, v. 10, pp. 353–7.Google Scholar
Mutter, J. C., Talwani, M., and Stoffa, P. L., 1984, Evidence for a thick oceanic crust adjacent to the Norwegian margin, J. Geophys. Res., v. 89, pp. 483502.Google Scholar
Nabelek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., and the Hi-CLIMB team, 2009, Underplating in the Himalaya-Tibet Collision Zone revealed by the Hi-CLIMB experiment, Science, v. 325, pp. 1371–4, www.sciencemag.org/cgi/content/full/325/5946/1371/DC1.Google Scholar
Nadai, A., 1963, Theory of Flow and Fracture of Solids, New York, McGraw-Hill, 705 pp.Google Scholar
Nadirov, R. S., Bagirov, E., and Tagiyev, M., 1997. Flexural plate subsidence, sedimentation rates, and structural development of the super-deep South Caspian basin, Mar. Pet. Geology, v. 14, pp. 383400.Google Scholar
Nakiboglu, S. M., and Lambeck, K., 1983, A reevaluation of the isostatic rebound of Lake Bonneville, J. Geophys. Res., v. 88, pp. 439–47.Google Scholar
Nakiboglu, S. M., and Lambeck, K., 1985, Comments on thermal isostasy, J. of Geodynamics, v. 2, pp. 5165.Google Scholar
Nelson, C. H., and Maldonado, A. A., 1990, Factors controlling late Cenozoic margin growth from the Ebro delta to the western Mediterranean deep sea, Marine Geol., v. 95, pp. 419–40.Google Scholar
Nettleton, L. L., 1939, Determination of density for reduction of gravity observations, Geophysics, v. 4, pp. 176–83.Google Scholar
Neumann, E.-R., Olsen, K. H., Baldridge, W. S., and Sundvoll, B., 1992, The Oslo rift: a review, Tectonophysics, v. 208, pp. 118.Google Scholar
Neumann, G. A., and Zuber, M. T., 1996, Coherence of lunar mare basins, Proc. Lunar Planet. Sci. Conf. 27th, pp. 953–4.Google Scholar
Newman, R., and White, N., 1997, Rheology of the continental lithosphere inferred from sedimentary basins, Nature, v. 385, pp. 621–4.Google Scholar
Nimmo, F., and Watters, T. R., 2004, Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness, Geophys. Res. Lett., v. 31, https://doi.org/10.1029/2003GL018847.Google Scholar
Nishimura, C. E., and Forsyth, D. W., 1989, The anisotropic structure of the upper mantle in the Pacific, Geophys. J., v. 96, pp. 203–29.Google Scholar
Nishimura, T., and Thatcher, W., 2003, Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake, J. Geophys. Res., v. 108, https://doi.org/10.1029/2002JB002191.Google Scholar
Nunn, J. A., and Aires, J. R., 1988, Gravity anomalies and flexure of the lithosphere at the middle Amazon Basin, Brazil, J. Geophys. Res., v. 93, pp. 415–28.Google Scholar
Nunn, J. A., Czerniak, M., and Pilger, R. H., 1987, Constraints on the structure of Brooks Range and Colville Basin, Northern Alaska, from flexure and gravity analysis, Tectonics, v. 6, pp. 603–17.Google Scholar
Nunn, P. D., 1994, Oceanic Islands, Oxford, Blackwell, 413 pp.Google Scholar
Nyquist, J. E., and Wang, H. F., 1988, Flexural modeling of the Midcontinent rift, J. Geophys. Res., v. 93, pp. 8852–68.Google Scholar
O’Connor, J. M., Steinberger, B., Regelous, M. et al. 2013, Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain, Geochem. Geophys., v. 14, https://doi.org/10.1002/ggge.20267.Google Scholar
O’Keefe, J. A., 1968, Isostasy on the moon, Science, v. 162, pp. 1405–6.Google Scholar
O’Reilly, S. Y., Griffin, W. L., Poudjom_Djomani, Y. H., and Morgan, P., 2001, Are lithospheres forever? Tracking changes in Subcontinental Lithospheric Mantle Through Time, GSA Today, v. 11, pp. 49.Google Scholar
Ojeda, G. Y., and Whitman, D., 2002, Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: Results from northern South America, J. Geophys. Res., v. 107, https://doi.org/10.1029/2000JB00014.Google Scholar
Olive, J.-A., Behn, M. D., and Malatesta, L. C., 2014, Modes of extensional faulting controlled by surface processes, Geophys. Res. Letters, v. 41, pp. 6725–33, https://doi.org/10.1002/2014GL061507.Google Scholar
Olive, J.-A., Malatesta, L. A., Behn, M. D., and Buck, W. R., 2020, Sensitivity of rift tectonics to global variability in the efficiency of river erosion, PNAS v. 119, https://doi.org/10.1073/pnas.2115077119.Google Scholar
Opdyke, N. D., Spangler, D. P., Smith, D. L., Jones, D. S., and Lindquist, D. C., 1984, Origin of the epeirogenic uplift of Pliocene-Pleistocene beach ridges in Florida and development of the Florida Karst, Geology, v. 12, pp. 226–8.Google Scholar
Orme, A. R., 2007, Clarence Edward Dutton (1841–1912): soldier, polymath and aesthete, Geological Society of London, Special Publications, v. 287, pp. 271–86, https:/doi.org/10.1144/SP287.21.Google Scholar
Owens, R., 1996, The Morphology and Tectonics of the Rekyjanes Ridge, D.Phil. thesis, Oxford University.Google Scholar
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N., and Solomon, S. C., 2015, Thickness of the crust of Mercury from geoid-to-topography ratios, Geophys. Res. Letters, v. 42, pp. 1029–38, https://doi.org/10.1002/2014GL062487.Google Scholar
Panasyuk, S. V., and Hager, B. H., 2000, Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors, Geophys. J.Int., v. 143, pp. 821–36.Google Scholar
Pang, M., and Nummedal, D., 1995, Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States, Geology, v. 23, pp. 173–6.Google Scholar
Pari, G., and Peltier, W. R., 1996, The free-air gravity constraint on subcontinental mantle dynamics, J. Geophys. Res., v. 101, pp. 28105–32.Google Scholar
Pari, G., and Peltier, W. R., 2000, Subcontinental mantle dynamics: A further analysis based on the joint constraints of dynamic surface topography and free-air gravity, J. Geophys. Res., v. 105, pp. 5635–62.CrossRefGoogle Scholar
Parker, R. L., 1972, The rapid calculation of potential anomalies, Geophys. J. R. Astr. Soc., v. 31, pp. 447–55.Google Scholar
Parmentier, E. M., and Forsyth, D. W., 1987, Three-dimensional flow beneath a slow-spreading ridge axis: A dynamic contribution to deepening of the median valley toward fracture zones, J. Geophys. Res., v. 90, pp. 678–84.Google Scholar
Parmentier, E. M., and Haxby, W. F., 1986, Thermal stresses in the oceanic lithosphere: Evidence from geoid anomalies at fracture zones, J. Geophys. Res., v. 91, pp. 7193–204.Google Scholar
Parsiegla, N., Stankiewicz, J., Gohl, K., Ryberg, T., and Uenzelmann-Neben, G., 2009, Southern Africa continental margin: Dynamic processes of a transform margin, Geochem. Geophys., v. 10, https://doi.org/10.1029/2008GC002196.Google Scholar
Parsons, B. E., and McKenzie, D. P., 1978, Mantle convection and the thermal structure of plates, J. Geophys. Res., v. 83, pp. 4485–96.CrossRefGoogle Scholar
Parsons, B. E., and Molnar, P., 1976, The origin of outer topographic rises associated with trenches, Geophys. J. R. Astr. Soc., v. 45, pp. 707–12.Google Scholar
Parsons, B. E., and Sclater, J. G., 1977, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., v. 82, pp. 803–27.CrossRefGoogle Scholar
Patton, T. L., and O’Connor, S. J., 1988, Cretaceous flexural history of northern Oman Mountain foredeep, Am. Assoc. Pet. Geol., v. 72, pp. 797809.Google Scholar
Paxman, G. J. G., 2015, Quantifying tectonic and erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica, MESc. thesis, Oxford University.Google Scholar
Paxman, G. J. G., Watts, A. B., Ferraccioli, F. et al. 2016, Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica, Earth Planet. Sci. Lett., v. 452, pp. 114, https://doi.org/10.1016/j.epsl.2016.07.040.Google Scholar
Pazzaglia, F. J., and Gardner, T. W., 1994, Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin, J. Geophys. Res., v. 99, pp. 12143–57.Google Scholar
Pearson, W. C., and Lister, C. R. B., 1979, The gravity signatures of isostatic, thermally-expanded ridge crests, Phys. Earth Planet. Inter., v. 19, pp. 7384.Google Scholar
Pedoja, K., Husson, L., Regard, V. et al. 2011, Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?, Earth Sci. Rev., v. 108, pp. 115, https://doi.org/10.1016/j.earscirev.2011.05.002.Google Scholar
Peirce, C., Whitmarsh, R. B., Scrutton, R. A. et al. 1996, Cote d’Ivoire-Ghana margin: seismic imaging of passive rifted crust adjacent to a transform continental margin, Geophys. J. Int., v. 125, pp. 781–95.Google Scholar
Pelletier, J. D., 2004, Estimate of three-dimensional flexural-isostatic response to unloading: Rock uplift due to late Cenozoic glacial erosion in the western United States, Geology, v. 32, pp. 161–4.Google Scholar
Peltier, W. R., 1974, The impulse response of a Maxwell Earth, Rev. Geophys. Space Phys., v. 12, pp. 649–69.Google Scholar
Peltier, W. R., 1980, Models of glacial isostasy and relative sea level, in Bally, A. W. Bender, P. L., McGetchin, T. R. and Walcott, R. I. eds., Dynamics of the Plate Interiors, Geodynamics Series, v. 1, Washington, DC, American Geophysical Union, pp. 111–28.Google Scholar
Peltier, W. R., and Andrews, J. T., 1976, Glacial-isostatic adjustment – I. The forward problem, Geophys. J. R. Astr. Soc., v. 46, pp. 605–46.Google Scholar
Peper, T., and Cloetingh, S., 1992, Lithosphere dynamics and tectono-stratigraphic evolution of the Mesozoic Betic rifted margin (southeastern Spain), Tectonophysics, v. 203, pp. 345–61.Google Scholar
Pérez-Gussinyé, M., and Reston, T. J., 2001, Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup, J. Geophys. Res., v. 106, pp. 3961–75.Google Scholar
Pérez-Gussinyé, M., Lowry, A. R., Watts, A. B., and Velicogna, I., 2004, On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandia Shield, J. Geophys. Res., v. 109, https://doi.org/10.1029/2003JB002788.Google Scholar
Pérez-Gussinyé, M., and Watts, A. B., 2005. The long-term strength of Europe and its implications for plate-forming processes, Nature, v. 436, https://doi.org/10.1038/nature03854.Google Scholar
Pérez-Gussinyé, M., Lowry, A. R., and Watts, A. B., 2007, Effective elastic thickness of South America and its implications for intracontinental deformation, Geochem. Geophys., v. 8, https://doi.org/10.1029/2006GC001511.Google Scholar
Pérez-Gussinyé, M., Metois, M., Fernandez, M. et al., 2009, Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics, Earth Planet. Sci. Lett., v. 287, pp. 152–67, https://doi.org/10.1016/j.epsl.2009.08.004.Google Scholar
Pérez‐Gussinyé, M., Andrés‐Martínez, M., Araújo, M. et al. 2020, Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea Margins, Tectonics, v. 39, https://doi.org/10.1029/2020TC006255.Google Scholar
Perrier, R., and Quiblier, J., 1974, Thickness changes in sedimentary layers during compaction history: methods for quantitative evaluation, Amer. Assoc. Pet. Geologists Bulletin, v. 53, pp. 507–20.Google Scholar
Petengill, G. H., Eliason, E., Ford, P. G. et al. 1980, Venus Pioneer radar results: Altimetry and surface properties: J. Geophys. Res., v. 85, pp. 8261–70.CrossRefGoogle Scholar
Peterson, C., and Roy, M., 2005. Gravity and flexure models of the San Luis, Albuquerque, and Tularosa basins in the Rio Grande rift, New Mexico, and southern Colorado, New Mexico Geological Society, 56th Field Conference Guidebook, pp. 105–14. https://doi.org/10.56577/FFC-56.105.Google Scholar
Petrunin, A., and Sobolev, S. V., 2006, What controls thickness of sediments and lithospheric deformation at a pull-apart basin?, Geology, v. 34, pp. 389–92, https://doi.org/310.1130/G22158.22151.Google Scholar
Phillips, R. J., 1994, Estimating lithospheric properties at Atla Regio, Venus, Icarus, v. 112, pp. 147–70.CrossRefGoogle Scholar
Phillips, R. J., Kaula, W. M., McGill, G. E., and Malin, M. C., 1981, Tectonics and evolution of Venus, Science, v. 212, pp. 879–87.Google Scholar
Phipps Morgan, J., Parmentier, E. M., and Lin, J., 1987, Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreting plate boundaries, J. Geophys. Res., v. 92, pp. 12,823–36.Google Scholar
Pilkington, M., 1990, Lithospheric flexure and gravity anomalies at Proterozoic plate boundaries in the Canadian Shield, Tectonophysics, v. 176, pp. 277–90.Google Scholar
Pim, J., Peirce, C., Watts, A. B., Grevemeyer, I., and Krabbenhoeft, A., 2008, Crustal structure and origin of the Cape Verde Rise, Earth Planet. Sci. Lett., 272, 422–8, https://doi.org/10.1016/j.epsl.2008.05.012.CrossRefGoogle Scholar
Pinet, C., Jaupart, C., Mareschal, J.-C. et al. 1991, Heat flow and lithospheric structure of the eastern Canadian shield, J. Geophys. Res., v. 96, pp. 19,941–63.Google Scholar
Pirazzoli, P. I., 1983, Mise en evidence d’une flexure active de la lithosphere, dans l’archipel de la Societe (Polynesie francais), d’apres la position des rivages de la fin de l’Holocene, C. R. Acad. Sci. Paris (Ser. II), v. 296, pp. 695–8.Google Scholar
Pitman, W. C., 1978, The relationship between eustasy and stratigraphic sequences of passive margins, Geol. Soc. Am. Bull., v. 89, pp. 13891403.Google Scholar
Pitman, W. C., and Heirtzler, J. R., 1966, Magnetic anomalies over the Pacific-Antarctic Ridge, Science, v. 154, pp. 1164–6.Google Scholar
Pockalny, R. A., Gente, A. P., and Buck, R., 1996, Oceanic transverse ridges: A flexural response to fracture-zone-normal extension, Geology, v. 24, pp. 71–4.2.3.CO;2>CrossRefGoogle Scholar
Poudjom Djomani, Y. H., Diament, M., and Albouy, Y., 1992, Mechanical behaviour of the lithosphere beneath the Adamawa uplift (Cameroon, West Africa) based on gravity data, J. African Earth Sci., v. 15, pp. 8190.Google Scholar
Poudjom Djomani, Y. H., Fairhead, J. D., and Griffin, W. L., 1999, The flexural rigidity of Fennoscandia: Reflection of the tectonothermal age of the lithospheric mantle, Earth Planet. Sci. Lett., v. 174, pp. 139–54.Google Scholar
Poudjom Djomani, Y. H., Nnange, J. M., Diament, M., Ebinger, C. J., and Fairhead, J. D., 1995, Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data, J. Geophys. Res., v. 100, pp. 22047–70.Google Scholar
Pratt, J. H., 1855, On the attraction of the Himalaya mountains, and of the elevated regions beyond them, upon the plumb line in India, Phil. Trans. R. Soc., v. 145, pp. 53100.Google Scholar
Pratt, J. H., 1859, On the deflection of the plumb-line in India, caused by the attraction of the Himalaya mountains and of the elevated regions beyond; and its modification by the compensating effect of a deficiency of matter below the mountain mass, Phil. Trans. R. Soc., v. 149, pp. 745–96.Google Scholar
Pratt, J. H., 1864, Speculations on the constitution of the Earth’s crust, Proc. R. Soc. Lond., v. XIII, pp. 253–76.Google Scholar
Pratt, J. H., 1871, Speculations on the constitution of the Earth’s crust, Phil. Trans. R. Soc., v. 161, pp. 335–58.Google Scholar
Prest, V. K., 1970, Quaternary geology of Canada, in Douglas, R. J. W., ed., Geology and Economic Minerals of Canada, Ottawa, Department of Energy, Mines and Resources, pp. 677766.Google Scholar
Price, N. J., and Audley-Charles, M. G., 1983, Plate rupture by hydraulic fracture resulting in overthrusting, Nature, v. 306, pp. 572–5.Google Scholar
Price, R. A., 1973, Large-scale gravitational flow of supracrustal rocks, southern Canadian Rockies, in DeJong, K. A., and Scholten, R., eds., Gravity and Tectonics, New York, Wiley-Interscience, pp. 491501.Google Scholar
Priestley, K., and Debayle, E., 2003, Seismic evidence for a moderately thick lithosphere beneath the Siberian Platform, Geophys. Res. Letters, v. 30, https://doi.org/10.1029/2002GL015931.Google Scholar
Priestley, K., and McKenzie, D., 2013, The relationship between shear wave velcoity, temperature, attenuation and viscosity in the shallow part of the mantle, Earth Planet. Sci. Lett., v. 381, 7891, http://dx.doi.org/10.1016/j.epsl.2013.08.022.Google Scholar
Priestley, K., McKenzie, D., and Ho, T., 2018, A lithosphere–asthenosphere boundary – a global model derived from multimode surface‐wave tomography and petrology, in Yuan, H., and Romanowicz, B., eds., Lithospheric Discontinuities, American Geophysical Union and John Wiley and Sons Inc., pp. 111–24.Google Scholar
Pringle, M. S., and Duncan, R. A., 1995, Radiometric ages of basement lavas recovered at Loen, Wodejebato, MIT, and Takuyo-daisan guyots, northwestern Pacific Ocean, in Haggerty, J. A., Silva, I. P., Rack, F., and McNutt, M. K., eds., Proceedings of the Ocean Drilling Program, Scientific Results, v. 144, pp. 547–57.Google Scholar
Pullen, S., and Lambeck, K., 1981, Mascons and loading of the lunar lithosphere, Proc. Lunar Planet. Sci. Conf. 12th, pp. 853–65.Google Scholar
Purdy, G. M., and Detrick, R. S., 1986, Crustal structure of the Mid-Atlantic Ridge at 23°N from seismic refraction, J. Geophys. Res., v. 91, pp. 3739–62.Google Scholar
Purdy, G. M., Kong, L. S. L., Christeson, G. L., and Solomon, S. C., 1992, Relationship between spreading rate and the seismic structure of mid-ocean ridges, Nature, v. 355, pp. 815–17.Google Scholar
Putnam, G. R., 1895, Results of a transcontinental series of gravity measurements, Bull. Phil. Soc. Washington, v. 13, pp. 3160.Google Scholar
Putnam, G. R., 1912, Condition of the Earth’s crust, Science, v. 36, pp. 869–71.Google Scholar
Putnam, G. R., 1922, Condition of the Earth’s crust and the earlier American gravity observations, Bull. Geol. Soc. Am., v. 33, pp. 287302.Google Scholar
Putnam, G. R., 1929, Isostasy, Nature, v. 123, pp. 298–9.Google Scholar
Putnam, G. R., 1930, Isostatic compensation in relation to geological problems, J. Geol., v. 38, pp. 590–9.Google Scholar
Quidelleur, X., Hildenbrand, A., and Samper, A., 2008, Causal link between Quaternary paleoclimatic changes and volcanic islands evolution, Geophys. Res. Lett., v. 35, https://doi.org/10.1029/2007GL031849.Google Scholar
Quinlan, G. M., 1987, Models of subsidence mechanisms in intracratonic basins, and their applicability to North American examples, in Beaumont, C., and Tankard, A. J., eds., Sedimentary Basins and Basin-Forming Mechanisms, Memoir 12, Calgary, Canadian Society of Petroleum Geology, pp. 463–81.Google Scholar
Quinlan, G. M., and Beaumont, C, 1984, Appalachian thrusting, lithospheric flexure and the Paleozoic stratigraphy of the eastern Interior of North America, Can. J. Earth Sci., v. 21, pp. 973–96.Google Scholar
Qureshi, I. R., 1976, Two-dimensionality on a spherical Earth – A problem in gravity reductions, Pageoph, v 114, pp. 8195.Google Scholar
Qureshy, M. N., 1969, Thickening of a basalt layer as a possible cause for the uplift of the Himalayas – A suggestion based on gravity data, Tectonophysics, v. 7, pp. 137–57.Google Scholar
Rajesh, R. S., and Mishra, D. C., 2004. Lithospheric thickness and mechanical strength of the Indian shield, Earth Planet. Sci. Lett., v. 225, pp. 319–28.Google Scholar
Rajesh, R. S., Stephen, J., and Mishra, D. C., 2003. Isostatic response and anisotropy of the eastern Himalyan-Tibetan Plateau: A reappraisal using multitaper spectral analysis, Geophys. Res. Lett., v. 30, https://doi.org/10.29/2002GL016104.Google Scholar
Ranero, C. R., Phipps_Morgan, J., McIntosh, K., and Reichert, C., 2003, Bending related faulting and mantle serpentinisation at the Middle America trench, Nature, v. 425, pp. 367–73.Google Scholar
Ranero, C. R., Villaseñor, A., Morgan, J. P., and Weinrebe, W., 2005, Relationship between bend-faulting at trenches and intermediate-depth seismicity, Geochem. Geophys., v. 6, https://doi.org/10.1029/2005GC000997.Google Scholar
Rapp, R. H., 1989, The decay of the spectrum of the gravitational potential and the topography for the Earth, Geophys. J. Int., v. 99, pp. 449–55.Google Scholar
Rapp, R. H., and Pavlis, N. K., 1990, The development and analysis of geopotential coefficient models to spherical harmonic degree 360, J. Geophys. Res., v. 95, pp. 21885–911.Google Scholar
Raterron, P., Wu, Y., Weidner, D. J., and Chen, J., 2004. Low-temperature olivine rheology at high pressure, Phys. Earth Planet. Inter., v. 145, 149–59.Google Scholar
Ravaut, P., Al Yahya’ey, A., Bayer, R., and Lesquer, A., 1993, Response isostatique de la plate-forme arabique au chargement ophiolitique en Oman, Compte Rendue de l’Academie Science Paris, v. 317, pp. 463–70.Google Scholar
Rayleigh, C. B., Kirby, S. H., Carter, N. L., and Avé Lallement, H. G., 1971, Slip and the clinoenstatite transformation as competing rate processes in enstatite, J. Geophys. Res., v. 76, pp. 4011–22.Google Scholar
Reading, H. G., and Collinson, J. D., 1996, Clastic coasts (Chapter 6), in Reading, H. G., ed., Sedimentary Environments: Processes, Facies and Stratigraphy, pp. 154228, Blackwell Science.Google Scholar
Reasenberg, R. D., and Bills, B. G., 1983, Critique of “Elastic thickness of the Venus lithosphere estimated from topography and gravity” by A. Cazenave and K. Dominh, Geophys. Res. Lett., v. 10, pp. 93–6.Google Scholar
Rees, B. A., Detrick, R. S., and Coakley, B. J., 1993, Seismic stratigraphy of the Hawaiian flexural moat, Geol. Soc. Am. Bull, v. 105, pp. 189205.Google Scholar
Regan, J., and Anderson, D. L., 1985, Anisotropic models of the upper mantle, Phys. Earth Planet. Int., v. 35, pp. 227–63.Google Scholar
Reid, H. F., 1922, Isostasy and earth movements, Bull. Geol. Soc. Am., v. 33, pp. 317–18.Google Scholar
Reid, H. F., 1932, in Bowie, W., ed., Comments on Isostasy, Washington, DC, National Research Council, 49 pp.Google Scholar
Reston, T. J., Krawczyk, C., and Klaeschen, D., 1996, The S reflector west of Galicia (Spain); evidence from pre-stack depth migration for detachment faulting during continental breakup, J. Geophys. Res., v. 101, pp. 8075–91.Google Scholar
Reynolds, D. J., Steckler, M. S., and Coakley, B. J., 1991, The role of the sediment load in sequence stratigraphy: The influence of flexural isostasy and compaction, J. Geophys. Res., v. 96, pp. 6931–49.Google Scholar
Richter, F. M., and Parsons, B., 1975 , On the interaction of two scales of convection in the mantle, J. Geophys. Res., v. 80, pp. 2529–41.Google Scholar
Ritzwoller, M. H., Shapiro, N. M., and Zhong, S., 2004, Cooling history of the Pacific lithosphere, Earth Planet. Sci. Lett., v. 226, pp. 6984.Google Scholar
Robertson, A. H. F., 1998, Tectonic significance of the Eratosthenes seamount: A continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Project Leg 160), Tectonophysics, v. 298, pp. 6382.Google Scholar
Robinson, A. H., Peirce, C., and Funnell, M. J., 2018, Construction and subduction of the Louisville Ridge, SW Pacific – insights from wide-angle seismic data modelling, Geophys. J. Int., v. 215, pp. 2222–45, https://doi.org/10.1093/gji/ggy397.Google Scholar
Robinson, N. H., 1980, The Royal Society Catalogue of Portraits, London, The Royal Society, 343 pp.Google Scholar
Roddaz, M., Baby, P., Brusset, S., Hermoza, W., and Darrozes, J. M., 2005, Forebulge dynamics and environmental control in Western Amazonia: The case study of the Arch of Iquitos (Peru), Tectonophysics, v. 399, 87108, https://doi.org/10.1016/j.tecto.2004.12.017.Google Scholar
Ross, J. V., and Nielsen, K. C, 1978, High-temperature flow of wet polycrystalline enstatite, Tectonophysics, v. 44, pp. 233–61.CrossRefGoogle Scholar
Royden, L., 1988a, Flexural behaviour of the continental lithosphere in Italy: Constraints imposed by gravity and deflection data, J. Geophys. Res., v. 93, pp. 7747–66.Google Scholar
Royden, L. H., 1988b, Late Cenozoic tectonics of the Pannonian basin system, in Royden, L. H., and Horvath, F., eds., The Pannonian Basin: A Study in Basin Evolution, Memoir 45: Tulsa, OK, American Association of Petroleum Geologists, pp. 2748.Google Scholar
Royden, L., 1993, The tectonic expression of slab pull at convergent plate boundaries, Tectonics, v. 12, pp. 303–25.Google Scholar
Royden, L., 1996, Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust, J. Geophys. Res., v. 101, pp. 17679–705.Google Scholar
Royden, L., and Karner, G. D., 1984, Flexure of the lithosphere beneath the Apennine and Carpathian foredeep basins: Evidence for an insufficient topographic load, Amer. Assoc. Pet. Geol., v. 68, pp. 704–12.Google Scholar
Royden, L., and Keen, C. E., 1980, Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves, Earth Planet. Sci. Lett., v. 51, pp. 343–61.Google Scholar
Royden, L., Sclater, J. G., and Von Herzen, R. P., 1980, Continental Margin Subsidence and Heat flow: Important parameters in formation of petroleum hydrocarbons, Am. Assoc. Petrol. Geol. Bull., v. 64, pp. 173–87.Google Scholar
Ruppel, C., and McNutt, M. K., 1990, Regional compensation of the Greater Caucasus mountains based on an analysis of Bouguer gravity data, Earth Planet. Sci. Lett., v. 98, pp. 360–79.Google Scholar
Rutter, E. H., and Brodie, K. H., 1991, Lithosphere rheology – A note of caution, J. Struct. Geol., v. 13, pp. 363–7.Google Scholar
Sacek, V., and Ussami, N., 2009, Reappraisal of the effective elastic thickness for the sub-Andes using 3-D finite element flexural modelling, gravity and geological constraints, Geophys J. Int., v. 179, pp. 778–6, https://doi.org/10.1111/j.1365-246X.2009.04334.x.Google Scholar
Sandwell, D. T., 1986, Thermal stress and the spacing of transform faults, J. Geophys. Res., v. 91, pp. 6405–17.Google Scholar
Sandwell, D. T., 1982, Thermal isostasy: Response of a moving lithosphere to a distributed heat source, J. Geophys. Res., v. 87, pp. 1001–14.Google Scholar
Sandwell, D. T., 2022, Advanced Geodynamics: The Fourier Transform Method, Cambridge, Cambridge University Press, 272 pp.Google Scholar
Sandwell, D. T., and Schubert, G., 1982, Lithospheric flexure at fracture zones, J. Geophys. Res., v. 87, pp. 4657–67.Google Scholar
Sandwell, D. T., and Schubert, G., 1992, Flexural ridges, trenches, and outer rises around coronae on Venus, J. Geophys. Res., v. 97, pp. 16069–83.Google Scholar
Sandwell, D. T., and Smith, W. H. F., 1997, Marine gravity anomaly from Geosat and ERS-1 satellite altimetry, J. Geophys. Res., v. 102, pp. 10039–54Google Scholar
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and Francis, R., 2014, New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science, v. 346, pp. 65–7, https://doi.org/10.1126/science.1258213.Google Scholar
Sandwell, D. T., Harper, H., Tozer, B., and Smith, W. H. F., 2019, Gravity field recovery from geodetic altimeter missions, Advances in Space Research, https://doi.org/10.1016/j.asr.2019.09.011.Google Scholar
Sanford, B. V., 1987, Paleozoic geology of the Hudson Platform, in Sedimentary Basins and Basin-Forming Mechanisms: Intracratonic Basins, Amer. Assoc. Pet. Geol. Memoir, v. 12, pp. 483505.Google Scholar
Sauramo, M., 1955, Die Geschichte der Ostsee, Ann. Acad. Sci. Fennicae, v. 51, pp. 1522.Google Scholar
Schedl, A., and Wiltschko, D. V., 1984, Sedimentological effects of a moving terrain, J. of Geology, v. 92, pp. 273–87.Google Scholar
Schofield, J. C., 1967, 1-Post glacial sea-level maxima a function of salinity?. 2-Pleistocene sealevel evidence from Cook Islands, J. of Geosciences, v. 10, pp. 115–20.Google Scholar
Schofield, J. C., and Nelson, C. S., 1978, Dolomitisation and Quaternary climate of Niue Island, Pacific Ocean: Pacific Geol., v. 13, pp. 3748.Google Scholar
Schubert, G., and Moore, W. B., 1994, Gravity over Coronae and Chasmata on Venus, Icarus, v. 112, pp. 130–46.Google Scholar
Schultz, P. H., and Gault, D. E., 1975, Seismic effects from major basin formation on the Moon and Mercury, Moon, v. 12, pp. 159–77.Google Scholar
Schumm, S. A., 1963, The disparity between present rates of denudation and orogeny, U.S. Geol. Surv. Prof. Papers, v. 454–H, pp. H1H13.Google Scholar
Sclater, J. G., and Francheteau, J. 1970, The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth, Geophys. J. R. Astr. Soc., v. 20, pp. 509–42.Google Scholar
Sclater, J. G., Jaupart, C., and Galson, D., 1980, The heat flow through oceanic and continental crust and the heat loss of the Earth, Rev. Geophys. Space Phys., v. 18, pp. 269311.Google Scholar
Sclater, J. G., Lawver, L. A., and Parsons, B. E., 1975, Comparison of long wavelength residual elevation and free air gravity anomalies in the north Atlantic and possible implications for the thickness of the lithosphere plate, J. Geophys. Res, v. 80, pp. 1031–52.Google Scholar
Scruton, P. C., 1960, Delta building and the deltaic sequence, in Shepard, F. C., Phleger, F. B., and van Andel, T. H., eds., Recent Sediments, Northwest Gulf of Mexico, Tulsa, OK, American Association Petroleum Geologists, pp. 82102.Google Scholar
Scrutton, R. A., 1982, Crustal structure and development of sheared passive continental margins, in Scrutton, R. A., ed., Dynamics of Passive Margins, Geodynamics Series 6, Washington, DC, American Geophysical Union, pp. 133–40.Google Scholar
Searle, M. P., Law, R. D., and Jessup, M. J., 2006, Crustal structure, restoration, and evolution of the Greater Himalaya in Nepal-South Tibet: implications for channel flow and ductile extrusion of the middle crust, J. Geol. Soc. London, v. 268, pp. 355–78.Google Scholar
Searle, R. C., 1970, Evidence from gravity anomalies for thinning of the lithosphere beneath the Rift Valley in Kenya, Geophys. J. R. Astr. Soc., v. 21, pp. 1331.Google Scholar
Searle, R. C., Francheteau, J., and Cornaglia, B., 1995, New observations on mid-plate volcanism and the tectonic history of the Pacific plate, Tahiti to Easter microplate, Earth Planet. Sci. Lett., v. 131, pp. 395421.Google Scholar
Searle, R. C., Keeton, J. A., Owens, R. B. et al., 1998, The Reykjanes Ridge: Structure and tectonics of a hot-spot-influenced slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations, Earth Planet. Sci. Lett., v. 160, pp. 463–78.Google Scholar
Seno, T., and Yamanaka, Y., 1996, Double seismic zones, compressional deep trench-outer rise events, and superplumes, in Bebout, G. E., Scholl, D. W., Kirby, S. H., and Platt, J. P., eds., Subduction Top to Bottom, Monograph 36, Washington, DC, American Geophysical Union, pp. 347–55.Google Scholar
Shaber, G. G., Boyce, J. M., and Trask, N. J., 1977, Moon-Mercury: Large impact structures, isostasy and average crustal viscosity, Phys. Earth Planet. Int., v. 15, pp. 189201.Google Scholar
Shah, A. K., and Buck, W. R., 2003, Plate bending stresses at axial highs, and implications for faulting behavior, Earth Planet. Sci. Lett., v. 211, pp. 343–56, https://doi.org/10.1016/S0012-821X(03)00187-0.Google Scholar
Shapiro, N. M., and Ritzwoller, M. H., 2002, Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle, Geophys. J. Int., v. 151, pp. 88105.Google Scholar
Sharp, W. D., and Clague, D. A., 2006, 50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion, Science, v. 313, pp. 1281–4.Google Scholar
Sharp, W. D., and Renne, P. R., 2005, The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii, Geochem. Geophys., v. 6, https://doi.org/10.1029/2004GC000846.Google Scholar
Sheehan, A. F., and McNutt, M. K., 1989, Constraints on thermal and mechanical structure of the oceanic lithosphere at the Bermuda Rise from geoid height and depth anomalies, Earth Planet. Sci. Lett., v. 93, pp. 377–91.Google Scholar
Sheffels, B., and McNutt, M., 1986, Role of subsurface loads and regional compensation in the isostatic balance of the Transverse Ranges, California: Evidence for intracontinental subduction, J. Geophys. Res., v. 91, pp. 6419–31.Google Scholar
Shelton, G., and Tullis, J., 1981, Experimental flow laws for crustal rocks, EOS Trans. American Geophysical Union, v. 62, p. 396.Google Scholar
Shepard, F. P., 1923, Isostasy as a result of Earth shrinkage, J. Geol., v. 31, pp. 208–16.Google Scholar
Shi, X., Burov, E., Leroy, S., Qiu, X., and Xia, B., 2005, Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea, Tectonophysics, v. 407, pp. 117–34, https://doi.org/10.1016/j.tecto.2005.07.004.Google Scholar
Shillington, D. J., Bécel, A., Nedimović, M. R. et al., 2015, Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nature Geoscience, v. 8, pp. 961–4, https://doi.org/910.1038/ngeo2586.Google Scholar
Shudofsky, G. N., Cloetingh, S., Stein, S., and Wortel, R., 1987, Unusually deep earthquakes in east Africa: Constraints on the thermo-mechanical structure of a continental rift system, Geophys. Res. Lett., v. 14, pp. 741–4.Google Scholar
Sibuet, J.-C., Le Pichon, X., and Goslin, J., 1974, Thickness of lithosphere deduced from gravity edge effects across the Mendocino Fault, Nature, v. 252, pp. 676–9.Google Scholar
Sibuet, J.-C., and Veyrat-Peinet, B., 1980, Gravimetric model of the Atlantic Equatorial Fracture Zones, J. Geophys. Res., v. 85, pp. 943–54.Google Scholar
Simons, F. J., Zuber, M. T., and Korenaga, J., 2000, Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis, J. Geophys. Res., v. 105, pp. 19163–84.Google Scholar
Simpson, G., 2004, Role of river incision in enhancing deformation, Geology, v. 32, pp. 341–4, https://doi.org/10.1130/G20190.1.Google Scholar
Simpson, R. W., Jachens, R. C., Blakeley, R. J., and Saltus, R. W., 1986, A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies, J. Geophys. Res., v. 91, pp. 8348–72.Google Scholar
Sinclair, H. D., Coakley, B. J., Allen, P. A., and Watts, A. B., 1991, Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the central Alps, Switzerland, Tectonics, v. 10, pp. 599620.Google Scholar
Sjogren, W. L., 1979, Mars gravity: High resolution results from Viking orbiter 2, Science, v. 203, pp. 1006–9.Google Scholar
Sjogren, W. L., Phillips, R. J., Birkeland, P. W., and Wimberly, R. N., 1980, Gravity anomalies on Venus, J. Geophys. Res., v. 85, pp. 8295–302.Google Scholar
Sleep, N. H., 1971, Thermal effects of the formation of Atlantic continental margins by continental breakup, Geophys. J. R. Astr. Soc., v. 24, pp. 325–50.Google Scholar
Sleep, N. H., 1973, Crustal thinning on Atlantic continental margins: evidence from older margins, in Implications of Continental Drift to the Earth Sciences, pp. 685–92, New York, Academic Press.Google Scholar
Sleep, N. H., and Rosendahl, B. R., 1979, Topography and tectonics of mid-ocean ridge axes, J. Geophys. Res., v. 84, pp. 6831–9.Google Scholar
Sleep, N. H., and Snell, N. S., 1976, Thermal contraction and flexure of mid-continent and Atlantic marginal basins, Geophys. J. R. Astr. Soc., v. 45, pp. 125–54.Google Scholar
Sloss, L., 1963, Sequences in the cratonic interior of North America, Geol. Soc. Am. Bull., v. 74, pp. 93113.Google Scholar
Sloss, L. L., and Scherer, W., 1975, Geometry of sedimentary basins: Applications to the Devonian of North America and Europe, Geol. Soc. Am. Memoir 142, pp. 7188.Google Scholar
Smallwood, J. R., 2010. Bouguer redeemed: The successful 1737–1740 gravity experiments on Pichincha and Chimborazo, Earth Sciences History, v. 29, pp. 129.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V. et al. 1998, Topography of the Northern hemisphere of Mars from Mars Orbiter Laser Altimeter, Science, v. 279, pp. 1686–92.Google Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C. et al. 1999, The global topography of Mars from MOLA, Science, v. 284, pp. 1495–503.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V. et al., 2001, Mars Orbiter Laser Altimeter – Experiment summary after the first year of global mapping of Mars., J. Geophys. Res., v. 106, pp. 23689–722, https://doi.org/10.1029/2000JE001364.Google Scholar
Smith, D. E., Zuber, M. T., Neumann, G. A. et al., 2010, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Res. Letters, v. 37, 6 pp., https://doi.org/10.1029/2010GL043751.Google Scholar
Smith, J. R., and Wessel, P., 2000, Isostatic consequences of giant landslides on the Hawaiian Ridge, Pure and Appl. Geophys., v. 157, pp. 1097–114.Google Scholar
Smith, W. H. F., Staudigel, H., Watts, A. B., and Pringle, M. S., 1989, The Magellan Seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly, J. Geophys. Res., v. 94, pp. 10,50123.Google Scholar
Smith, W. H. F., and Sandwell, D. T., 1997, Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings, Science, v. 277, pp. 1956–62.Google Scholar
Smrekar, S. E., 1994, Evidence for active hotspots on Venus from analysis of Magellan gravity data, Icarus, v. 112, pp. 226.Google Scholar
Smrekar, S. E., and Stofan, E. R., 2003. Effects of lithospheric properties on the formation of Type 2 coronae on Venus, J. Geophys. Res., 108, https://doi.org/1029/2002JE001930.Google Scholar
Snyder, D. B., and Barazangi, M., 1986, Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations, Tectonics, v. 5, pp.361–73.Google Scholar
Soha, J. M., Lynn, D. J., Lorre, J. J. et al. 1975, IPL processing of the Mariner 10 images of Mercury, J. Geophys. Res., v. 80, pp. 2394–414.Google Scholar
Sohn, R. A., and Sims, K. W. W., 2005, Bending as a mechanism for triggering off-axis volcanism on the East Pacific Rise, Geology, v. 33, pp. 93–6, https://doi.org/10.1130/G21116.1.Google Scholar
Solomon, S. C., 1976, Geophysical constraints on radial and lateral temperature variations in the upper mantle: Am. Mineralogist, v. 61, pp. 788803.Google Scholar
Solomon, S. C., and Head, J. W., 1979, Vertical movement in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history, J. Geophys. Res., v. 84, pp. 1667–82.Google Scholar
Solomon, S. C., and Head, J. W., 1980, Lunar mascon basins: Lava filling, tectonics and evolution of the lithosphere, Rev. Geophys. and Space Phys., v. 18, pp. 107–41.Google Scholar
Solomon, S. C., and Head, J. W., 1982, Evolution of the Tharsis province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction, J. Geophys. Res., v. 87, pp. 9755–74.Google Scholar
Solomon, S. C., and Head, J. W., 1990, Lithospheric flexure beneath the Freyja Montes foredeep, Venus: Constraints on lithospheric thermal gradient and heat flow, Geophys. Res. Lett., v. 17, pp. 1393–403.Google Scholar
Solomon, S. C., Comer, R. P., and Head, J. W., 1982, The evolution of impact basins: Viscous relaxation of topographic relief, J. Geophys. Res., v. 87, pp. 3975–92.Google Scholar
Solomon, S. C., Smrekar, S. E., Bundschadler, D. L. et al. 1992, Venus tectonics: An overview of Magellan observations, J. Geophys. Res., v. 97, pp. 13199–255.Google Scholar
Sori, M. M., 2018, A thin, dense crust for Mercury, Earth Planet. Sci. Lett., v. 489, pp. 92–9, https://doi.org/10.1016/j.epsl.2018.02.033.Google Scholar
Spadini, G., Cloetingh, S., and Berlotti, G., 1995, Thermo-mechanical modeling of the Tyrrhenian Sea, Tectonics, v. 14, pp. 629–44.Google Scholar
Squyres, S. W., Janes, D. M., Baker, G. et al. 1992, The morphology and evolution of coronae on Venus, J. Geophys. Res., v. 97, pp. 13611–34.Google Scholar
Stanley, J.-D., 2001, Dating modern deltas: Progress, problems, and prognostics, Annu. Rev. Earth Planet. Sci., v. 29, pp. 257–94.Google Scholar
Stark, C. P., Stewart, J., and Ebinger, C. J., 2003, Wavelet transform mapping of the effective elastic thickness and plate loading: Validation using synthetic data and application to the study of the South African tectonics, J. Geophys. Res., v. 108, https://doi.org/10.1029/2001JB000609.Google Scholar
Staudigel, H., and Schmincke, H.-U., 1984, The Pliocene seamount series of La Palma/Canary Islands, J. Geophys. Res., v. 89, pp. 11195–215.Google Scholar
Steckler, M. S., 1985, Uplift and extension in the Gulf of Suez: Indications of induced mantle convection, Nature, v. 317, pp. 135–9.Google Scholar
Steckler, M. S., and Watts, A. B., 1980, The Gulf of Lion: Subsidence of a young continental margin, Nature, v. 287, pp. 425–9.Google Scholar
Steckler, M. S., Mountain, G. S., Miller, K. G., and Christie-Blick, N., 1999, Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping, Mar. Geol., v. 154, pp. 399420.Google Scholar
Stephen, J., Singh, S. B., and Yedekar, D. B., 2003. Elastic thickness and isostatic coherence anisotropy in the South Indian Peninsular Shield and its implications, Geophys. Res. Lett., v. 30, https://doi.org/10.1029/2003GL017686.Google Scholar
Stern, R. J., Reagan, M., Ishizuka, O., Ohara, Y., and Whattam, S., 2012, To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites, Lithosphere, v. 4, pp. 469–83, https://doi.org/10.1130/L183.1.Google Scholar
Stern, T. A., and McBride, J. H., 1998, Seismic exploration of continental strike-slip zones, Tectonophysics, v. 286, pp. 6378.Google Scholar
Stern, T. A., and ten Brink, U. S., 1989, Flexural uplift of the Transantarctic Mountains, J. Geophys. Res., v. 94, pp. 10,315–30.Google Scholar
Stern, T. A., Baxter, A. K., and Baxter, P. J., 2005, Isostatic rebound due to glacial erosion within the Transantarctic Mountains, Geology, v. 33, pp. 221–4.Google Scholar
Stewart, J., 1998, Gravity anomalies, flexure and the thermal and mechanical properties of the continental lithosphere, D.Phil thesis, Oxford University.Google Scholar
Stewart, J., and Watts, A. B., 1997, Gravity anomalies and spatial variations of flexural rigidity at mountain ranges, J. Geophys. Res., v. 102, pp. 5327–52.Google Scholar
Stewart, I. S., Sauber, J., and Rose, J., 2000, Glacio-seismotectonics: Ice sheets, crustal deformation and seismicity, Quat. Science Reviews, v. 19, pp. 1367–89.Google Scholar
Stockmal, G. S., Beaumont, C., and Boutilier, R., 1986, Geodynamic models of covergent margin tectonics: Transition from rifted margin to overthrust belt and consequences for foreland-basin development, Am. Assoc. Pet. Geol., v. 70, pp. 181–90.Google Scholar
Stocks, T., and Wüst, G., 1935, Die Tiefenverhaltnisse des offenen Atlantischen Ozeans, Berlin und Leipzig, Verlag von Walter de Gruyter & Co, 31 pp.Google Scholar
Stoffa, P., and Buhl, P., 1980, Two-ship multichannel seismic experiments for deep crustal studies, J. Geophys. Res., v. 84, pp. 7645–60.Google Scholar
Stolper, E. M., DePaolo, D. J., and Thomas, D. M., 2009, Deep drilling into a mantle plume volcano: The Hawaii Scientific Drilling Project, Scientific Drilling, v. 7, pp. 414.Google Scholar
Strom, R. G., 1971, Lunar mare ridges, rings and volcanic ring complexes, Mod. Geol., v. 2, pp. 133–57.Google Scholar
Strom, R. G., Terrile, R. J., and Guest, J. E., 1975, Tectonism and volcanism on Mercury, J. Geophys. Res., v. 80, pp. 2478–507.Google Scholar
Sugano, T., and Heki, K., 2004. Isostasy of the Moon from high-resolution gravity and topography data: Implication for its thermal history, Geophys. Res. Lett., v. 31, https://doi.org/10.1029/2004GL022059.Google Scholar
Suguio, K., Martin, L., and Flexor, J., 1980, Sea level fluctuations during the past 6000 years along the coast of the state of Sao Paulo, Brazil, in Morner, N.-A., ed., Earth Rheology, Isostasy and Eustasy, New York, John Wiley & Sons, pp. 471–86.Google Scholar
Suppe, J., and Connors, C., 1992, Critical taper wedge mechanics of fold-and-thrust belts on Venus: Initial results from Magellan, J. Geophys. Res., v. 97, pp. 13545–57.Google Scholar
Suyenaga, W., 1977, Earth deformation in response to surface loading: Application to the formation of the Hawaiian Ridge, PhD. thesis, University of Hawaii.Google Scholar
Swain, C. J., and Kirby, J. F., 2003, The effect of ‘noise’ on estimates of the elastic thickness of the continental lithosphere by the coherence method, Geophys. Res. Letts., v. 30, https://doi.org/10.1029/2003GL017070.Google Scholar
Swain, C. J., and Kirby, J. F., 2006, An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth’s method, Geophys. Res. Letts., v. 33, https://doi.org/10.1029/2005GL025090.Google Scholar
Sweeney, J. F., 1977, Subsidence of the Sverdrup basin, Canadian Arctic Islands, Geol. Soc. Am. Bull., v. 88, pp. 41–8.Google Scholar
Sykes, L. R., 1970, Seismicity of the Indian Ocean and a possible nascent island arc between Ceylon and Australia, J. Geophys. Res., v. 75, pp. 5041–55.Google Scholar
Sykes, L. R., 1978, Intraplate seismicity, reactivation of pre-existing zones of weakness, alkaline magmatism and other tectonism postdating continental fragmentation, Rev. Geophys., v. 16, pp. 621–88.Google Scholar
Talwani, M., 1972, Lunar Gravity Traverse Experiment, The Moon, v. 4, p. 307, https://doi.org/10.1007/BF00561998.Google Scholar
Talwani, M., Worzel, J. L., and Landisman, M., 1959, Rapid gravity computations for two-dimensional bodies with applications to the Mendocino submarine fracture zones, J. Geophys. Res., v. 54, pp. 4959.Google Scholar
Tang, J., Lerche, I., and Cogan, J., 1992, An inverse method for calculating basement geometry, J. Geodynamics, v 15, pp. 85106.Google Scholar
Tanimoto, T., 1997, Bending of spherical lithosphere – axisymmetric case, Geophys. J. Int., v. 129, pp. 305–10.Google Scholar
Tanimoto, T., 1998, State of stress within a bending spherical shell and its implications for subducting lithosphere, Geophys. J. Int., v. 134, pp. 199206.Google Scholar
Tanner, J. G., and Uffen, R. J., 1960, Gravity anomalies in the Gaspé Peninsula, Publ. Dom. Obs., v. 21, pp. 221–60.Google Scholar
Tapponier, P., and Francheteau, J., 1978, Necking of the lithosphere and the mechanics of slowly accreting plate boundaries, J. Geophys. Res., v. 83, pp. 3955–70.Google Scholar
Tarduno, J. A., Duncan, R. A., Scholl, D. W. et al., 2003, The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth’s mantle, Science, v. 301, pp. 1064–9, https://doi.org/10.1126/science.1086442.Google Scholar
Tassara, A., Swain, C., Hackney, R., and Kirby, J., 2006, Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data, Earth Planet. Sci. Lett., v. 253, pp. 1736, https://doi.org/10.1016/j.epsl.2006.10.008.Google Scholar
Tate, M., White, N., and Conroy, J.-J., 1993, Lithospheric extension and magmatism in the Porcupine Basin West of Ireland, J. Geophys. Res., v. 98, pp. 13905–23.Google Scholar
Taylor, S. R., 1989, Geophysical framework of the Appalachians and adjacent Grenville Province, in Pakiser, L., and Mooney, W., eds., Geophysical Framework of the Continental United States, Geological Society of America Memoir, v. 1, pp. 317–47.Google Scholar
ten Brink, U., 1991, Volcano spacing and rigidity, Geology, v. 19, pp. 397400.Google Scholar
ten Brink, U. S., and Brocher, T. M., 1987, Multichannel seismic evidence for a subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism, J. Geophys. Res., v. 92, pp. 13687–707.Google Scholar
ten Brink, U. S., and Stern, T., 1992, Rift flank uplifts and hinterland basins: Comparison of the Transantarctic Mountains with the Great Escarpment of Southern Africa, J. Geophys. Res., v. 97, pp. 569–85.Google Scholar
ten Brink, U. S., and Watts, A. B., 1985, Seismic stratigraphy of the flexural moat flanking the Hawaiian Islands, Nature, v. 317, pp. 421–4.Google Scholar
ten Brink, U. S., Be-Avraham, Z., Bell, R. E. et al. 1993, Structure of the Dead Sea pull-apart basin from gravity analysis, J. Geophys. Res., v. 98, pp. 21887–94.Google Scholar
ten Brink, U. S., Hackney, R. I., Bannister, S., Stern, T. A., and Makovsky, Y., 1997. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet, J. Geophys. Res., v. 102, pp. 27,60321.Google Scholar
Tessema, A., and Antoine, L. A. G., 2003. Variation in effective elastic plate thickness of the East Africa lithosphere, J. Geophys. Res. v. 108, https://doi.org/10.1029/2002JB002200.Google Scholar
Thom, B. G., and Chappell, J., 1978, Holocene sea level change: An interpretation, Phil. Trans. R. Soc. Lond., v. 291, pp. 187–94.Google Scholar
Thurber, C. H., and Toksoz, M. N., 1978, Martian lithospheric thickness from elastic flexure theory, Geophys. Res. Lett., v. 5, pp.977–80.Google Scholar
Tiley, R., McKenzie, D, and White, N., 2003. The elastic thickness of the British Isles, J. Geol. Soc. Lond., v. 160, pp. 499502.Google Scholar
Timoshenko, S., 1958a, Strength of Materials. Part I. Elementary Theory and Problems, New York, D. Van Nostrand Co, 442 pp.Google Scholar
Timoshenko, S., 1958b, Strength of Materials. Part II. Advanced Theory and Problems, New York, D. Van Nostrand Co, 572 pp.Google Scholar
Timoshenko, S. P., and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells, 2nd ed., New York, McGraw-Hill, 575 pp.Google Scholar
Tiwari, V. M., and Mishra, D. C., 1999. Estimation of effective elastic thickness from gravity and topography data under the Deccan volcanic province, India, Earth Planet. Sci. Lett., v. 171, pp. 289–99.Google Scholar
Todd, B. J., and Keen, C. E., 1989, Temperature effects and their geological consequences at transform margins, Can. J. Earth Sci., v. 26, pp. 2591–603.Google Scholar
Tornqvist, T. E., Wallace, D. J., Storms, J. E. A. et al. 2008, Mississippi Delta subsidence primarily caused by compaction of Holocene strata, Nature Geoscience, v. 1, pp. 173–6, https://doi.org/10.1038/ngeo129.Google Scholar
Tozer, B., Watts, A. B., and Daly, M. C., 2017, Crustal structure, gravity anomalies and subsidence history of the Parnaíba cratonic basin, Northeast Brazil, J. Geophys. Res., v. 122, pp. 5591–621, https://doi.org/10.1002/2017JB014348.Google Scholar
Trask, N. J., and Guest, J. E., 1975, Preliminary terrain map of Mercury, J. Geophys. Res., v. 80, pp. 2461–77.Google Scholar
Tsoulis, D., 2001, A comparison between the Airy/Heiskanen and the Pratt/Hayford isostatic models for the computation of potential harmonic coefficients, J. Geodesy, v. 74, pp. 637–43.Google Scholar
Turcotte, D. L., 1974, Are transform faults thermal contraction cracks?, J. Geophys. Res., v. 79, pp. 2573–7.Google Scholar
Turcotte, D. L., and McAdoo, D. C., 1979, Thermal subsidence and petroleum generation in the southwestern block of the Los Angeles basin, California, J. Geophys. Res., v. 84, pp. 3460–4.Google Scholar
Turcotte, D. L., and Schubert, G., 1982, Geodynamics: Applications of Continuum Physics to Geological Problems, New York, John Wiley, 450 pp.Google Scholar
Umino, S., Lipman, P. W., and Obata, S., 2000, Subaqueous lava flow lobes, observed on ROV KAIKO dives off Hawaii, Geology v. 28, pp. 503–6.Google Scholar
Upcott, N. M., Mukasa, R. K., Ebinger, C. J., and Karner, G. D., 1996, Along-axis segmentation and isostasy in the Western Rift, East Africa, J. Geophys. Res., v. 101, pp. 3247–68.Google Scholar
Urbancic, N., Ghent, R., Johnson, C. L. et al., 2017, Subsurface density structure of Taurus-Littrow Valley using Apollo 17 gravity data, J. Geophys. Res. Planets, v. 122, pp. 1181–94, https://doi.org/10.1002/2017JE005296.Google Scholar
Ussami, N., Cogo de Sa, N., and Molina, E. C., 1993, Gravity map of Brazil. 2. Regional and residual isostatic anomalies and their correlation with major tectonic provinces, J. Geophys. Res., v. 98, pp. 2199–208.Google Scholar
Ussami, N., Karner, G. D., and Bott, M. H. P., 1986, Crustal detachment during South Atlantic rifting and formation of Tucano-Gabon basin system, Nature, v. 322, pp. 629–32.Google Scholar
Vai, G. B., 2006, Isostasy in Luigi Ferdinando Marsili’s manuscripts, in The Origins of Geology in Italy, edited by Vai, G. B. and Caldwell, W. G. E., Geological Society of America Special Papers, v. 411, pp. 95127, https://doi.org/10.1130/2006.2411(07).Google Scholar
Vail, P. R., Mitchum, R. M., and Thompson, S., 1977, Relative sea-level from coastal onlap, in Payton, C. E., ed., Seismic Stratigraphy – Applications to Hydrocarbon Exploration, Memoir 26, Tulsa, OK, American Association of Petroleum Geologists, pp. 6382.Google Scholar
Van Avendonk, H. J. A., Christeson, G. L., Norton, I. O., and Eddy, D. R., 2015, Continental rifting and sediment infill in the northwestern Gulf of Mexico, Geology, v. 43, pp. 631–4, https://doi.org/10.1130/G36798.1.Google Scholar
van den Berg, J., van de Wal, R. S. W., and Oerlemans, J., 2006, Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model, J. Geophys. Res., v. 111, https://doi.org/10.1029/2005JB003790.Google Scholar
van den Berg, J., van de Wal, R. S. W., Milne, G. A. and Oerlemans, J., 2008, Effect of isostasy on dynamical ice sheet modeling: A case study for Eurasia, J. Geophys. Res., v. 113, https://doi.org/10.1029/2007JB004994.Google Scholar
van der beek, P. A., and Cloetingh, S., 1992, Lithospheric flexure and the tectonic evolution of the Betic Cordilleras (SE Spain), Tectonophysics, v. 203, pp. 325–44.Google Scholar
van Wees, J. D., and Cloetingh, S., 1994, A finite-difference technique to incorporate spatial variations in rigidity and planar faults into 3–D models for lithospheric flexure, Geophys. J. Int., v. 117, pp. 179–95.Google Scholar
van Wyk de Vries, B., and Matela, R., 1998, Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion, J. Volcanology and Geothermal Research, v. 81, pp.118.Google Scholar
Vaughan, D. G., 1995, Tidal flexure at ice shelf margins, J. Geophys. Res., v. 100, pp. 6213–24.Google Scholar
Vening Meinesz, F. A., 1929, Theory and Practise of Pendulum Observations at Sea, Technische boekhandel en drukkerij: Delft, J. Waltman Jr, 95 pp.Google Scholar
Vening Meinesz, F. A., 1931, Une nouvelle methode pour la réduction isostatique régionale de l’intensité de la pesanteur, Bull. Géodésique, v. 29, pp. 3351.Google Scholar
Vening Meinesz, F. A., 1932, in Bowie, W., ed., Comments on Isostasy, Washington, DC, National Research Council, 49 pp.Google Scholar
Vening Meinesz, F. A., 1941a, Gravity Expeditions at Sea 1934–1939, the Expeditions, the Computations and the Results, v. III, Delft, The Netherlands Geodetic Commission, 97 pp.Google Scholar
Vening Meinesz, F. A., 1941b, Gravity over the Hawaiian Archipelago and over the Madeira Area; Conclusions about the Earth’s Crust, Proceedings, Koninklijke Nederlandse Akok, v. 44, Wetensiag, 41 pp.Google Scholar
Vening Meinesz, F. A., 1948, Gravity Expeditions at Sea 1923–1938, Complete Results with Isostatic Reduction Interpretation of the Results, v. IV, Delft, The Netherlands Geodetic Commission, 24 pp.Google Scholar
Vening Meinesz, F. A., 1950, Les graben africains, résultat de compression ou de tension dans la croûte terrestre?, Inst. R. Colonial Belge, Bull, v. 21, pp. 539–52.Google Scholar
Ventsel, E., and Krauthammer, T., 2001, Thin Plates and Shells: Theory, Analysis, and Applications, New York, Marcel Dekker, 666 pp.Google Scholar
Vera, E. E., Mutter, J. C, Buhl, P. et al. 1990, The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles, J. Geophys. Res., v. 95, pp. 15,529–56.Google Scholar
Verhoef, J., and Jackson, H. R., 1991, Admittance signatures of rifted and transform margins: Examples from eastern Canada, Geophys. J. Int., v. 105, pp. 229–39.Google Scholar
Vogt, N., Pinedo-Vasquez, M., Brondızio, E. S. et al. 2016, Local ecological knowledge and incremental adaptation to changing flood patterns in the Amazon delta, Sustainability Science, v. 11, pp. 611623, https://doi.org/10.1007/s11625-015-0352-2.Google Scholar
Vogt, P. R., Jung, W. Y., and Brozena, J., 1998, Arctic margin gravity highs: Deeper meaning for sediment depocenters?, Mar. Geophysical Res., v. 20, pp. 459–77.Google Scholar
Wager, L. R., and Deer, W. A., 1938, A dyke swarm and crustal flexure in East Greenland, Geol. Mag., v. 75, pp. 3946.Google Scholar
Walcott, R. I., 1970a, Flexural rigidity, thickness, and viscosity of the lithosphere, J. Geophys. Res., v. 75, pp. 3941–53.Google Scholar
Walcott, R. I., 1970b, Flexure of the lithosphere at Hawaii, Tectonophysics, v. 9, pp. 435–46.Google Scholar
Walcott, R. I., 1970c, Isostatic response to loading of the crust in Canada, Can. J. Earth Sci., v. 7, pp. 716–27.Google Scholar
Walcott, R. I., 1970d, An isostatic origin for basement uplifts, Can. J. Earth Sci., v. 7, pp. 931–7.Google Scholar
Walcott, R. I., 1972a, Gravity, flexure, and the growth of sedimentary basins at a continental edge, Geol. Soc. Am. Bull., v. 83, pp. 1845–8.Google Scholar
Walcott, R. I., 1972b, Late Quaternary vertical movements in Eastern North America: Quantitative evidence of glacio-isostatic rebound, Rev. Geophys. Space Phys., v. 10, pp. 849–84.Google Scholar
Walcott, R. I., 1973, Structure of the Earth from glacio-isostatic rebound, Annu. Rev. Earth Planet Sci., v. 1, pp. 1537.Google Scholar
Walcott, R. I., 1976, Lithospheric flexure, analysis of gravity anomalies, and the propogation of seamount chains, in Sutton, G. H., Manghnani, M. H., and Moberly, R., eds., The Geophysics of the Pacific Ocean Basin and Its Margin, Geophysical Monograph 19, Washington, DC, American Geophysical Union, pp. 431–8.Google Scholar
Wang, H., Wright, T. J., Yu, Y. et al. 2012, InSAR reveals coastal subsidence in the Pearl River Delta, China, Geophys. J. Int., v. 191, pp. 1119–28, https://doi.org/10.1111/j.1365-246X.2012.05687.x.Google Scholar
Wang, X., and Cochran, J. R., 1993, Gravity anomalies, isostasy and mantle flow at the East Pacific Rise crest, J. Geophys. Res., v. 98, pp. 19505–31.Google Scholar
Wang, Y., and Mareschal, J.-C., 1999, Elastic thickness of the lithosphere in the Central Canadian Shield, Geophys. Res. Lett., v. 26, pp. 3033–6.Google Scholar
Waschbusch, P. J., and Royden, L. H., 1992, Spatial and temporal evolution of foredeep basins: Lateral strength variations and inelastic yielding in continental lithosphere, Basin Res., v. 4, pp. 179–96.Google Scholar
Watters, T. R., 2003, Lithospheric flexure and the origin of the dichotomy boundary on Mars, Geology, v. 31, pp. 271–4.Google Scholar
Watters, T. R., James, P. B., and Selvans, M. M., 2021, Mercury’s crustal thickness and contractional strain, Geophys. Res. Letters, v. 48, https://doi.org/10.1029/2021GL093528.Google Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S., and Cook, A. C., 2002, The mechanical and thermal structure of Mercury’s early lithosphere, Geophys. Res. Letters, v. 29, doi: https://doi.org/10.1029/2001GL014308.Google Scholar
Watts, A. B., 1972, Geophysical investigations east of the Magdalen Islands, southern Gulf of St. Lawrence, Can. J. Earth Sci., v. 9, pp. 1504–28.Google Scholar
Watts, A. B., 1976, Gravity and bathymetry in the Central Pacific Ocean, J. Geophys. Res., v. 81, pp. 1533–53.Google Scholar
Watts, A. B., 1978, An analysis of isostasy in the world’s oceans: 1. Hawaiian-Emperor Seamount Chain, J. Geophys. Res., v. 83, pp. 59896004.Google Scholar
Watts, A. B., 1981, The U.S. Atlantic continental margin: Subsidence history, crustal structure and thermal evolution, in Bally, A. W., ed., The Geology of Continental Margins, Education Course Notes #19, Tulsa, OK, American Association of Petroleum Geologists, pp. 175.Google Scholar
Watts, A. B., 1982a, Gravity Anomalies over Oceanic Rifts, Continental and Oceanic Rifts, Geodynamics Series 8, Washington, DC, American Geophysical Union, pp. 99106.Google Scholar
Watts, A. B., 1982b, Tectonic subsidence, flexure and global changes of sea-level, Nature, v. 297, pp. 469–74.Google Scholar
Watts, A. B., 1988, Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough, Earth Planet. Sci. Lett., v. 89, pp. 221–38.Google Scholar
Watts, A. B., 1989, Lithospheric flexure due to prograding sediment loads: Implications for the origin of offlap/onlap patterns in sedimentary basins, Basin Res., v. 2, pp. 133–44.Google Scholar
Watts, A. B., 1992, The effective elastic thickness of the lithosphere and the evolution of foreland basins, Basin Res., v. 4, pp. 169–78.Google Scholar
Watts, A. B., 1993, The formation of sedimentary basins, in Brown, G. C., Hawkesworth, C. J., and Wilson, R. C. L., eds., Understanding the Earth, Cambridge, Cambridge University Press, pp. 301–24.Google Scholar
Watts, A. B., 1994, Crustal structure, gravity anomalies and flexure of the lithosphere in the Canary Islands, Geophys. J. Int., v. 119, pp. 648–66.Google Scholar
Watts, A. B., 2007. An overview, in Watts, A. B., ed., Treatise of Geophysics. Volume 6: Crust and Lithosphere Dynamics, Amsterdam, Elsevier, pp. 148.Google Scholar
Watts, A. B., 2012, Models for the evolution of passive margins, in Roberts, D. G., and Bally, A. W., eds., Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins, Amsterdam, Elsevier, pp. 3357.Google Scholar
Watts, A. B., and Burov, E. B., 2003, Lithospheric strength and its relationship to the elastic and seismogenic layer thickness, Earth Planet. Sci. Lett., v. 213, pp. 113–31, https://doi.org/10.1016/S0012-821X(03)00289-9.Google Scholar
Watts, A. B., and Cochran, J. R., 1974, Gravity anomalies and flexure of the lithosphere along the Hawaiian-Emperor seamount chain, Geophys. J. R. Astr. Soc., v. 38, pp. 119–41.Google Scholar
Watts, A. B., and Fairhead, J. D., 1997, Gravity anomalies and magmatism at the British Isles continental margin, J. Geol. Soc. London, v. 154, pp. 523–9.Google Scholar
Watts, A. B., and Marr, C., 1995, Gravity anomalies and the thermal and mechanical structure of rifted continental margins, in Banda, E., Talwani, M., and Torné, M., eds., Rifted Ocean-Continent Boundaries, Dordrecht, Kluwer Academic Publishers, pp. 6594.Google Scholar
Watts, A. B., and Moore, J. D. P., 2017, Flexural isostasy: Constraints from gravity and topography power spectra, J. Geophys. Res., v. 122, https://doi.org/10.1002/2017JB014571.Google Scholar
Watts, A. B., and Ribe, N. M., 1984, On geoid heights and flexure of the lithosphere at sea-mounts, J. Geophys. Res., v. 89, pp. 11152–70.Google Scholar
Watts, A. B., and Ryan, W. B. F., 1976, Flexure of the lithosphere and continental margin basins, Tectonophysics, v. 36, pp. 2544.Google Scholar
Watts, A. B., and Steckler, M. S., 1979, Subsidence and eustasy at the continental margin of eastern North America, in Talwani, M., Hay, W., and Ryan, W. B. F., eds., Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, Maurice Ewing Series 3, Washington, DC, American Geophysical Union, pp. 218–34.Google Scholar
Watts, A. B., and Stewart, J., 1998, Gravity anomalies and segmentation of the continental margin offshore West Africa, Earth Planet. Sci. Lett., v. 156, pp. 239–52.Google Scholar
Watts, A. B., and Talwani, M., 1974, Gravity anomalies seaward of deep-sea trenches and their tectonic implications, Geophys. J. R. Astr. Soc., v. 36, pp. 5792.Google Scholar
Watts, A. B., and Talwani, M., 1975a, Gravity effect of downgoing lithospheric slabs beneath island arcs, Geol. Soc. Am. Bull, v. 86, pp. 14.Google Scholar
Watts, A. B., and Talwani, M., 1975b, Gravity Field of the Northwest Pacific Ocean Basin and Its Margin: Hawaii and Vicinity, Boulder, CO, Geological Society of America.Google Scholar
Watts, A. B., and ten Brink, U. S., 1989, Crustal structure, flexure and subsidence history of the Hawaiian Islands, J. Geophys. Res., v. 94, pp. 10473–500.Google Scholar
Watts, A. B., and Thorne, J. A., 1984, Tectonics, global changes in sea-level and their relationship to stratigraphic sequences at the U.S. Atlantic continental margin, Mar. Pet. Geol., v. 1, pp. 319–39.Google Scholar
Watts, A. B., and Torné, M., 1992a, Crustal structure and the mechanical properties of extended continental lithosphere in the Valencia trough (Western Mediterranean), J. Geol. Soc. Lond., v. 149, pp. 813–27.Google Scholar
Watts, A. B., and Torné, M., 1992b, Subsidence history, crustal structure and thermal evolution of the Valencia trough: A young extensional basin in the western Mediterranean, J. Geophys. Res., v. 97, pp. 20021–41.Google Scholar
Watts, A. B., and Zhong, S., 2000, Observations of flexure and the rheology of oceanic lithosphere, Geophys. J. Int., v. 142, pp. 855–75.Google Scholar
Watts, A. B., Bodine, J. H., and Steckler, M. S., 1980, Observations of flexure and the state of stress in the oceanic lithosphere, J. Geophys. Res., v. 85, pp. 6369–76.Google Scholar
Watts, A. B., Cochran, J. R., and Selzer, G., 1975, Gravity anomalies and flexure of the lithosphere: A three-dimensional study of the Great Meteor Seamount, N.E. Atlantic, J. Geophys. Res., v. 80, pp. 1391–8.Google Scholar
Watts, A. B., Grevemeyer, I., Shillington, D. J. et al. 2021, Seismic structure, gravity anomalies and flexure along the Emperor seamount chain, J. Geophys. Res., v. 126, https://doi.org/10.1029/2020JB021109.Google Scholar
Watts, A. B., Karner, G. D., and Steckler, M. S., 1982, Lithospheric flexure and the evolution of sedimentary basins, in Kent, P., Bott, M. H. P., McKenzie, D. P., and Williams, C. A., eds., The Evolution of Sedimentary Basins, Philosophical Transactions of the Royal Society of London, v. 305A, pp. 249–81.Google Scholar
Watts, A. B., Lamb, S. H., Fairhead, J. D., and Dewey, J. F., 1995, Lithospheric flexure and bending of the Central Andes, Earth Planet. Sci. Lett., v. 134, pp. 921.Google Scholar
Watts, A. B., Peirce, C., Collier, J. et al. 1997, A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands, Earth Planet. Sci. Lett., v. 146, pp. 431–47.CrossRefGoogle Scholar
Watts, A. B., Rodger, M., Peirce, C., Greenroyd, C. J., and Hobbs, R. W., 2009, Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil, J. Geophys. Res., v. 114, https://doi.org/10.1029/2008JB006259.Google Scholar
Watts, A. B., Sandwell, D. T., Smith, W. H. F., and Wessel, P., 2006, Global gravity, bathymetry, and the distribution of submarine volcanism through space and time, J. Geophys. Res., v. 111, https://doi.org/10.1029/2005JB004083.Google Scholar
Watts, A. B., ten Brink, U., Buhl, P., and Brocher, T., 1985, A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor seamount chain, Nature, v. 315, pp. 105–11.Google Scholar
Watts, A. B., Tozer, B., Daly, M. C., and Smith, J., 2018, A comparative study of the Parnaíba, Michigan and Congo cratonic basins, in Daly, M. C., Fuck, R. A., Julia, J., Macdonald, D. I., and Watts, A. B., eds., Cratonic Basin Formation: A Case Study of the Parnaíba Basin of Brazil, Geological Society, London, Special Publications, v. 472, pp. 45–66, https://doi.org/10.1144/SP472.6.Google Scholar
Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q., and Lognonné, P., 2011, Seismic Detection of the Lunar Core, Science, v. 331, pp. 309–12, https://doi.org/10.1126/science.1199375.Google Scholar
Webster, J. M., Clague, D. A., and Braga, J. C., 2007, Support for the giant wave hypothesis: Evidence from submerged terraces off Lanai, Hawaii, Int. J. Earth Sci. (Geol. Rundsch), v. 96, pp. 517–24.CrossRefGoogle Scholar
Webster, J. M., Clague, D. A., Braga, J. C. et al., 2006, Drowned coralline algal dominated deposits off Lanai, Hawaii; carbonate accretion and vertical tectonics over the last 30 ka, Marine Geology, v. 225, pp. 223–46.Google Scholar
Weertman, J., 1979, Height of mountains on Venus and the creep properties of rock, Phys. Earth Planet. Int., v. 19, pp. 197207.Google Scholar
Wegener, A., 1966, The Origin of Continents and Oceans (Translated from the Fourth Revised German Edition by John Biram). New York, Dover Publications, 246 pp.Google Scholar
Weigel, W., and Grevemeyer, I., 1999, The Great Meteor seamount seismic structure of a submerged intraplate volcano, Geodynamics, v. 28, pp. 2740.CrossRefGoogle Scholar
Weissel, J. K., and Karner, G. D., 1989, Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension, J. Geophys. Res., v. 94, pp. 13,919–50.Google Scholar
Weissel, J. K., and Watts, A. B., 1979, Tectonic evolution of the Coral Sea Basin, J. Geophys. Res., v. 84, pp. 4572–82.Google Scholar
Weissel, J. K., Anderson, R. N., and Geller, C. A., 1980, Deformation of the Indo-Australian plate, Nature, v. 287, pp. 284–91.CrossRefGoogle Scholar
Wellman, P., 1978, Gravity evidence for abrupt changes in mean crustal density at the junction of Australian crustal blocks, BMR J. Aust. Geol. Geophys., v. 3, pp. 153–62.Google Scholar
Wernicke, B., 1985, Uniform sense normal simple shear of the continental lithosphere, Can. J. Earth Sci., v. 22, pp. 108–25.Google Scholar
Wernicke, B., and Axen, G. J., 1988, On the role of isostasy in the evolution of normal fault systems, Geology, v. 16, pp. 848–51.Google Scholar
Wessel, P., 1993, A re-examination of the flexural deformation beneath the Hawaiian Islands, J. Geophys. Res., v. 98, pp. 12,177–90.Google Scholar
Wessel, P., 2016, Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux, Geophys. J. Int., v. 204, pp. 932–47, https://doi.org/10.1093/gji/ggv472.Google Scholar
Wessel, P., and Haxby, W. F., 1990, Thermal stresses, differential subsidence, and flexure at oceanic fracture zones, J. Geophys. Res., v. 95, pp. 375–91.Google Scholar
Wessel, P., and Keating, B. H., 1994, Temporal variations of flexural deformation in Hawaii, J. Geophys. Res., v. 99, pp. 2747–56.Google Scholar
Wessel, P., and Lyons, S. 1997, Distribution of large Pacific seamounts from Geosat/ERS-1: Implications for the history of intraplate volcanism, J. Geophys. Res., v. 102, pp. 22459–75.Google Scholar
Wessel, P., and Smith, W. H. F., 1991, Free software helps map and display data, EOS Trans. Amer. Union, v. 72, pp. 441–6.Google Scholar
White, N., and McKenzie, D. P., 1988, Formation of the “Steer’s Head” geometry of sedimentary basins by differential stretching of the crust and mantle, Geology, v. 16, pp. 250–3.Google Scholar
White, R. S., 1992, Crustal structure and magmatism of North Atlantic continental margins, J. Geol. Soc. Lond., v. 149, pp. 841–54.Google Scholar
White, R. S., Smith, L. K., Roberts, A. W. et al., 2008, Lower-crustal intrusion on the North Atlantic continental margin, Nature, v. 452, pp. 460–4, https://doi.org/10.1038/nature06687.Google Scholar
Whitehouse, P., Latychev, K., Milne, G. A., Mitrovica, J. X., and Kendall, R., 2006, Impact of 3-D Earth structure on Fennoscandian glacial isostatic adjustment: Implications for space-geodetic estimates of present-day crustal deformations, Geophys. Res. Lett., v. 33, https://doi.org/10.1029/2006GL026568.Google Scholar
Whitman, D., 1994, Moho geometry beneath the eastern margin of the Andes, northwest Argentina, and its implications for the elastic thickness of the Andean foreland, J. Geophys. Res., v. 99, pp. 15277–89.Google Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F. et al., 2013, The crust of the moon as seen by GRAIL, Science, v. 339, pp. 671–5, https://doi.org/10.1126/science.1231530.Google Scholar
Wieczorek, M. A., and Zuber, M. T., 2001. A Serenitatis origin for the Imbrian grooves and South Pole-Aitken thorium anomaly, J. Geophys. Res., 106, 27,853–864.CrossRefGoogle Scholar
Wiens, D. A., and Stein, S., 1983, Age dependence of oceanic intraplate seismicity and implications for lithospheric evolution, J. Geophys. Res., v. 88, pp. 6455–68.Google Scholar
Wiens, D. A., and Stein, S., 1984, Intraplate seismicity and stresses in young oceanic lithosphere, J. Geophys. Res., v. 89, pp. 11,442–64.CrossRefGoogle Scholar
Willett, S. D., Chapman, D. S., and Neugebauer, H. J., 1985, A thermo-mechanical model of continental lithosphere, Nature, v. 314, pp. 520–3.Google Scholar
Williams, J.-P., Nimmo, F., Moore, W. B., and Paige, D. A., 2008, The formation of Tharsis on Mars: What the line-of-sight gravity is telling us, J. Geophys. Res., v. 113, https://doi.org/10.1029/2007JE003050.Google Scholar
Williams, J.-P., Ruiz, J., Rosenburg, M. A., Aharonson, O., and Phillips, R. J., 2011, Insolation driven variations of Mercury’s lithospheric strength, J. Geophys. Res., v. 116, doi: https://doi.org/10.1029/2010JE003655.Google Scholar
Williams, K. K., and Zuber, M. T., 1998, Measurement and analysis of lunar basin depths from Clementine altimetry, Icarus, v. 131, pp. 107–22.Google Scholar
Willis, B., 1919, Joseph Barrell and his work, J. Geol., v. 27, pp. 664–72.Google Scholar
Wilson, C., 2004, Long wavelength gravity and topography anomalies in the Pacific, MESc. thesis, University of Oxford.Google Scholar
Wilson, D. S., 1992, Focused mantle upwelling beneath mid-ocean ridges: Evidence from sea-mount formation and isostatic compensation of topography, Earth Planet. Sci. Lett., v. 113, pp. 4155.Google Scholar
Wilson, J. T., 1965, A new class of faults and their bearing on continental drift, Nature, v. 207, pp. 343–7.Google Scholar
Withjack, M. O., Schlische, R. W., and Olsen, P. E., 1998, Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America: An analog for other passive margins, Amer. Assoc. Pet. Geol. Bull., v. 82, pp. 817–35.Google Scholar
Wolf, D., 1985, Thick-plate flexure re-examined, Geophys. J. R. Astr. Soc., v. 80, pp. 265–73.Google Scholar
Wolf, D., 1986, Reply to comments by Robert P. Comer, Geophys. J. R. Astr. Soc., v. 85, pp. 469–70.Google Scholar
Wolf, D., 1993, The changing role of the lithosphere in models of glacial isostasy: A historical review, Global and Planetary Change, v. 8, pp. 95106.Google Scholar
Wolfson-Schwehr, M., Boettcher, M. S., and Behn, M. D., 2017, Thermal segmentation of mid-ocean ridge-transform faults, Geochem. Geophys., v. 18, pp. 3405–18, https://doi.org/10.1002/2017GC006967.Google Scholar
Woodroffe, C. D., 1988, Vertical movement of isolated oceanic islands at plate margins: Evidence from emergent reefs in Tonga (Pacific Ocean) Cayman Islands (Caribbean Sea) and Christmas Island (Indian Ocean), Zeitschrift für Geomorphologie, v. Suppl. Bd. 69, pp. 1737.Google Scholar
Woodroffe, C. D., McLean, R., Polach, H., and Wallensky, E., 1990, Sea level and coral atolls: Late Holocene emergence in the Indian Ocean, Geology, v. 18, pp. 62–6.Google Scholar
Wooler, D. A., Smith, A. G., and White, N., 1992, Measuring lithospheric stretching on Tethyan passive margins, J. Geol. Soc. Lond., v. 149, pp. 517–32.Google Scholar
Woollard, G. P., 1943, Transcontinental gravitational and magnetic profile of North America and its relation to geologic structure, Bull. Geol. Soc. Am., v. 54, pp. 747–90.Google Scholar
Woollard, G. P., 1951, A gravity reconnaisance of the island of Oahu, Trans. Am. Geophys. Union, v. 32, pp. 358–67.Google Scholar
Woollard, G. P., 1966, Principal Facts for Gravity Observations in the Hawaiian Archipelago, Johnston Island, American Samoa and Society Islands. Data Report No. 3, HIG-66–20, 10 tables. University of Hawaii at Manoa, Hawaii Institute of Geophysics, 5 pp.Google Scholar
Worzel, J. L., and Shurbet, G. L., 1965, Gravity interpretation from standard oceanic and crustal sections, Geol. Soc. Am. Sp. Paper, v. 62, pp. 87100.Google Scholar
Wright, T. J., Elliot, J. R., Wang, H., and Ryder, I., 2013, Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere., Tectonophysics, v. 609, pp. 504–23, https://doi.org/10.1016/j.tecto.2013.07.029.Google Scholar
Wyer, P. P. A., 2003, Gravity anomalies and segmentation of the eastern USA passive continental margin, Ph.D thesis, University of Oxford.Google Scholar
Wyer, P., and Watts, A. B., 2006, Gravity anomalies and segmentation at the East Coast, USA continental margin, Geophys. J. Int., v. 166, pp. 1015–38.Google Scholar
Xie, X., and Heller, P. L., 2009, Plate tectonics and basins subsidence history, Geol. Soc. Am. Bull., v. 121, pp. 5564, https://doi.org/10.1130/B26398.1Google Scholar
Xu, C., Dunn, R. A., Watts, A. B. et al., 2022. A seismic tomography, gravity, and flexure study of the crust and upper mantle structure of the Emperor Seamounts at Jimmu guyot, J. Geophys. Res., v. 127, e2021JB023241. https://doi.org/10.1029/2021JB023241.Google Scholar
Yamasaki, T., and Houseman, G. A., 2012, The crustal viscosity gradient measured from post-seismic deformation: A case study of the 1997 Manyi (Tibet) earthquake, Earth Planet. Sci. Lett., v. 351–352, pp. 105–14, https://doi.org/10.1016/j.epsl.2012.07.030.Google Scholar
Yang, Z., and Chen, W.-P., 2010, Earthquakes along the East African Rift System: A multiscale, system-wide perspective, J. Geophys. Res., v. 115, https://doi.org/10.1029/2009JB006779.Google Scholar
Yong, L., Allen, P. A., Densmore, A. L., and Qiang, X., 2003. Evolution of the Longmen Shan foreland basin (western Sichuan, China) during the Late Triassic Indosinian orogeny. Basin Research, v. 15, pp. 117–38.Google Scholar
Zhang, F., Lin, J., and Zhan, W., 2014, Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sci. Lett., v. 401, pp. 206–14, https://doi.org/10.1016/j.epsl.2014.05.032.Google Scholar
Zhang, F., Lin, J., Zhou, Z., Yang, H., and Zhan, W., 2018, Intra- and intertrench variations in flexural bending of the Manila, Mariana and global trenches: implications on plate weakening in controlling trench dynamics, Geophys. J. Int., v. 212, pp. 1429–49, https://doi.org/10.1093/gji/ggx488.Google Scholar
Zhang, N., Zhong, S., and Flowers, R. M., 2012, Predicting and testing continental vertical motion histories since the Paleozoic, Earth Planet. Sci. Lett., v. 317–318, pp. 426–35, https://doi.org/10.1016/j.epsl.2011.10.041.Google Scholar
Zheng, Y., and Arkani-Hamed, J., 2002. Rigidity of the Atlantic oceanic lithosphere beneath New England seamounts, Tectonophysics, v. 359, pp. 359–69.Google Scholar
Zhong, S., 1992, Viscous flow model of a subduction zone with a faulted lithosphere: Long and short wavelength topography, gravity and geoid, Geophys. Res. Lett., v. 19, pp. 1891–4.Google Scholar
Zhong, S., 1997, Dynamics of crustal compensation and its influences on crustal isostasy, J. Geophys. Res., v. 102, pp. 15,287–99.Google Scholar
Zhong, S., and Gurnis, M., 1994, Controls on trench topography from dynamic models of subducted slabs, J. Geophys. Res., v. 99, pp. 15,683–95.Google Scholar
Zhong, S., and Zuber, M. T., 2001, Degree-1 mantle convection and the crustal dichotomy on Mars, Earth Planet. Sci. Lett., v. 189, pp. 7584.Google Scholar
Zhong, S., and Watts, A. B., 2002, Constraints on the dynamics of mantle plumes from uplift of the Hawaiian Islands, Earth Planet. Sci. Lett., v. 203, pp. 105–16.Google Scholar
Zhong, S., and Watts, A. B., 2013, Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology, J. Geophys. Res., v. 118, pp. 6025–48, https://doi.org/10.1002/2013JB010408.Google Scholar
Zhong, Z., Yan, J., Rodriguez, A. P., and Dohm, J. M., 2018, Ancient selenophysical structure of the Grimaldi basin: Constraints from GRAIL gravity and LOLA topography, Icarus, v. 309, pp. 411–21, https://doi.org/10.1016/j.icarus.2017.11.030.Google Scholar
Zhou, S., 1991, A model of thick plate deformation and its application to the isostatic movements due to surface, subsurface and internal loadings, Geophys. J. Int., v. 105, pp. 381–95.Google Scholar
Zoetemeijer, R., Desegaulx, P., Cloetingh, S., Roure, F., and Moretti, I., 1990, Lithospheric dynamics and tectono-stratigraphic evolution of the Ebro basin, J. Geophys. Res., v. 95, pp. 2701–11.Google Scholar
Zuber, M. T., Bechtel, T. D., and Forsyth, D. W., 1989, Effective elastic thickness of the lithosphere and mechanisms of isostatic compensation in Australia, J. Geophys. Res., v. 94, pp. 13919–30.Google Scholar
Zuber, M. T., Solomon, S. C., Phillips, R. J. et al., 2000, Internal structure and early thermal evolution of Mars from Mars Global Surveyor Topography and Gravity, Science, v. 287, pp. 1788–93.Google Scholar
Zuber, M. T., Smith, D. E., Watkins, M. M. et al., 2013, Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission, Science, v. 339, pp. 668–71, https://doi.org/10.1126/science.1231507.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. B. Watts, University of Oxford
  • Book: Isostasy and Flexure of the Lithosphere
  • Online publication: 28 September 2023
  • Chapter DOI: https://doi.org/10.1017/9781139027748.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. B. Watts, University of Oxford
  • Book: Isostasy and Flexure of the Lithosphere
  • Online publication: 28 September 2023
  • Chapter DOI: https://doi.org/10.1017/9781139027748.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. B. Watts, University of Oxford
  • Book: Isostasy and Flexure of the Lithosphere
  • Online publication: 28 September 2023
  • Chapter DOI: https://doi.org/10.1017/9781139027748.011
Available formats
×