Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T20:58:33.054Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 January 2010

Tim New
Affiliation:
La Trobe University, Victoria
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Island Colonization
The Origin and Development of Island Communities
, pp. 260 - 280
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. (1984). Colonization of the Krakatau Islands by termites (Insecta: Isoptera). Physiological Ecology, Japan 21, 63–88.Google Scholar
Abe, T. (1987). Evolution of life types in termites. In Kawano, S., Connell, J. H. and Hidaka, T. (eds.) Evolution and Coadaptation in Biotic Communities. Tokyo, University of Tokyo Press, pp. 124–148.Google Scholar
Andersen, D. C. and MacMahon, J. A. (1985). The effects of catastrophic ecosystem disturbance: the residual mammals at Mount St Helens. Journal of Mammalogy 66, 581–589.CrossRefGoogle Scholar
Anderson, M. A. (1978/9). Comments on the presence of a crocodile or crocodiles in Lake Wisdom, on Long Island north of New Guinea. Science in New Guinea 6, 6–8.Google Scholar
Anderson, N. H. (1992). Influence of disturbance on insect communities in Pacific Northwest streams. Hydrobiologia 248, 79–92.CrossRefGoogle Scholar
Anonymous (1990). General discussion. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 236–241.Google Scholar
Antos, J. A. and Zobel, D. B. (1987). How plants survive burial: a review and initial responses to tephra from Mount St. Helens. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 246–261.Google Scholar
Ashmole, M. J. and Ashmole, N. P. (1988). Arthropod communities supported by biological fallout on recent lava flows in the Canary Islands. Entomologica Scandanavica 332 (Suppl.), 67–88.Google Scholar
Ashmole, N. P. and Ashmole, M. J. (1997). The land fauna of Ascension Island: new data from caves and lava flows, and a reconstruction of the prehistoric ecosystem. Journal of Biogeography 24, 549–589.CrossRefGoogle Scholar
Ashmole, N. P., Ashmole, M. J. and Oromi, P. (1990). Arthropods of recent lava flows on Lanzarote. Vieraea 18, 171–187.Google Scholar
Ashmole, N. P., Oromi, P. and Ashmole, M. J. (1992). Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biological Journal of the Linnean Society 46, 207–234.CrossRefGoogle Scholar
Asong, J. (1984). How tuna fish came to be: a legend from the Siassi Islands, Morobe Province. Paradise Magazine (in-flight with Air Niugini) 47 (July 1984), 17.Google Scholar
Aston, M. A. and Hardy, P. G. (1990). The pre-Minoan landscape of Thera: a preliminary statement. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 348–361.Google Scholar
Backer, C. A. (1929). The Problem of Krakatoa as Seen by a Botanist. Surabaya, Indonesia, published by author.Google Scholar
Baillie, M. G. L. (1990). Irish tree rings and an event in 1628 BC. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 160–166.Google Scholar
Baillie, M. G. L. and Munro, M. A. R. (1988). Irish tree rings, Santorini and volcanic dust veils. Nature 332, 344–346.CrossRefGoogle Scholar
Ball, E. (1977). Life among the ashes. Australian Natural History 19, 12–17.Google Scholar
Ball, E. E. (1982a). Long Island, Papua New Guinea: European exploration and recorded contacts to the end of the Pacific War. Records of the Australian Museum 34, 447–461.CrossRefGoogle Scholar
Ball, E. E. (1982b). Annotated bibliography of references relating to Long Island, Papua New Guinea. Records of the Australian Museum 34, 527–547.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1975). Biological colonization of Motmot, a recently created tropical island. Proceedings of the Royal Society of London B 190, 421–442.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1978). Limnological studies of Lake Wisdom, a large New Guinea caldera lake with a simple fauna. Freshwater Biology 8, 455–468.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1980). A limnological survey of Lake Dakataua, a large caldera lake on West New Britain, Papua New Guinea, with comparisons to Lake Wisdom, a younger nearby caldera lake. Freshwater Biology 10, 73–84.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1981). Biological colonization of a newly created volcanic island and limnological studies on New Guinea lakes, 1972–1978. National Geographic Society Research Reports 13, 89–97.Google Scholar
Ball, E. E. and Hughes, I. M. (1982). Long Island, Papua New Guinea: people, resources and culture. Records of the Australian Museum 34, 463–525.CrossRefGoogle Scholar
Ball, E. E. and Johnson, R. W. (1976). Volcanic history of Long Island, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 133–147.Google Scholar
Bassot, J. M. and Ball, E. E. (1972). Biological colonization of a recently created island in Lake Wisdom, Long Island, Papua New Guinea, with observations on the fauna of the lake. Proceedings of the Papua New Guinea Science Society 23, 26–35.Google Scholar
Beard, S. J. (1976). The progress of plant succession on the La Soufrière of St Vincent: observations in 1972. Vegetatio 31, 69–77.CrossRefGoogle Scholar
Beaver, R. A. (1977). Non-equilibrium ‘island’ communities: Diptera breeding in dead snails. Journal of Animal Ecology 46, 783–798.CrossRefGoogle Scholar
Becker, P. (1975). Island colonization by carnivorous and herbivorous Coleoptera. Journal of Animal Ecology 44, 893–906.CrossRefGoogle Scholar
Becker, P. (1992). Colonization of islands by carnivorous and herbivorous Heteroptera and Coleoptera: effects of island area, plant species richness, and ‘extinction’ rates. Journal of Biogeography 19, 163–171.CrossRefGoogle Scholar
Beehler, B. M., Pratt, T. K. and Zimmerman, D. A. (1986). Birds of New Guinea. Princeton, NJ, Princeton University Press.Google Scholar
Blong, R. J. (1975). The Krakatoa myth and the New Guinea highlands. Journal of the Polynesia Society 84, 213–217.Google Scholar
Blong, R. J. (1979). Huli legends and volcanic eruptions, Papua New Guinea. Search 10, 93–94.Google Scholar
Blong, R. J. (1982). The Time of Darkness. Canberra, Australian National University Press.Google Scholar
Blot, C. (1978). Volcanism and seismicity in Mediterranean island arcs. In Thera and the Aegean World I, Papers presented at the 2nd International Scientific Congress, Antorini, Greece, August 1978. London, Thera and the Aegean World, pp. 33–44.Google Scholar
Bödvarsson, H. (1982). The Collembola of Surtsey, Iceland. Surtsey Research Progress Reports 9, 63–67.Google Scholar
Bonaccorso, F. (1998). Bats of Papua New Guinea. Washington DC, Conservation International.Google Scholar
Bonaccorso, F. J. and McNab, B. K. (1997). Plasticity of energetics in blossom bat (Pteropodidae): impact on distribution. Journal of Mammalogy 78, 1073–1088.CrossRefGoogle Scholar
Brattstrom, B. H. (1963). Barcena Volcano, 1952: its effect on the fauna and flora of San Benedicto Island, Mexico. In Gressitt, J. L. (ed.) Pacific Basin Biogeography. Honolulu, HI, Bishop Museum Press, pp. 499–524.Google Scholar
Brattstrom, B. H. (1990). Biogeography of the Islas Revillagigedo, Mexico. Journal of Biogeography 17, 177–183.CrossRefGoogle Scholar
Bristowe, W. S. (1931). A preliminary note on the spiders of Krakatau. Proceedings of the Zoological Society of London 1931, 1387–1442.Google Scholar
Bristowe, W. S. (1934). Introductory notes. Proceedings of the Zoological Society of London 1934, 11–18.Google Scholar
Brokaw, N. V. L. and Walker, L. R. (1991). Summary of the effects of Caribbean hurricanes on vegetation. Biotropica 23, 442–447.CrossRefGoogle Scholar
Bromenshenk, J. J., Postle, R. C., Yamasaki, G. M., Felli, D. G. and Reinhardt, H. E. (1987). The effect of Mount St. Helens ash on the development and mortality of the western spruce budworm and other insects. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 302–317.Google Scholar
Bronstein, J. L. and Hossaert-McKey, M. (1995). Hurricane Andrew and a Florida fig pollination mutualism: resilience of an obligate interaction. Biotropica 27, 373–381.CrossRefGoogle Scholar
Bronstein, J. L. and Patel, A. (1992). Causes and consequences of within-tree phenological patterns in the Florida strangling fig, Ficus aurea (Moraceae). American Journal of Botany 79, 41–48.CrossRefGoogle Scholar
Bronstein, J. L., Guoyon, P. H., Gliddon, C., Kjellberg, F. and Michaloud, G. (1990). The ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology 71, 2145–2156.CrossRefGoogle Scholar
Brown, J. H. and Kodric-Brown, A. (1977). Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449.CrossRefGoogle Scholar
Brown, W. H., Merrill, E. D. and Yates, H. S. (1917). The revegetation of Volcano Island, Luzon, Philippine Islands, since the eruption of Taal volcano in 1911. Philippine Journal of Science, Series C, Botany 12, 177–248.Google Scholar
Buckland, P. C., Dugmore, A. J. and Edwards, K. J. (1997). Bronze Age myths? Volcanic activity and human response in the Mediterranean and North Atlantic regions. Antiquity 71, 581–593.CrossRefGoogle Scholar
Burt, W. H. 1961. Some effects of Volcan Paricutin on vertebrates. Occasional Papers of the Museum of Zoology of the University of Michigan 620, 1–24.Google Scholar
Bush, M. B. (1986). The butterflies of Krakatoa. Entomologist's Monthly Magazine 122, 51–58.Google Scholar
Bush, M. B. and Whittaker, R. J. (1991). Krakatau: colonization patterns and hierarchies. Journal of Biogeography 18, 341–356.CrossRefGoogle Scholar
Bush, M. B. and Whittaker, R. J. (1993). Non-equilibration in island theory of Krakatau. Journal of Biogeography 20, 453–457.CrossRefGoogle Scholar
Bush, M. B., Bush, D. J. B. and Evans, R. D. (1990). Butterflies of Krakatau and Sebesi: new records and habitat relations. In Whittaker, R. J., Asquith, N. M., Bush, M. B. and Partomihardjo, T. (eds.) Krakatau Research Reports 1989. Oxford, School of Geography, University of Oxford, pp. 35–41.Google Scholar
Bush, M. B., Whittaker, R. J. and Partomihardjo, T. (1992). Forest development on Rakata, Panjang and Sertung: contemporary dynamics (1979–1989). GeoJournal 28, 185–199.CrossRefGoogle Scholar
Cadogan, G. (1990). Thera's eruption into our understanding of the Minoans. In Hardy, D. A., Doumas, C. G., Sakellarakis, J. A. and Warren, P. M. (eds.) Thera and the Aegean World III, vol. 1, Archaeology. London, The Thera Foundation, pp. 93–96.Google Scholar
Carlquist, S. (1965). Island Life: A Natural History of the Islands of the World. Garden City, NY, The Natural History Press.Google Scholar
Carlquist, S. (1996). Plant dispersal and the origin of Pacific island floras. In Keast, A. and Miller, S. E. (eds.) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam, SPB Academic Publishers, pp. 153–164.Google Scholar
Case, T. J. and Cody, M. L. (1987). Testing theories of island biogeography. American Scientist 75, 402–411.Google Scholar
Clausen, H. B., Hammer, C. U., Hvidberg, C. S.et al. (1997). A comparison of the volcanic record over the past 4000 years from the Greenland Ice Core Project and Dye3 Greenland ice cores. Journal of Geophysical Research 102, 26707–26723.CrossRefGoogle Scholar
Cogger, H. (2000). Reptiles and Amphibians of Australia, 5th edn. Sydney, Reed Books.Google Scholar
Compton, S. G., Thornton, I. W. B., New, T. R. and Underhill, L. (1988). The colonization of the Krakatau Islands by fig wasps and other chalcids (Hymenoptera, Chalcidoidea). Philosophical Transactions of the Royal Society of London B 322, 459–470.CrossRefGoogle Scholar
Compton, S. G., Ross, S. and Thornton, I. W. B. (1994). Pollinator limitation of fig tree reproduction on the island of Anak Krakatau (Indonesia). Biotropica 26, 180–186.CrossRefGoogle Scholar
Connor, E. F. and Simberloff, D. (1979). The assembly of species communities: chance or competition?Ecology 60, 1132–1140.CrossRefGoogle Scholar
Cook, S., Singidan, R. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. IV. Colonization by non-avian vertebrates. Journal of Biogeography 28, 1353–1363.CrossRefGoogle Scholar
Cooke, R. J. S. (1981). Eruptive history of the volcano at Ritter Island. Geological Survey of Papua New Guinea Memoir 10, 115–123.Google Scholar
Cooke R. J. S., McKee, C. O., Dent, V. F. and Wallace, D. A. (1976). A striking sequence of volcanic eruptions in the Bismarck volcanic arc, Papua New Guinea, in 1972–75. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 149–172.Google Scholar
Corbet, G. B. and Hill, J. E. (1991). A World List of Mammalian Species. Oxford, Oxford University Press.Google Scholar
Cotteau, E. (1885). Borneo and Krakatoa II. A week at Krakatoa. Proceedings of the New South Wales and Victoria Branches of the Royal Geographical Society of Australia 2, 103–106.Google Scholar
Coultas, N. F. (1935). Unpublished journal and letters of William F. Coultas, Whitney South Sea Expedition, vol. IV, October 1933–March 1935. In Department of Ornithology, American Museum of Natural History, New York.
Crawford, R. L., Sugg, P. M. and Edwards, J. S. (1995). Spider arrival and primary establishment on terrain depopulated by volcanic eruption at Mount St. Helens, Washington. American Midland Naturalist 133, 60–75.CrossRefGoogle Scholar
D'Addario, G. W. (1972). The 1968 eruption of Long Island. In Johnson, R. W., Taylor, G. A. M. and Davies, R. A. (eds.) Geology and Petrology of Quaternary Volcanic Islands off the North Coast of New Guinea, Bureau of Mineral Resources, Geology and Geophysics Record no. 21. Canberra, Commonwealth of Australia, Department of National Development, pp. 110–112.Google Scholar
Dammerman, K. W. (1922). The fauna of Krakatau, Verlaten Island and Sebesy. Treubia 3, 61–112.Google Scholar
Dammerman, K. W. (1948). The Fauna of Krakatau 1883–1933. Verhandlungen Koninlijk Nederlandsche Akademie Wetenschaft 44, 1–594.Google Scholar
Boer, J. L. and Sanders, D. T. (2002). Volcanoes in Human History: The Far-Reaching Effects of Major Eruptions. Princeton, NJ, Princeton University Press.Google Scholar
Decker, R. W. (1990). How often does a Minoan eruption occur? In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 444–452.Google Scholar
del Moral, R. and Bliss, L. C. (1987). Initial vegetation recovery on subalpine slopes of Mount St. Helens, Washington. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 148–167.Google Scholar
del Moral, R. and Bliss, L. C. (1993). Mechanisms of primary succession: insights resulting from the eruption of Mount St. Helens. Advances in Ecological Research 24, 1–66.CrossRefGoogle Scholar
del Moral, R. and Wood, D. M. (1986). Subalpine vegetation recovery five years after the Mount St. Helens eruptions. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press, pp. 215–221.Google Scholar
del Moral, R., Titus, J. H. and Cook, A. M. (1995). Early primary succession on Mount St. Helens, Washington, USA. Journal of Vegetation Science 6, 107–123.CrossRefGoogle Scholar
Diamond, J. M. (1970). Ecological consequences of island colonization by southwest Pacific birds. Proceedings of the National Academy of Sciences of the USA 67, 529–563.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1972). Reconstitution of bird community structure on Long Island, New Guinea, after a volcanic explosion. National Geographical Society Research Reports 13, 191–204.Google Scholar
Diamond, J. M. (1973). Distributional ecology of New Guinea birds. Science 179, 759–769.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1974a). Colonization of exploded volcanic islands by birds: the supertramp strategy. Science 184, 803–806.CrossRefGoogle Scholar
Diamond, J. M. (1974b). Recolonization of exploded volcanic islands by New Guinea birds. Exploration Journal, March, 2–10.Google Scholar
Diamond, J. M. (1975). Assembly of species communities. In Cody, M. L. and Diamond, J. M. (eds.) Ecology and Evolution of Communities. Cambridge, MA, Harvard University Press, pp. 342–444.Google Scholar
Diamond, J. M. (1976). Preliminary results of ornithological exploration of the islands of Vitiaz and Dampier Straits, Papua New Guinea. Emu 76, 1–7.CrossRefGoogle Scholar
Diamond, J. M. (1977). Colonization of a volcano inside a volcano. Nature 270, 13–14.CrossRefGoogle Scholar
Diamond, J. M. (1981). Reconstitution of bird community structure on Long Island, New Guinea, after a volcanic explosion. National Geographical Society Research Reports 1, 191–204.Google Scholar
Diamond, J. M. (1989). This-fellow frog, name belong-him Dakwo. Natural History, April, 16–23.Google Scholar
Diamond, J. M., Bishop, K. D. and Balen, S. (1987). Bird survival in an isolated Javan woodland: island or mirror?Conservation Biology 1, 132–142.CrossRefGoogle Scholar
Diamond, J. M., Pimm, S. L., Gilpin, M. E. and LeCroy, M. (1989). Rapid evolution of character displacement in myzomelid honeyeaters. American Naturalist 413, 675–708.CrossRefGoogle Scholar
Diapoulis, C. (1971). The development of the flora of the volcanic islands Palaia Kammeni and Nea Kammeni. Acta 1st International Congress on Volcano Thera 1969, 238–247.Google Scholar
Dickerson, J. E. Jr and Robinson, J. V. (1985). Microcosms as islands: a test of the MacArthur–Wilson equilibrium theory. Ecology 66, 966–980.CrossRefGoogle Scholar
Leeuwen, Docters W. M. (1923). The vegetation of the island of Sebesy, situated in the Sunda Strait, near the islands of the Krakatau group, in the year 1921. Annales du Jardin Botanique de Buitenzorg 32, 135–192.Google Scholar
Leeuwen, Docters W. M. (1924). On the present state of the vegetation of the Krakatau Group and of the island of Sebesy. Proceedings of the 2nd Pan Pacific Science Congress 1923, 313–318.Google Scholar
Leeuwen, Docters W. M. (1936). Krakatau 1883–1933: a botany. Annales du Jardin Botanique de Buitenzorg 46–47, 1–507.Google Scholar
Dommergues, Y. (1966). La fixation symbiotique de l'azote chez les Casuarina. Annales de l'Institut Pasteur 111 (Suppl.), 247–259.Google Scholar
Downey, W. and Tarling, D. (1984). The end of the Minoan civilization. New Scientist, 13 September, 49–52.Google Scholar
Drake, J. A. (1990a). Communities as assembled structures: do rules govern pattern?Trends in Ecology and Evolution 5, 159–164.CrossRefGoogle Scholar
Drake, J. A. (1990b). The mechanics of community assembly and succession. Journal of Theoretical Biology 147, 213–233.CrossRefGoogle Scholar
Drake, J. A. (1991). Community-assembly mechanics and the structure of an experimental species ensemble. American Naturalist 137, 1–26.CrossRefGoogle Scholar
Druitt, T. H. and Francaviglia, V. (1990). An ancient caldera cliff line at Phira, and its significance for the topography and geology of pre-Minoan Santorini. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 362–369.Google Scholar
Dwyer, P. D. (1978). A study of Rattus exulans (Peale) (Rodentia: Muridae) in the New Guinea Highlands. Australian Wildlife Research 5, 221–248.CrossRefGoogle Scholar
Dwyer, P. D. (1984). From garden to forest: small rodents and plant succession in Papua New Guinea. Australian Mammalogy 7, 29–36.Google Scholar
Edwards, J. S. (1986). Derelicts of dispersal: arthropod fallout on Pacific northwest volcanoes. In Danthanarayana, W. (ed.) Insect Flight: Dispersal and Migration. Berlin, Springer-Verlag, pp. 196–203.CrossRefGoogle Scholar
Edwards, J. S. (1987). Arthropods of alpine aeolian ecosystems. Annual Review of Entomology 32, 163–179.CrossRefGoogle Scholar
Edwards, J. S. (1988). Life in the allobiosphere. Trends in Ecology and Evolution 3, 111–114.CrossRefGoogle ScholarPubMed
Edwards, J. S. (1996). Arthropods as pioneers: recolonization of the blast zone on Mt. St. Helens. Northwest Environmental Journal 2, 63–74.Google Scholar
Edwards, J. S. (2005) Animals and volcanoes: survival and revival. In Martí, J. and Ernst, G. L. (eds.) Volcanoes and the Environment. Cambridge, Cambridge University Press, pp. 250–272.CrossRefGoogle Scholar
Edwards, J. S. and Banko, P. C. (1976). Arthropod fallout and nutrient transport: a quantitative study of Alaskan snowpatches. Arctic and Alpine Research 8, 237–245.CrossRefGoogle Scholar
Edwards, J. S. and Schwarz, L. M. (1981). Mount St. Helens ash: a natural insecticide. Canadian Journal of Zoology 59, 714–715.CrossRefGoogle Scholar
Edwards, J. S. and Sugg, P. (1993). Arthropod fallout as a resource in the colonization of Mount St. Helens. Ecology 74, 954–958.CrossRefGoogle Scholar
Edwards, J. S. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. VI. A pioneer arthropod community on Motmot. Journal of Biogeography 28, 1379–1388.CrossRefGoogle Scholar
Edwards, J. S., Crawford, R. L., Sugg, P. M. and Peterson, M. A. (1986). Arthropod recolonization in the blast zone of Mount St. Helens. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press, pp. 329–333.Google Scholar
Eggler, W. A. (1948). Plant communities in the vicinity of the volcano El Paricutin, Mexico, after two and a half years of eruption. Ecology 29, 415–436.CrossRefGoogle Scholar
Eggler, W. A. (1959). Manner of invasion of volcanic deposits by plants with further evidence from Paricutin and Jorullo. Ecological Monographs 29, 268–284.CrossRefGoogle Scholar
Eggler, W. A. (1963). Plant life of Paricutin volcano, Mexico, eight years after activity ceased. American Midland Naturalist 69(12), 38–68.CrossRefGoogle Scholar
Ernst, A. (1908). The New Flora of the Volcanic Island of Krakatau. London, Cambridge University Press.Google Scholar
Evans, A. (1921–35). The Palace of Minos at Knossos, 4 vols. London, Macmillan.Google Scholar
Evans, G. (1940). The characteristic vegetation of recent volcanic islands in the Pacific. Bulletin of Miscellaneous Information, Botanic Gardens, Kew 1939, 43–44.Google Scholar
Fisher, R. V. and Schminke, H.-U. (1984). Pyroclastic Rocks. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Fisher, R. V., Heiken, G. and Hulen, J. B. (1997). Volcanoes: Crucibles of Change. Princeton, NJ, Princeton University Press.Google Scholar
Flannery, T. F. (1995). Mammals of New Guinea. Sydney, Reed Books.Google Scholar
Fosberg, F. R. (1985). Botanical visits to Krakatoa in 1958 and 1963. Atoll Research Bulletin 292, 39–45.Google Scholar
Fouqué, F. (1879). Santorin et ses Éruptions. Paris, G. Masson.Google Scholar
Fouqué, F. (1998). Santorini and its Eruptions, translation and comments by A. R. McBirney. Baltimore, MD, Johns Hopkins University Press.Google Scholar
Frederiksen, H. B., Pedersen, A. L. and Christensen, S. (2000). Substrate-induced respiration and microbial growth in soil during the primary succession on Surtsey, Iceland. Surtsey Research Progress Reports 11, 29–35.Google Scholar
Freidrich, W. L. (2000). Fire in the Sea: The Santorini Volcano – Natural History and the Legend of Atlantis, translation by A. R. McBirney. Cambridge, Cambridge University Press.Google Scholar
Freidrich, W. L., Seidenkrantz, M.-S. and Nielsen, O. B. (2000). Santorini (Greece) before the Minoan eruption: reconstruction of the ring-island natural resources and clay deposits from the Akrotiri Excavation. In McGuire, W. J., Griffiths, D. R., Hancock, P. L. and Stewart, I. (eds.) The Archaeology of Geological Catastrophes. London, Geological Society, pp. 71–80.Google Scholar
Fridriksson, S. (1975). Surtsey: Evolution of Life on a Volcanic Island. London, Butterworth.Google Scholar
Fridriksson, S. (1987). Plant colonization of a volcanic island: Surtsey, Iceland. Arctic and Alpine Research 19, 425–431.CrossRefGoogle Scholar
Fridriksson, S. (1992). Vascular plants on Surtsey 1981–1990. Surtsey Research Progress Reports 10, 17–30.Google Scholar
Fridriksson, S. (1994). Surtsey: Lifriki i Motun (Surtsey: the development of life on a young volcanic island). Reykjavik, Society of Natural History and Surtsey Research Society. (In Icelandic)Google Scholar
Fridriksson, S. (2000). Vascular plants on Surtsey 1991–98. Surtsey Research Progress Reports 11, 21–28.Google Scholar
Fridriksson, S. and Magnússon, B. (1992). Development of the ecosystem on Surtsey with reference to Anak Krakatau. GeoJournal 28, 287–291.CrossRefGoogle Scholar
Frith, H. J. (1982). Pigeons and Doves of Australia. Adelaide, Rigby.Google Scholar
Fritsch, F. E. (1931). Some aspects of the ecology of freshwater algae. Journal of Ecology 19, 232–272.Google Scholar
Frör, E. and Beutler, A. (1970). The herpetofauna of the oceanic islands in the Santorini archipelago, Greece. Spixiana 1, 301–308.Google Scholar
Fytikas, M., Kolios, N. and Vougioukalakis, G. (1990). Post-Minoan volcanic activity of the Santorini Volcano: volcanic hazard and risk, forecasting possibilities. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 183–198.Google Scholar
Galanopoulos, A. G. (1971). The eastern Mediterranean trilogy in the Bronze Age. Proceedings of the International Scientific Congress on the Volcano of Thera, Athens, pp. 184–210.Google Scholar
Galloway, R. B. and Liritzis, Y. (1992). Provenance of Aegean volcanic tephras by high resolution gamma-ray spectroscopy. Nuclear Geophysics 6, 405–411.Google Scholar
Gates, F. C. (1914). The pioneer vegetation of Taal Volcano. Philippine Journal of Science, Series C, Botany 9, 391–434.Google Scholar
Gathorne-Hardy, F. J., Jones, D. T. and Mawdsley, N. A. (2000). The recolonization of the Krakatau islands by termites (Isoptera) and their biogeographical origins. Biological Journal of the Linnean Society 71, 252–267.CrossRefGoogle Scholar
Gennardus, Br. (Balvers, L. F.) (1983). Enkele waarnemingen aan verschillenke Kweken van rupien en vlinders na een vulkanische asregen op Java. Entomologische Berichten 43, 69–71.Google Scholar
Gersich, F. M. and Brusven, A. M. (1982). Volcanic ash accumulation and ash-voiding mechanisms of aquatic insects. Journal of the Kansas Entomological Society 55, 290–296.Google Scholar
Gilham, M. E. (1970). Seed dispersal by birds. In Perring, F. (ed.) The Flora of a Changing Britain. Faringdon, E. W. Classey, pp. 909–98.Google Scholar
Gilpin, M. E. (1980). The role of stepping-stone islands. Theoretical Population Biology 17, 247–253.CrossRefGoogle ScholarPubMed
Gilpin, M. E. and Diamond, J. M. (1982). Factors contributing to non-randomness in species co-occurrences on islands. Oecologia 52, 75–84.CrossRefGoogle ScholarPubMed
Gilpin, M., Carpenter, M. P. and Pomeranz, M. J. (1986). The assembly of a laboratory community: multispecies competition in Drosophila. In Diamond, J. M. and Case, T. J. (eds.) Community Ecology. New York, Harper and Row, pp. 23–40.Google Scholar
Gjelstrup, P. (2000). Soil mites and collembolans on Surtsey, Iceland, 32 years after the eruption. Surtsey Research Progress Reports 11, 43–50.Google Scholar
Gorschkov, S. G. (ed.) (1974). Atlas of the Oceans: Pacific Ocean. Moscow, Ministry of Defence, USSR Navy.Google Scholar
Greuter, W. (1979). The origins and evolution of island floras as exemplified by the Aegean Archipelago. In Bramwell, D. (ed.) Plants and Islands. London, Academic Press, pp. 87–93.Google Scholar
Grimm, R. (1981). Die Fauna der Ägäis-Insel Santorin. II. Tenebrionidae (Coleoptera). Stuttgarter Beiträge zur Naturkunde A, Biologie 348, 1–14.Google Scholar
Gross, C. L. (1993). The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau, Indonesia. Australian Journal of Botany 41, 591–599.CrossRefGoogle Scholar
Hall, G. (1987). Seed dispersal by birds of prey. Zimbabwe Science News 21, 9.Google Scholar
Halvorson, J. J., Smith, J. L. and Franz, E. H. (1991). Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia 87, 162–170.CrossRefGoogle ScholarPubMed
Hammer, C. U., Clausen, H. B. and Dansgaard, W. (1980). Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288, 230–235.CrossRefGoogle Scholar
Hammer, C., Clausen, H., Friedrich, W. and Tauber, H. (1987). The Minoan eruption of Santorini in Greece dated to 1645 BC?Nature 328, 517–519.CrossRefGoogle Scholar
Hansen, A. (1971). Flora der Inselgruppe Santorin. Candollea 26, 109–163.Google Scholar
Harding, A. F. (1989). Blind dating. New Scientist, 6 May, 52–53.Google Scholar
Hardy, D. A. and Renfrew, A. C. (eds.) 1990. Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation.Google Scholar
Harrison, R. D., Yamuna, R. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. II. The vascular flora. Journal of Biogeography 28, 1131–1137.CrossRefGoogle Scholar
Heatwole, H. (1971). Marine-dependent terrestrial biotic communities on some cays in the Coral Sea. Ecology 52, 363–366.CrossRefGoogle Scholar
Heatwole, H. (1981). A Coral Island: The History of One Tree Reef. Sydney, Collins.Google Scholar
Heatwole, H. and Levins, R. (1972a). Biogeography of the Puerto Rican Bank: flotsam transport of terrestrial animals. Ecology 53, 112–117.CrossRefGoogle Scholar
Heatwole, H. and Levins, R. (1972b). Trophic structure stability and faunal change during recolonization. Ecology 53, 531–534.CrossRefGoogle Scholar
Heatwole, H. and Levins, R. (1973). Biogeography of the Puerto Rican Bank: species turnover on a small cay, Cayo Ahogado. Ecology 54, 1042–1055.CrossRefGoogle Scholar
Heiken, G. and McCoy, F. (1990). Precursory activity to the Minoan eruption, Thera, Greece. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 79–88.Google Scholar
Heiken, G., McCoy, F. and Sheridan, M. (1990). Palaeotopographical and palaeogeological reconstruction of Minoan Thera. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 370–376.Google Scholar
Heinis, F. (1928). Die Moosfauna des Krakatau. Treubia 10, 231–244.Google Scholar
Heldreich, T. von (1899). Die Flora der Insel Thera. In Gärtringen, Hiller F. (ed.) Die Insel Thera in Altertum und Gegenwart, vol. 1. Berlin, Georg Reoimer, pp. 122–140.Google Scholar
Heldreich, T. von (1902). Die Flora der Insel Thera. In Gärtringen, Hiller F. (ed.) Die Insel Thera in Altertum und Gegenwart, vol. 4. Berlin, Georg Reoimer, pp. 119–130.Google Scholar
Hendrix, L. B. and Smith, S. D. (1986). Post-eruption revegetation of Isla Fernandina, Galapagos. II. National Geographic Research 2, 6–16.Google Scholar
Henriksson, L. E. and Rodgers, G. A. (1978). Further studies in the nitrogen cycle of Surtsey, 1974–1976. Surtsey Research Progress Reports 8, 30–40.Google Scholar
Hodkinson, I. D., Coulson, S. J., Webb, N. R.et al. (1996). Temperature and the biomass of flying midges (Diptera: Chironomidae) in the high Arctic. Oikos 75, 241–248.CrossRefGoogle Scholar
Hodkinson, I. D., Coulson, S. J., Harrison, J. and Webb, N. R. (2001). What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic – some counter-intuitive ideas on community structure. Oikos 95, 349–352.CrossRefGoogle Scholar
Hommel, P. W. F. M. (1987). Landscape Ecology of Ujung Kulon (West Java, Indonesia). Wageningen, Soil Survey Institute.Google Scholar
Hoogerwerf, A. (1953a). Some notes about the nature reserve Pulau Panaitan (Prinseneiland) in Strait Sunda with special reference to the avifauna. Treubia 21, 481–505.Google Scholar
Hoogerwerf, A. (1953b). Notes on the vertebrate fauna of the Krakatau Islands, with special reference to the birds. Treubia 22, 319–353.Google Scholar
Housley, R. A., Hedges, R. E. M., Law, I. A. and Bronk, C. R. (1990). Radiocarbon dating by AMS of the destruction of Akrotiri. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 207–215.Google Scholar
Howarth, F. G. (1979). Neogeoaeolian habitats on new lava flows on Hawaii island: an ecosystem supported by windborne debris. Pacific Insects 20, 133–144.Google Scholar
Howarth, F. G. (1987). Evolutionary ecology of aeolian and subterranean habitats in Hawaii. Trends in Ecology and Evolution 2, 220–223.CrossRefGoogle ScholarPubMed
Howarth, F. G. and Montgomery, S. L. (1980). Notes on the ecology of the high altitude aeolian zone on Mauna Ke'a. ‘Elepaio 41, 21–22.Google Scholar
Ibkar-Kramadibrata, H., Soeriaatmadja, R. E., Syarif, H.et al. (1986). Explorasi Biologis dan Ecologis dari Daerah Daratan di Gugus Kepulauan Krakatau menjelang 100 tahun sesudah Peletusan. Bandung, Institut Teknologi.Google Scholar
Jacobson, E. R. (1909). Die nieuwe fauna van Krakatau. Jaarverslag van der Topographischen Dienst Nederlandsch-Indie 4, 192–211.Google Scholar
Janzen, D. H. (2000). Costa Rica's Area de Conservación Guanacaste: a long march to survival through non-damaging biodevelopment. Biodiversity 1, 7–20.CrossRefGoogle Scholar
Janzen, D. H. (2004). Setting up tropical biodiversity for conservation through non-damaging use: participation by parataxonomists. Journal of Applied Ecology 41, 181–187.CrossRefGoogle Scholar
Jimenez, C., Ortega-Rubio, A., Alvcarez-Cardenas, S. and Arnaud, G. (1994). Ecological aspects of the land crab Geocarcinus planatus (Decapoda: Gecarcinidae) in Socorro island, Mexico. Biological Conservation 69, 9–13.CrossRefGoogle Scholar
Johnson, R. W. (1976). Late Cainozoic volcanism and plate tectonics at the southern margin of the Bismarck Sea, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 101–116.Google Scholar
Johnson, R. W. and Smith, I. E. (1974). Volcanoes and rocks of St Andrews Strait, Papua New Guinea. United States Naval Medical Bulletin 46, 1628–1632.Google Scholar
Johnson, R. W., Taylor, G. A. M. and Davies, R. A. (1972). Geology and Petrology of Quaternary Volcanic Islands off the North Coast of New Guinea, Bureau of Mineral Resources, Geology and Geophysics Record no. 21. Canberra, Commonwealth of Australia, Department of National Development.Google Scholar
Johnstone, B. (1997). Who killed the Minoans?New Scientist 154, 36–39.Google Scholar
Jones, P. (1986). The bryophytes of the Krakatau Islands. Department of Geography, University of Hull, Miscellaneous Series 33, 77–86.Google Scholar
Jones, P. D., Briffa, K. R. and Schweingruber, F. H. (1995). Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophysical Research Letters 22, 1333–1336.CrossRefGoogle Scholar
Keenan, D. J. (2003). Volcanic ash residue from the GRIP ice core is not from Thera. Geochemistry, Geophysics, Geosystems 4(110) 1097. doi:10.1029/3003GC000608.CrossRefGoogle Scholar
Keller, S. A. C. (ed.) (1986). Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press.Google Scholar
Kingsley, C. (1915). The Water Babies. London, Constable.Google Scholar
Kisokau, K. (1974). Analysis of avifauna stomach contents of Long and Crown Islands, Madang District. Science in New Guinea 2, 261–262.Google Scholar
Kisokau, K., Pohei, Y. and Lindgren, E. (1984). Tuluman Island after Thirty Years: An Inventory of Plants and Animals of Tuluman Island, Manus Province. Boroko, Office of Environment and Conservation, Papua New Guinea.Google Scholar
Kitching, R. L. (2000). Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Koopman, K. F. (1979). Zoogeography of mammals from islands of the northeastern coast of New Guinea. American Museum Novitates 2690, 1–17.Google Scholar
Krafft, M. (1991). Volcanoes: Fire from the Earth. London, Thames and Hudson.Google Scholar
Kristinsson, H. (1974). Lichen colonization in Surtsey, 1971–1973. Surtsey Research Progress Reports 7, 9–16.Google Scholar
Kuniholm, P. I. (1990). Overview and assessment of the evidence for the date of the eruption of Thera. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundaton, pp. 13–18.Google Scholar
Kuniholm, P. I., Kromer, B., Manning, S. W.et al. (1996). Anatolian tree rings and the absolute chronology of the eastern Mediterranean, 2220–718 BC. Nature 381, 780–783.CrossRefGoogle Scholar
Kunkel, G. (1981). Die Kanarischen Inseln und ihre Pflanzenwelt. Stuttgart, Gustav Fischer.Google Scholar
Kuwayama, S. (1929). Eruption of Mt Komagatake and insects. Kontyu 3, 271–273.Google Scholar
Lack, D. (1976). Island Biology, Illustrated by the Land Birds of Jamaica. Oxford, Blackwell Scientific Publications.Google Scholar
Marche, V. C. and Hirschboeck, K. K. (1984). Frost rings in trees as records of major volcanic eruptions. Nature 307, 121–126.Google Scholar
Lamb, H. H. (1970). Volcanic dust in the atmosphere; with its chronology and assessment of its meteorological significance. Philosophical Transactions of the Royal Society of London A 266, 425–533.CrossRefGoogle Scholar
Lambert, F. R. and Marshall, A. G. (1991). Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rain forest. Journal of Ecology 79, 793–809.CrossRefGoogle Scholar
Lawton, J. H. (1987). Are there assembly rules for successional communities? In Gray, A. J., Crawley, M. J. and Edwards, P. J. (eds.) Colonization, Succession and Stability. Oxford, Blackwell Scientific Publications, pp. 225–244.Google Scholar
Lindroth, C. H., Andersson, H., Bödvarsson, H. and Richter, S. H. (1973). Surtsey, Iceland: the development of a new fauna 1963–1970 – terrestrial invertebrates. Entomologica Scandinavica 5 (Suppl.), 1–280.Google Scholar
Linsley, E. G. and Gressitt, J. L. (1972). Editorial preface to Robert Leslie Usinger: Autobiography of an Entomologist. San Francisco, CA, Pacific Coast Entomological Society.Google Scholar
MacArthur, R. H. (1970). Species packing and competitive equilibrium for many species. Theoretical Population Biology 1, 1–11.CrossRefGoogle ScholarPubMed
MacArthur, R. H. (1972). Geographical Ecology. New York, Harper and Row.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution 17, 373–387.CrossRefGoogle Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ, Princeton University Press.Google Scholar
MacMahon, J. A., Parmentier, R. R., Johnson, K. A. and Crisafulli, C. M. (1989). Small mammal recolonization on the Mount St. Helens volcano: 1980–1987. American Midland Naturalist 122, 365–387.CrossRefGoogle Scholar
Maeto, K. and Thornton, I. W. B. (1993). A preliminary appraisal of the braconid (Hymenoptera) fauna of the Krakatau Islands (Indonesia) in 1984–1986, with comments on the colonizing abilities of parasitoid modes. Japanese Journal of Entomology 61, 787–801.Google Scholar
Magnússon, B. and Magnússon, S. H. (2000). Vegetation succession on Surtsey, Iceland, during 1990–1998 under the influence of breeding gulls. Surtsey Research Progress Reports 12, 119–120.Google Scholar
Magnússon, B., Magnússon, S. H. and Gudmundsson, J. (1996). Gódurframvinder í Surtsey (Vegetation succession on the volcanic island Surtsey). Búvísindi 10, 253–272. (In Icelandic, with English summary)Google Scholar
Maguire, B. Jr (1963). The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecological Monographs 33, 161–185.CrossRefGoogle Scholar
Manning, S. W. (1988). The Bronze Age eruption of Thera: absolute dating, Aegean chronology and Mediterranean cultural interpretation. Journal of Mediterranean Archaeology 1, 17–82.CrossRefGoogle Scholar
Manning, S. W. (1989). A new age for Minoan Crete. New Scientist, 11 February, 60–63.Google Scholar
Manning, S. W. (1990a). The eruption of Thera: date and implications. In Hardy, D. A. and Renfrew, A. C. (eds.), Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 29–40.Google Scholar
Manning, S. W. (1990b). The Thera eruption: the Third Congress and the problem of the date. Archaeometry 32, 91–100.CrossRefGoogle Scholar
Manning, S. W. (1998). Correction. New GISP2 ice-core evidence supports 17th century BC date for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, 1039–1042.CrossRefGoogle Scholar
Manning, S. W., Kromer, B., Kuniholm, P. I. and Newton, M. W. (2001). Anatolian tree rings and a new chronology for the East Mediterranean Bronze–Iron Ages. Science 294, 2532–2535.CrossRefGoogle Scholar
Manuwal, D. A., Huff, M., Bauer, M., Chappell, C. and Hegstad, K. (1987). Summer birds of the upper subalpine zone of Mount St Helens, Mount Adams and Mount Rainier, Washington. Northeast Scientist 61, 82–92.Google Scholar
Marinatos, S. (1939). The volcanic destruction of Minoan Crete. Antiquity 13, 425–439.CrossRefGoogle Scholar
Mazzoleni, S. and Ricciardi, M. (1993). Primary succession on the cone of Vesuvius. In Miles, J. and Walton, D. W. H. (eds.) Primary Succession on Land. Oxford, Blackwell Scientific Publications, pp. 101–112.Google Scholar
McKee, C. O., Cooke, R. J. S. and Wallace, D. A. (1976). 1974–75 eruptions of Karkar volcano, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 173–190.Google Scholar
McKenzie, F., Benton, M. and Hoge, E. J. (1971). Biological Inventory of the Waters and Keys of Northeast Puerto Rico, 2nd Report to Division of Natural Resources. San Juan, Commonwealth of Puerto Rico.
McKenzie, N. L., Gunnell, A. C., Yani, M. and Williams, M. R. (1995). Correspondence between flight morphology and foraging ecology in some Palaeotropical bats. Australian Journal of Zoology 43, 241–257.CrossRefGoogle Scholar
Mees, G. F. (1986). A list of birds recorded from Bangka Island, Indonesia. Zoologische Verhandlungen 232, 1–176.Google Scholar
Mennis, M. R. (1978). The existence of Yomba Island near Madang: fact or fiction?Oral History 6, 2–81.Google Scholar
Mennis, M. R. (1981). Yomba Island: a real or mythical volcano?Geological Survey of Papua New Guinea Memoirs 10, 115–123.Google Scholar
Menzies, J. L. (1975). Handbook of Common New Guinea Frogs. Wau, Papua New Guinea, Wau Ecology Institute.Google Scholar
Michelangeli, F. (2000). Species composition and species-area relationships in vegetation isolates of the Rorairna Tepui. Journal of Tropical Ecology 16, 69–82.CrossRefGoogle Scholar
Miles, J. and Walton, D. W. H. (1993). Primary succession revisited. In Miles, J. and Walton, D. W. H. (eds.) Primary Succession on Land. Oxford, Blackwell Scientific Publications, pp. 295–302.Google Scholar
Moore, J. G. (1967). Base surges in recent volcanic eruptions. Bulletin of Volcanology 30, 337–363.CrossRefGoogle Scholar
Myers, N. (1988). Threatened biotas: ‘hot spots’ in tropical forests. Environmentalist 8, 187–208.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, da G. A. B. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.CrossRefGoogle ScholarPubMed
Narashimhan, M. J. (1918). Preliminary study of the root nodules of Casuarina. Indian Forester 44, 265–268.Google Scholar
New, T. R. and Thornton, I. W. B. (1988). A pre-vegetation population of crickets subsisting on allochthonous aeolian debris on Anak Krakatau. Philosophical Transactions of the Royal Society of London B 322, 481–485.CrossRefGoogle Scholar
New, T. R. and Thornton, I. W. B. (1992a). Colonization of the Krakatau Islands by invertebrates. GeoJournal 28, 219–224.CrossRefGoogle Scholar
New, T. R. and Thornton, I. W. B. (1992b). The butterflies of Anak Krakatau, Indonesia: faunal development in early succession. Journal of the Lepidopterists' Society 46, 83–96.Google Scholar
New, T. R., Bush, M. B., Thornton, I. W. B. and Sudarman, H. K. (1988). The butterfly fauna of the Krakatau Islands after a century of recolonization. Philosophical Transactions of the Royal Society of London B 322, 445–457.CrossRefGoogle Scholar
Newhall, C. G. and Self, S. (1982). The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research 87, 1231–1238.CrossRefGoogle Scholar
O'Brien, T. G. and Kinnaird, M. F. (1996). Changing populations of birds and mammals in North Sulawesi. Oryx 30, 150–156.CrossRefGoogle Scholar
Ólafsson, E. (1978). The development of the land-arthropod fauna on Surtsey, Iceland, during 1971–1976, with notes on terrestrial Oligochaeta. Surtsey Research Progress Reports 8, 41–46.Google Scholar
Ólafsson, E. (1982). The status of the land-arthropod fauna on Surtsey, Iceland, in summer 1981. Surtsey Research Progress Reports 9, 68–72.Google Scholar
Osborne, P. I. and Murphy, R. (1989). Botanical colonization of Motmot Island, Lake Wisdom, Madang Province. Science in New Guinea 15, 57–63.Google Scholar
Osman, R. W. (1982). Artificial substrates as ecological islands. In Cairns, J. (ed.) Artificial Substrates. Ann Arbor, MI, Ann Arbor Science Publications, pp. 71–114.Google Scholar
Pain, C. F. and Blong, R. J. (1979). The distribution of tephras in the Papua New Guinea highlands. Search 10, 228–230.Google Scholar
Pain, C. F., Blong, R. J. and McKee, C. O. (1981). Pyroclastic deposits and eruptive sequences on Long Island, Papua New Guinea. Papua New Guinea Geological Survey Memoirs 10, 101–107.Google Scholar
Palfreyman, W. D. and Cooke, R. J. S. (1976). Eruptive history of Manam volcano, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 117–131.Google Scholar
Partomihardjo, T. (1995). Studies on the ecological succession of plants and their associated insects on the Krakatau Islands, Indonesia. D. Phil. thesis, University of Kagoshima, Japan.
Partomihardjo, T. (1997). Flora of Sebesi Island: its role and potential in the recolonization process of the Krakatau Islands. Seminar Nasional Konservasi Flora Nusantara, 1997, 15–19.Google Scholar
Partomihardjo, T., Mirmanto, E. and Whittaker, R. J. (1992). Anak Krakatau's vegetation and flora circa 1991, with observations on a decade of development and change. GeoJournal 28, 233–248.CrossRefGoogle Scholar
Partomihardjo, T., Mirmanto, E., Riswan, S. and Suzuki, E. (1993). Drift fruit and seeds on Anak Krakatau beaches, Indonesia. Tropics 2, 143–156.CrossRefGoogle Scholar
Patrick, R. (1967). The effect of invasion rate, species pool, and size of area on the structure of the diatom community. Proceedings of the National Academy of Sciences of the USA 58, 1335–1342.CrossRefGoogle ScholarPubMed
Patrick, R. (1968). The structure of diatom communities in similar ecological conditions. American Naturalist 102, 173–183.CrossRefGoogle Scholar
Peck, S. (1996). Origin and development of an insect fauna on a remote tropical archipelago: the Galapagos Islands, Ecuador. In Keast, A. and Miller, S. E. (eds.) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam, SPB Academic Publishers, pp. 91–121.Google Scholar
Pendick, D. (1996). Return to Mount St. Helens. Earth 4, 24–33.Google Scholar
Polach, H. A. (1981). Pyroclastic deposits and eruptive sequences of Long Island. II. Radiocarbon dating of Long Island and Tibito tephras. Geological Survey of Papua New Guinea Memoirs 10, 108–113.Google Scholar
Poonamperuma, C., Young, R. S. and Caren, L. D. (1967). Some chemical and microbiological studies of Surtsey. Surtsey Research Progress Reports 3, 70–80.Google Scholar
Post, W. M. and Pimm, S. L. (1983). Community assembly and food web stability. Mathematical Biosciences 64, 169–192.CrossRefGoogle Scholar
Pratt, W. E. (1911). The eruption of Taal Volcano, 30 January 1911. Philippine Journal of Science, Series A 6, 63–83.Google Scholar
Preston, F. W. (1962). The canonical distribution of commonness and rarity. Ecology 43, 185–215, 410–432.CrossRefGoogle Scholar
Pyke, D. A. (1984). Initial effect of volcanic ash from Mount St Helens on Peromyscus maniculatus and Microtus montanus. Journal of Mammalogy 65, 678–680.CrossRefGoogle Scholar
Pyle, D. M. (1990a). New estimates for the volume of the Minoan eruption. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 113–121.Google Scholar
Pyle, D. M. (1990b). The application of tree-ring and ice-core studies to the dating of the Minoan eruption. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 167–173.Google Scholar
Pyle, R. M. (1984). The impact of recent vulcanism on Lepidoptera. In Vane-Wright, R. I. and Ackery, P. R. (eds.) The Biology of Butterflies. London, Academic Press, pp. 323–326.Google Scholar
Raab, T. K., Lipson, D. A. and Monson, R. K. (1999). Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80, 2408–2419.CrossRefGoogle Scholar
Rackham, O. (1978). The flora and vegetation of Thera and Crete before and after the great eruption. In Doumas, C. (ed.) Thera and the Aegean World, vol. 1. London, The Thera Foundation, pp. 755–764.Google Scholar
Rackham, O. (1990). Observations on the historical ecology of Santorini. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2 Earth Sciences. London, The Thera Foundation, pp. 384–391.Google Scholar
Rampino, M. R. and Self, S. (1982). Historic eruptions of Tambora (1815), Krakatau (1883) and Agung (1963), their stratospheric aerosols and climatic impact. Quaternary Research 18, 127–143.CrossRefGoogle Scholar
Rampino, M. R. and Self, S. (1984). Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310, 677–679.CrossRefGoogle Scholar
Raus, T. (1986). Floren- und Vegetationsdynamik auf der Vulcaninsel Nea Kameni (Santorin-Archipel, Kykladen, Griechenland). Abhandlung der Landesmuseum für Naturkunde Münster Westfalen 48, 373–394.Google Scholar
Raus, T. (1988). Vascular plant colonization and vegetation development on sea-born volcanic islands in the Aegean (Greece). Vegetatio 77, 139–147.CrossRefGoogle Scholar
Raus, T. (1991). Die Flora (Farne und Blutenpflanzen) des Santorin-Archipels. In Schmalfuss, H. (ed.) Santorin: Leben auf Schutt und Asche. Weikersheim, Verlag J. Margaraf, pp. 109–124.Google Scholar
Rawlinson, P. A., Widjoya, A. H. T., Hutchinson, M. N. and Brown, G. W. (1990). The terrestrial vertebrate fauna of the Krakatau Islands, Sunda Strait, 1883–1986. Philosophical Transactions of the Royal Society of London B 328, 3–28.CrossRefGoogle Scholar
Rawlinson, P. A., Zann, R. A., Balen, S. and Thornton, I. W. B. (1992). Colonization of the Krakatau Islands by vertebrates. GeoJournal 28, 225–231.CrossRefGoogle Scholar
Recher, H. F. and Serventy, D. L. (1991). Long-term changes in the relative abundance of birds in Kings Park, Perth, Western Australia. Conservation Biology 5, 90–120.CrossRefGoogle Scholar
Rechinger, K. (1910). Botanische und zoologische Ergebnisse einer Forschungsreise nach den Sampa-inseln, dem Neuguinea-archipel und den Salomoninseln. III. Siphonogamen der Samoa-inseln. Denkschriften der Akademie der Wissenschaften Wien 85, 202–388.Google Scholar
Renfrew, A. C. (1990a.) Introductory remarks. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 11–13.Google Scholar
Renfrew, A. C. (1990b.) Summary of the progress in chronology. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 342.Google Scholar
Renfrew, C. (1996). Kings, tree rings and the Old World. Nature 381, 733–734.CrossRefGoogle Scholar
Reynolds, M. A. and Best, J. G. (1976). Survey of the 1953–57 eruption of Tuluman Volcano, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 287–296.Google Scholar
Richards, P. W. (1952). Tropical Rainforest: An Ecological Study. Cambridge, Cambridge University Press.Google Scholar
Robinson, J. V. and Dickerson, J. E. Jr (1987). Does invasion sequence affect community structure?Ecology 68, 587–589.CrossRefGoogle Scholar
Robinson, J. V. and Edgemon, M. A. (1988). An experimental evaluation of the effect of invasion history on community structure. Ecology 69, 1410–1417.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Roughgarden, J. (1989). The structure and assembly of communities. In Roughgarden, J., May, R. M. and Levin, S. A. (eds.) Perspectives in Ecological Theory. Princeton, NJ, Princeton University Press, pp. 203–226.CrossRefGoogle Scholar
Runciman, D., Cook, S., Riley, J.Wardell, J. and Thornton, I. W. B. (1998). The avifauna of Sebesi, a possible stepping stone to the Krakatau Islands. Tropical Biodiversity 5, 1–9.Google Scholar
Sands, W. N. (1912). An account of the return of vegetation and the revival of agriculture in the area devastated by the Soufriere of St Vincent in 1902/3. West Indian Bulletin 12, 22–23.Google Scholar
Schedvin, N., Cook, S. and Thornton, I. W. B. (1995). The diversity of bats on the Krakatau Islands, Indonesia. Biodiversity Letters 2, 87–92.CrossRefGoogle Scholar
Schipper, C., Shanahan, M., Cook, S. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. III. Colonization by birds. Journal of Biogeography 28, 1339–1352.CrossRefGoogle Scholar
Schmalfuss, H. and Schawaller, W. (1984). Die Fauna der Ägäis-Insel Santorin. V. Arachnida und Crustacea. Stuttgarter Beiträge Naturkunde, Serie A, Biologie 371, 1–16.Google Scholar
Schmalfuss, H., Steidel, C. and Schlegel, M. (1981). Die Fauna der Ägäis-Insel Santorin. I. Stuttgarter Beiträge Naturkunde, Serie A, Biologie 347, 1–14.Google Scholar
Schmidt, E. R., Thornton, I. W. B. and Hancock, D. (1994). Tropical fruitflies (Diptera: Tephritidae) of the Krakatau Archipelago in 1990 and comments on faunistic changes since 1982. Ecological Research 9, 1–8.CrossRefGoogle Scholar
Schmitt, S. F. and Partomihardjo, T. (1997). Disturbance and its significance for forest succession and diversification on the Krakatau Islands, Indonesia. In Dransfield, J., Coode, M. J. E. and Simpson, D. A. (eds.) Plant Diversity in Malesia III. Kew, Royal Botanic Gardens, pp. 247–263.Google Scholar
Schoener, A. (1988). Experimental island biogeography. In Myers, A. A. and Giller, P. S. (eds.) Analytical Biogeography: An Integrated Approach to the Study of Animal and Plant Distributions. London, Chapman and Hall, pp. 483–512.CrossRefGoogle Scholar
Schwabe, G. H. (1971). Die Ökogenese im terrestrichen Bereich postvulcanische Substrate, Schematische Obersicht bischeriger Befunde auf Surtsey, Iceland. Petermanns Geographische Mitteilungen 4, 168–173.Google Scholar
Sear, C. B., Kelley, P. M., Jones, P. D. and Goodess, C. M. (1987). Global surface temperature responses to major volcanic eruptions. Nature 330, 365–367.CrossRefGoogle Scholar
Selenka, E. and Selenka, K. (1905). Sonnige Welten, 2nd edn. Wiesbaden, C. W. Kneidels Verlag.Google Scholar
Shanahan, M. and Compton, S. G. (2001). Vertical stratification of figs and fig eaters in a Bornean lowland rainforest: how is the canopy different?Plant Ecology 153, 121–132.CrossRefGoogle Scholar
Shanahan, M., Harrison, R. D., Yamuna, R. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. V. Colonization by figs (Ficus species), their dispersers and pollinators. Journal of Biogeography 28, 1365–1377.CrossRefGoogle Scholar
Shilton, L. A., Altringham, J. D., Compton, S. G. and Whittaker, R. J. (1999). Old World fruit bats can be long-distance seed dispersers through extended retention of viable seed in their gut. Proceedings of the Royal Society of London B 266, 219–223.CrossRefGoogle Scholar
Shiro, T. (1991). Species turnover and diversity during early stages of vegetation recovery on the volcano Usu, northern Japan. Journal of Vegetation Science 2, 301–306.Google Scholar
Shiro, T. and del Moral, R. (1993). Species attributes in early primary succession on volcanoes. Journal of Vegetation Science 6, 517–522.Google Scholar
Shmida, A. and Ellner, S. (1984). Coexistence of plant species with similar niches. Vegetatio 58, 29–55.Google Scholar
Sigurdardóttir, H. (2000). Status of collembolans (Collembola) on Surtsey, Iceland in 1995 and first encounter of earthworms (Lumbricidae) in 1993. Surtsey Research 11, 51–55.Google Scholar
Silvester, W. B. (1977). Dinitrogen fixation by plant associations excluding legumes. In Hardy, R. W. F. and Gibson, A. H. (eds.) A Treatise on Dihydrogen Fixation. New York, John Wiley, pp. 141–190.Google Scholar
Simberloff, D. (1976). Species turnover and equilibrium island biogeography. Ecology 57, 629–648.CrossRefGoogle Scholar
Simberloff, D. and Wilson, E. O. (1969). Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296.CrossRefGoogle Scholar
Simberloff, D. and Wilson, E. O. (1970). Experimental zoogeography of islands: a two-year record of colonization. Ecology 51, 934–937.CrossRefGoogle Scholar
Sipman, H. J. M. and Raus, T. (1995). Lichen observations from Santorini (Greece). Bibliotheca Lichenologica 57, 409–428.Google Scholar
Smith, B. J. and Djajasasmita, M. (1988). The land molluscs of the Krakatau Islands, Indonesia. Philosophical Transactions of the Royal Society of London B 323, 379–400.CrossRefGoogle Scholar
Smith, J. D. and Hood, C. S. (1981). Preliminary notes on bats from the Bismarck Archipelago (Mammalia: Chiroptera). Science in New Guinea 8, 81–121.Google Scholar
Sohlenius, B. (1974). Nematodes from Surtsey. II. Surtsey Research Progress Reports 7, 35.Google Scholar
Sparks, R. S. J. and Wilson, C. J. N. (1990). The Minoan deposits: a review of their characteristics and interpretation. In Hardy, D. A., Doumas, C. G., Sakellarakis, J. A. and Warren, P. M. (eds.) Thera and the Aegean World III, vol. 1, Archaeology. London, The Thera Foundation, pp. 89–98.Google Scholar
Specht, J., Ball, E. E, Blong, R. J.et al. (1982) Long Island, Papua New Guinea: introduction. Records of the Australian Museum 34, 407–417.CrossRefGoogle Scholar
Sprent, J. I. (1993). The role of nitrogen fixation in primary succession on land. In Miles, J. and Walton, D. W. H. (eds.) Primary Succession on Land. Oxford, Blackwell Scientific Publications, pp. 209–220.Google Scholar
Sugg, P. M. (1986). Arthropod populations at Mount St. Helens: survival and revival. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press, pp. 325–328.Google Scholar
Sugg, P. M. and Edwards, J. S. (1998). Pioneer Aeolian community development on pyroclastic flows after the eruption of Mount St Helens. Arctic and Alpine Research 30, 400–407.CrossRefGoogle Scholar
Sugg, P. M., Greve, L. and Edwards, J. S. (1994). Neuropteroidea from Mount St. Helens and Mount Rainier: dispersal and immigration in volcanic landscapes. Pan-Pacific Entomologist 70, 212–221.Google Scholar
Sullivan, D. G. (1988). The discovery of Santorini Minoan tephra in western Turkey. Nature 333, 552–554.CrossRefGoogle Scholar
Surtsey (2006). Bibliography of Scientific Research. Available online at www.surtsey.is/
Swanson, F. J. (1987). Ecological effects of the eruption of Mount St. Helens: an overview. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 1–2.Google Scholar
Tagawa, H. (1992). Primary succession and the effect of first arrivals on the subsequent development of forest types. GeoJournal 28, 175–183.CrossRefGoogle Scholar
Tagawa, H. (2005). The Krakataus: Changes in a Century since Catastrophic Eruption in 1883. Kagoshima, University of Kagoshima.Google Scholar
Tagawa, H., Suzuki, E., Partomihardjo, T. and Suriadarma, A. (1985). Vegetation and succession on the Krakatau Islands, Indonesia. Vegetatio 60, 131–145.Google Scholar
Talling, J. F. (1951). The element of chance in pond populations. The Naturalist, October–December, 157–170.Google Scholar
Taylor, G. A. M. (1953). Seismic and tilt phenomena preceding a Pelean type eruption from a basaltic volcano. Bulletin of Volcanology 26, 5–11.CrossRefGoogle Scholar
Thorarinsson, S. (1971). Damage caused by the tephra fall in some big Icelandic eruptions and its relation to the thickness of the tephra layers. Proceedings of the International Scientific Congress on the Volcano of Thera, Athens, pp. 213–236.Google Scholar
Thorarinsson, S. (1978). Some comments on the Minoan eruption of Santorini. In Thera and the Aegean World I, Papers presented at the 2nd International Scientific Congress, Antorini, Greece, August 1978. London, Thera and the Aegean World, pp. 263–276.Google Scholar
Thornton, I. (1971). Darwin's Islands: A Natural History of the Galapagos. New York, Doubleday.Google Scholar
Thornton, I. W. B. (1991). Krakatau: studies on the origin and development of a fauna. In Dudley, E. C. (ed.) The Unity of Evolutionary Biology. Portland, OR, Dioscorides Press, pp. 396–408.Google Scholar
Thornton, I. W. B. (ed.) (1992a). Krakatau: a century of change. GeoJournal 28, 81–302.Google Scholar
Thornton, I. W. B. (1992b). K. W. Dammerman: fore-runner of island equilibrium theory?Global Ecology and Biogeography Letters 2, 145–148.CrossRefGoogle Scholar
Thornton, I. W. B. (1994) Figs, frugivores and falcons: an aspect of the assembly of mixed tropical forest on the emergent volcanic island Anak Krakatau. South Australian Geographical Journal 93, 3–21.Google Scholar
Thornton, I. (1996a). Krakatau: The Destruction and Reassembly of an Island Ecosystem. Cambridge, MA, Harvard University Press.Google Scholar
Thornton, I. W. B. (1996b). The origins and development of island biotas as illustrated by Krakatau. In Keast, A. and Miller, S. G. (eds.) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam, SPB Academic Publishing, pp. 67–90.Google Scholar
Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. I. General introduction. Journal of Biogeography 28, 1299–1310.CrossRefGoogle Scholar
Thornton, I. W. B. and New, T. R. (1988a). Freshwater communities on the Krakatau Islands. Philosophical Transactions of the Royal Society of London B 322, 487–492.CrossRefGoogle Scholar
Thornton, I. W. B. and New, T. R. (1988b). Krakatau invertebrates: the 1980s fauna in the context of a century of colonization. Philosophical Transactions of the Royal Society of London B 322, 493–522.CrossRefGoogle Scholar
Thornton, I. W. B. and Walsh, D. (1992). Photographic evidence of rate of development of plant cover on the emergent island Anak Krakatau from 1971 to 1991 and implications for the effect of volcanism. GeoJournal 28, 249–259.CrossRefGoogle Scholar
Thornton, I. W. B., New, T. R., McLaren, D. A., Sudarman, H. K. and Vaughan, P. J. (1988). Air-borne arthropod fall-out on Anak Krakatau and a possible pre-vegetation pioneer community. Philosophical Transactions of the Royal Society of London B 322, 471–479.CrossRefGoogle Scholar
Thornton, I. W. B., Zann, R. A., Rawlinson, P. A.et al. (1989). Colonization of the Krakatau Islands by vertebrates: equilibrium, succession, and possible delayed extinction. Proceedings of the National Academy of Sciences of the USA 85, 515–518.CrossRefGoogle Scholar
Thornton, I. W. B., Zann, R. A. and Stephenson, D. G. (1990a). Colonization of the Krakatau Islands by land birds, and the approach to an equilibrium number of species. Philosophical Transactions of the Royal Society of London B 328, 55–93.CrossRefGoogle Scholar
Thornton, I. W. B., New, T. R., Zann, R. A. and Rawlinson, P. A. (1990b). Colonization of the Krakatau Islands by animals: a perspective from the 1980s. Philosophical Transactions of the Royal Society of London B 328, 132–165.CrossRefGoogle Scholar
Thornton, I. W. B., Ward, S. A., Zann, R. A. and New, T. R. (1992). Anak Krakatau: a colonization model within a colonization model?GeoJournal 28, 271–286.CrossRefGoogle Scholar
Thornton, I. W. B., Zann, R. A. and Balen, S. (1993). Colonization of Rakata (Krakatau Is.) by non-migrant land birds from 1883 to 1992 and implications for the value of island equilibrium theory. Journal of Biogeography 20, 441–452.CrossRefGoogle Scholar
Thornton, I. W. B., Compton, S. G. and Wilson, C. N. (1996). The role of animals in the colonization of the Krakatau Islands by fig trees (Ficus species). Journal of Biogeography 23, 577–592.CrossRefGoogle Scholar
Thornton, I. W. B., Mawdsley, N. A. and Partomihardjo, T. (2000). Persistence of biota on Anak Krakatau after a three-year period of volcanic activity. Tropical Biodiversity 7, 25–43.Google Scholar
Thornton, I. W. B., Cook, S., Edwards, J. S.et al. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. VII. Overview and discussion. Journal of Biogeography 28, 1389–1408.CrossRefGoogle Scholar
Thornton, I. W. B., Runciman, D., Cook, S.et al. (2002). How important were stepping stones in the colonization of Krakatau?Biological Journal of the Linnean Society 77, 275–317.CrossRefGoogle Scholar
Tidemann, C. R., Kitchener, D. J., Zann, R. A. and Thornton, I. W. B. (1990). Recolonization of the Krakatau Islands and adjacent areas of West Java, Indonesia, by bats (Chiroptera) 1883–1886. Philosophical Transactions of the Royal Society of London B 328, 123–130.CrossRefGoogle Scholar
Toft, C. A. and Schoener, T. W. (1983). Abundance and diversity of orb spiders on 106 Bahamian islands: biogeography at an intermediate trophic level. Oikos 41, 411–426.CrossRefGoogle Scholar
Torrey, J. G. (1983). Casuarina: actinorhizal dinitrogen-fixing tree of the tropics. In Midgley, S. J., Turnbull, J. W. and Johnston, R. D. (eds.) Casuarina Ecology Management and Utilization. Canberra, CSIRO, pp. 193–204.Google Scholar
Toxopeus, L. J. (1950). Over de pioneer-fauna van Anak Krakatau, met enige beschouwingen over het onstaat van de Krakatau-fauna. Chronica Naturae 106, 27–34.Google Scholar
Trantalidou, C. (1990). Animals and human diet in the prehistoric Aegean. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 392–405.Google Scholar
Treub, M. (1888). Notice sur la nouvelle flore de Krakatau. Annales du Jardin Botanique de Buitenzorg 7, 213–223.Google Scholar
Turner, B. (1992). The colonization of Anak Krakatau: interactions between wild sugar cane, Saccharum spontaneum, and the ant lion, Myrmeleon frontalis. Journal of Tropical Ecology 8, 435–449.CrossRefGoogle Scholar
Turner, B. D. (1997). Patterns of change in arthropod biodiversity living on Casuarina equisetifolia, an early successional tree species on the island of Anak Krakatau, Indonesia. Tropical Biodiversity 4, 241–257.Google Scholar
Underwood, A. J., Denley, E. J. and Moran, M. J. (1983). Experimental analysis of the structure and dynamics of mid-shore intertidal communities in New South Wales. Oecologia 56, 202–219.CrossRefGoogle Scholar
Bemmelen, R. W. (1971). Four volcanic outbursts that influenced human history: Toba, Sunda, Merapi, and Thera. Proceedings of the International Scientific Conference on the Volcano of Thera, Athens, pp. 5–50.Google Scholar
Waalkes, Borsum J. (1954). The Krakatau Islands after the eruption of October 1952. Penggemar Alam 34, 97–104.Google Scholar
Waalkes, Borssum J. (1960). Botanical observations on the Krakatau Islands in 1951 and 1952. Annales Bogoriensis 4, 5–63.Google Scholar
Tol, J. (1990). Zoological expeditions to the Krakataus 1984 and 1985. Odonata. Tijdschrifte vor Entomologie 133, 273–279.Google Scholar
Vaupel, F. (1910). Die Vegetation der Samoa-Inseln. Botanisches Jahrbuch 44, 47–58.Google Scholar
Verbeek, R. D. M. (1884). The Krakatoa eruption. Nature 30: 10–15.CrossRefGoogle Scholar
Verbeek, R. D. M. (1885). Krakatau. Batavia, Landsdrukkerij.Google Scholar
Waide, R. B. (1991). Summary of the responses of animal populations to hurricanes in the Caribbean. Biotropica 23, 508–512.CrossRefGoogle Scholar
Waldron, H. H. (1967). Debris Flow and Erosion Control Problems Caused by the Ash Eruptions of Irazu Volcano, Costa Rica, US Geological Survey Bulletin no. 1241-1. Washington, DC, Government Printing Office.Google Scholar
Ward, S. A. and Thornton, I. W. B. (1998). Guest editorial: equilibrium theory and alternative stable equilibria. Journal of Biogeography 25, 615–622.CrossRefGoogle Scholar
Ward, S. A. and Thornton, I. W. B. (2000). Chance and determinism in the development of isolated communities. Global Ecology and Biogeography Letters 9, 7–18.CrossRefGoogle Scholar
Warren, P. (1984). Absolute dating of the Bronze Age eruption of Thera (Santorini). Nature 305, 492–493.CrossRefGoogle Scholar
Waters, A. C. and Fisher, R. V. (1971). Base surges and their deposits: Capelhinos and Taal volcanoes. Journal of Geophysical Research 76, 5595–5614.CrossRefGoogle Scholar
Watkins, N. D., Sparks, R. S. J., Sigurdsson, H.et al. (1978). Volume and extent of the Minoan tephra from Santorini Volcano: new evidence from deep-sea sediment cores. Nature 271, 122–126.CrossRefGoogle Scholar
Whittaker, R. J. (1998). Island Biogeography: Ecology, Evolution and Conservation. Oxford, Oxford University Press.Google Scholar
Whittaker, R. J. and Jones, S. H. (1994). The role of frugivorous bats and birds in the rebuilding of a tropical forest ecosystem, Krakatoa, Indonesia. Journal of Biogeography 21, 246–258.CrossRefGoogle Scholar
Whittaker, R. J., Bush, M. B. and Richards, K. (1989). Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecological Monographs 59, 59–123.CrossRefGoogle Scholar
Whittaker, R. J., Bush, M. B., Partomihardjo, T., Asquith, N. M. and Richards, K. (1992a). Ecological aspects of plant colonization of the Krakatau Islands. GeoJournal 28, 201–211.CrossRefGoogle Scholar
Whittaker, R. J., Walden, J. and Hill, J. (1992b). Post-1883 ash fall on Panjang and Sertung and its ecological impact. GeoJournal 28, 153–171.CrossRefGoogle Scholar
Whittaker, R. J., Partomihardjo, T. and Riswan, S. (1995). Surface and buried seed banks from Krakatau, Indonesia: implications for the sterilization hypothesis. Biotropica 27, 345–354.CrossRefGoogle Scholar
Whittaker, R. J., Jones, S. H. and Partomaihardjo, T. (1997). The re-building of an isolated rain forest assembly; how disharmonious is the flora of Krakatau?Biodiversity and Conservation 6, 1671–1696.CrossRefGoogle Scholar
Whittaker, R. J., Field, R. and Partomihardjo, T. (2000). How to go extinct: lessons from the lost plants of Krakatau. Journal of Biogeography 27, 1049–1064.CrossRefGoogle Scholar
Williamson, M. (1982). Island Populations. Oxford, Oxford University Press.Google Scholar
Wilson, E. O. (1992). The Diversity of Life. Cambridge, MA, Harvard University Press.Google Scholar
Winchester, S. (2003). Krakatoa: The Day the World Exploded – 27th August 1883. London, Viking.Google Scholar
Winoto Suatmadji, R., Coomans, A., Rashid, F., Gevaert, E. and McLaren, D. A. (1988). Nematodes of the Krakatau archipelago, Indonesia: a preliminary overview. Philosophical Transactions of the Royal Society of London B 322, 369–378.CrossRefGoogle Scholar
Wissel, C. and Maier, B. (1992). A stochastic model for the species-area relationship. Journal of Biogeography 19, 355–362.CrossRefGoogle Scholar
Wurmli, M. (1974). Biocenoses and their successions on the lava and ash of Mt. Etna, Part 1. Image Roche 59, 32–40.Google Scholar
Yamane, S. (1988). The aculeate fauna of the Krakatau Islands (Insecta, Hymenoptera). Reports of the Faculty of Science, Kagoshima University (Earth Sciences and Biology) 16, 75–107.Google Scholar
Yamane, S. and Tomiyama, K. (1986). A small collection of land snails from the Krakatoa Islands, Indonesia. Venus, 45, 61–64.Google Scholar
Yamane, S., Abe, T. and Yukawa, J. (1992). Recolonization of the Krakataus by Hymenoptera and Isoptera (Insecta). GeoJournal 28, 213–218.CrossRefGoogle Scholar
Yih, K., Boucher, D. H., Vandermeer, J. H. and Zamora, N. (1991). Recovery of the rain forest of southeastern Nicaragua after destruction by Hurricane Joan. Biotropica 23, 106–113.CrossRefGoogle Scholar
Yokoyama, I. (1978). The tsunami generated by the prehistoric eruption of Thera. In Thera and the Aegean World I, Papers presented at the 2nd International Scientific Congress, Antorini, Greece, August 1978. London, Thera and the Aegean World, pp. 277–286.Google Scholar
Yukawa, J. (1984). Geographical ecology of the butterfly fauna of the Krakatau Islands, Indonesia. Tyô to Ga 36, 181–184.Google Scholar
Yukawa, J. and Yamane, S. (1985). Odonata and Hemiptera collected from the Krakataus and the surrounding islands, Indonesia. Kontyû 53, 690–698.Google Scholar
Yukawa, J., Abe, T., Iwamoto, T. and Yamane, S. (1984). The fauna of Krakatau, Peucang and Panaitan islands. In Tagawa, H. (ed.) Researches on the Ecological Succession and the Formation Process of Volcanic Ash Soils on the Krakatau Islands. Kagoshima, Kagoshima University, pp. 91–114.Google Scholar
Yukawa, J., Partomihardjo, T., Yata, O. and Hirowatari, T. (2000). An assessment of the role of Sebesi Island as a stepping stone for the colonization of the Krakatau islands by butterflies. Esakia 40, 1–10.Google Scholar
Zann, R. A. and Darjono, . (1992). The birds of Anak Krakatau: the assembly of an avian community. GeoJournal 28, 261–270.CrossRefGoogle Scholar
Zann, R. A., Male, E. B. and Darjono, . (1990). Bird colonization of Anak Krakatau, an emergent volcanic island. Philosophical Transactions of the Royal Society of London B 328, 95–121.CrossRefGoogle Scholar
Z'graggen, J. A. (1975). The Languages of the Madang District, Papua New Guinea, Pacific Linguistics Series B, No. 41. Canberra, Department of Linguistics, Research School of Pacific Studies, Australian National University.Google Scholar
Zielinski, G. A. and Germani, M. S. (1998a). New ice-core evidence challenges the 1620s BC age for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, 279–289.CrossRefGoogle Scholar
Zielinski, G. A. and Germani, M. S. (1998b). Reply to: Correction. New GISP2 Ice-Core evidence supports 17th century BC date for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, 1043–1045.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1994). Record of volcanism since 7000 BC from the GISP2 Greenland Ice Core and implications for the volcano-climate system. Science 264, 948–951.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. and Twickler, M. (1996). A 110 000-year record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45, 109–118.CrossRefGoogle Scholar
Zimmerman, J. K., Willig, M. R., Walker, L. R. and Silver, W. L. (1996). Introduction, disturbance and Caribbean ecosystems. Biotropica 28, 414–423.CrossRefGoogle Scholar
Abe, T. (1984). Colonization of the Krakatau Islands by termites (Insecta: Isoptera). Physiological Ecology, Japan 21, 63–88.Google Scholar
Abe, T. (1987). Evolution of life types in termites. In Kawano, S., Connell, J. H. and Hidaka, T. (eds.) Evolution and Coadaptation in Biotic Communities. Tokyo, University of Tokyo Press, pp. 124–148.Google Scholar
Andersen, D. C. and MacMahon, J. A. (1985). The effects of catastrophic ecosystem disturbance: the residual mammals at Mount St Helens. Journal of Mammalogy 66, 581–589.CrossRefGoogle Scholar
Anderson, M. A. (1978/9). Comments on the presence of a crocodile or crocodiles in Lake Wisdom, on Long Island north of New Guinea. Science in New Guinea 6, 6–8.Google Scholar
Anderson, N. H. (1992). Influence of disturbance on insect communities in Pacific Northwest streams. Hydrobiologia 248, 79–92.CrossRefGoogle Scholar
Anonymous (1990). General discussion. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 236–241.Google Scholar
Antos, J. A. and Zobel, D. B. (1987). How plants survive burial: a review and initial responses to tephra from Mount St. Helens. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 246–261.Google Scholar
Ashmole, M. J. and Ashmole, N. P. (1988). Arthropod communities supported by biological fallout on recent lava flows in the Canary Islands. Entomologica Scandanavica 332 (Suppl.), 67–88.Google Scholar
Ashmole, N. P. and Ashmole, M. J. (1997). The land fauna of Ascension Island: new data from caves and lava flows, and a reconstruction of the prehistoric ecosystem. Journal of Biogeography 24, 549–589.CrossRefGoogle Scholar
Ashmole, N. P., Ashmole, M. J. and Oromi, P. (1990). Arthropods of recent lava flows on Lanzarote. Vieraea 18, 171–187.Google Scholar
Ashmole, N. P., Oromi, P. and Ashmole, M. J. (1992). Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biological Journal of the Linnean Society 46, 207–234.CrossRefGoogle Scholar
Asong, J. (1984). How tuna fish came to be: a legend from the Siassi Islands, Morobe Province. Paradise Magazine (in-flight with Air Niugini) 47 (July 1984), 17.Google Scholar
Aston, M. A. and Hardy, P. G. (1990). The pre-Minoan landscape of Thera: a preliminary statement. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 348–361.Google Scholar
Backer, C. A. (1929). The Problem of Krakatoa as Seen by a Botanist. Surabaya, Indonesia, published by author.Google Scholar
Baillie, M. G. L. (1990). Irish tree rings and an event in 1628 BC. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 160–166.Google Scholar
Baillie, M. G. L. and Munro, M. A. R. (1988). Irish tree rings, Santorini and volcanic dust veils. Nature 332, 344–346.CrossRefGoogle Scholar
Ball, E. (1977). Life among the ashes. Australian Natural History 19, 12–17.Google Scholar
Ball, E. E. (1982a). Long Island, Papua New Guinea: European exploration and recorded contacts to the end of the Pacific War. Records of the Australian Museum 34, 447–461.CrossRefGoogle Scholar
Ball, E. E. (1982b). Annotated bibliography of references relating to Long Island, Papua New Guinea. Records of the Australian Museum 34, 527–547.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1975). Biological colonization of Motmot, a recently created tropical island. Proceedings of the Royal Society of London B 190, 421–442.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1978). Limnological studies of Lake Wisdom, a large New Guinea caldera lake with a simple fauna. Freshwater Biology 8, 455–468.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1980). A limnological survey of Lake Dakataua, a large caldera lake on West New Britain, Papua New Guinea, with comparisons to Lake Wisdom, a younger nearby caldera lake. Freshwater Biology 10, 73–84.CrossRefGoogle Scholar
Ball, E. E. and Glucksman, J. (1981). Biological colonization of a newly created volcanic island and limnological studies on New Guinea lakes, 1972–1978. National Geographic Society Research Reports 13, 89–97.Google Scholar
Ball, E. E. and Hughes, I. M. (1982). Long Island, Papua New Guinea: people, resources and culture. Records of the Australian Museum 34, 463–525.CrossRefGoogle Scholar
Ball, E. E. and Johnson, R. W. (1976). Volcanic history of Long Island, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 133–147.Google Scholar
Bassot, J. M. and Ball, E. E. (1972). Biological colonization of a recently created island in Lake Wisdom, Long Island, Papua New Guinea, with observations on the fauna of the lake. Proceedings of the Papua New Guinea Science Society 23, 26–35.Google Scholar
Beard, S. J. (1976). The progress of plant succession on the La Soufrière of St Vincent: observations in 1972. Vegetatio 31, 69–77.CrossRefGoogle Scholar
Beaver, R. A. (1977). Non-equilibrium ‘island’ communities: Diptera breeding in dead snails. Journal of Animal Ecology 46, 783–798.CrossRefGoogle Scholar
Becker, P. (1975). Island colonization by carnivorous and herbivorous Coleoptera. Journal of Animal Ecology 44, 893–906.CrossRefGoogle Scholar
Becker, P. (1992). Colonization of islands by carnivorous and herbivorous Heteroptera and Coleoptera: effects of island area, plant species richness, and ‘extinction’ rates. Journal of Biogeography 19, 163–171.CrossRefGoogle Scholar
Beehler, B. M., Pratt, T. K. and Zimmerman, D. A. (1986). Birds of New Guinea. Princeton, NJ, Princeton University Press.Google Scholar
Blong, R. J. (1975). The Krakatoa myth and the New Guinea highlands. Journal of the Polynesia Society 84, 213–217.Google Scholar
Blong, R. J. (1979). Huli legends and volcanic eruptions, Papua New Guinea. Search 10, 93–94.Google Scholar
Blong, R. J. (1982). The Time of Darkness. Canberra, Australian National University Press.Google Scholar
Blot, C. (1978). Volcanism and seismicity in Mediterranean island arcs. In Thera and the Aegean World I, Papers presented at the 2nd International Scientific Congress, Antorini, Greece, August 1978. London, Thera and the Aegean World, pp. 33–44.Google Scholar
Bödvarsson, H. (1982). The Collembola of Surtsey, Iceland. Surtsey Research Progress Reports 9, 63–67.Google Scholar
Bonaccorso, F. (1998). Bats of Papua New Guinea. Washington DC, Conservation International.Google Scholar
Bonaccorso, F. J. and McNab, B. K. (1997). Plasticity of energetics in blossom bat (Pteropodidae): impact on distribution. Journal of Mammalogy 78, 1073–1088.CrossRefGoogle Scholar
Brattstrom, B. H. (1963). Barcena Volcano, 1952: its effect on the fauna and flora of San Benedicto Island, Mexico. In Gressitt, J. L. (ed.) Pacific Basin Biogeography. Honolulu, HI, Bishop Museum Press, pp. 499–524.Google Scholar
Brattstrom, B. H. (1990). Biogeography of the Islas Revillagigedo, Mexico. Journal of Biogeography 17, 177–183.CrossRefGoogle Scholar
Bristowe, W. S. (1931). A preliminary note on the spiders of Krakatau. Proceedings of the Zoological Society of London 1931, 1387–1442.Google Scholar
Bristowe, W. S. (1934). Introductory notes. Proceedings of the Zoological Society of London 1934, 11–18.Google Scholar
Brokaw, N. V. L. and Walker, L. R. (1991). Summary of the effects of Caribbean hurricanes on vegetation. Biotropica 23, 442–447.CrossRefGoogle Scholar
Bromenshenk, J. J., Postle, R. C., Yamasaki, G. M., Felli, D. G. and Reinhardt, H. E. (1987). The effect of Mount St. Helens ash on the development and mortality of the western spruce budworm and other insects. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 302–317.Google Scholar
Bronstein, J. L. and Hossaert-McKey, M. (1995). Hurricane Andrew and a Florida fig pollination mutualism: resilience of an obligate interaction. Biotropica 27, 373–381.CrossRefGoogle Scholar
Bronstein, J. L. and Patel, A. (1992). Causes and consequences of within-tree phenological patterns in the Florida strangling fig, Ficus aurea (Moraceae). American Journal of Botany 79, 41–48.CrossRefGoogle Scholar
Bronstein, J. L., Guoyon, P. H., Gliddon, C., Kjellberg, F. and Michaloud, G. (1990). The ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology 71, 2145–2156.CrossRefGoogle Scholar
Brown, J. H. and Kodric-Brown, A. (1977). Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449.CrossRefGoogle Scholar
Brown, W. H., Merrill, E. D. and Yates, H. S. (1917). The revegetation of Volcano Island, Luzon, Philippine Islands, since the eruption of Taal volcano in 1911. Philippine Journal of Science, Series C, Botany 12, 177–248.Google Scholar
Buckland, P. C., Dugmore, A. J. and Edwards, K. J. (1997). Bronze Age myths? Volcanic activity and human response in the Mediterranean and North Atlantic regions. Antiquity 71, 581–593.CrossRefGoogle Scholar
Burt, W. H. 1961. Some effects of Volcan Paricutin on vertebrates. Occasional Papers of the Museum of Zoology of the University of Michigan 620, 1–24.Google Scholar
Bush, M. B. (1986). The butterflies of Krakatoa. Entomologist's Monthly Magazine 122, 51–58.Google Scholar
Bush, M. B. and Whittaker, R. J. (1991). Krakatau: colonization patterns and hierarchies. Journal of Biogeography 18, 341–356.CrossRefGoogle Scholar
Bush, M. B. and Whittaker, R. J. (1993). Non-equilibration in island theory of Krakatau. Journal of Biogeography 20, 453–457.CrossRefGoogle Scholar
Bush, M. B., Bush, D. J. B. and Evans, R. D. (1990). Butterflies of Krakatau and Sebesi: new records and habitat relations. In Whittaker, R. J., Asquith, N. M., Bush, M. B. and Partomihardjo, T. (eds.) Krakatau Research Reports 1989. Oxford, School of Geography, University of Oxford, pp. 35–41.Google Scholar
Bush, M. B., Whittaker, R. J. and Partomihardjo, T. (1992). Forest development on Rakata, Panjang and Sertung: contemporary dynamics (1979–1989). GeoJournal 28, 185–199.CrossRefGoogle Scholar
Cadogan, G. (1990). Thera's eruption into our understanding of the Minoans. In Hardy, D. A., Doumas, C. G., Sakellarakis, J. A. and Warren, P. M. (eds.) Thera and the Aegean World III, vol. 1, Archaeology. London, The Thera Foundation, pp. 93–96.Google Scholar
Carlquist, S. (1965). Island Life: A Natural History of the Islands of the World. Garden City, NY, The Natural History Press.Google Scholar
Carlquist, S. (1996). Plant dispersal and the origin of Pacific island floras. In Keast, A. and Miller, S. E. (eds.) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam, SPB Academic Publishers, pp. 153–164.Google Scholar
Case, T. J. and Cody, M. L. (1987). Testing theories of island biogeography. American Scientist 75, 402–411.Google Scholar
Clausen, H. B., Hammer, C. U., Hvidberg, C. S.et al. (1997). A comparison of the volcanic record over the past 4000 years from the Greenland Ice Core Project and Dye3 Greenland ice cores. Journal of Geophysical Research 102, 26707–26723.CrossRefGoogle Scholar
Cogger, H. (2000). Reptiles and Amphibians of Australia, 5th edn. Sydney, Reed Books.Google Scholar
Compton, S. G., Thornton, I. W. B., New, T. R. and Underhill, L. (1988). The colonization of the Krakatau Islands by fig wasps and other chalcids (Hymenoptera, Chalcidoidea). Philosophical Transactions of the Royal Society of London B 322, 459–470.CrossRefGoogle Scholar
Compton, S. G., Ross, S. and Thornton, I. W. B. (1994). Pollinator limitation of fig tree reproduction on the island of Anak Krakatau (Indonesia). Biotropica 26, 180–186.CrossRefGoogle Scholar
Connor, E. F. and Simberloff, D. (1979). The assembly of species communities: chance or competition?Ecology 60, 1132–1140.CrossRefGoogle Scholar
Cook, S., Singidan, R. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. IV. Colonization by non-avian vertebrates. Journal of Biogeography 28, 1353–1363.CrossRefGoogle Scholar
Cooke, R. J. S. (1981). Eruptive history of the volcano at Ritter Island. Geological Survey of Papua New Guinea Memoir 10, 115–123.Google Scholar
Cooke R. J. S., McKee, C. O., Dent, V. F. and Wallace, D. A. (1976). A striking sequence of volcanic eruptions in the Bismarck volcanic arc, Papua New Guinea, in 1972–75. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 149–172.Google Scholar
Corbet, G. B. and Hill, J. E. (1991). A World List of Mammalian Species. Oxford, Oxford University Press.Google Scholar
Cotteau, E. (1885). Borneo and Krakatoa II. A week at Krakatoa. Proceedings of the New South Wales and Victoria Branches of the Royal Geographical Society of Australia 2, 103–106.Google Scholar
Coultas, N. F. (1935). Unpublished journal and letters of William F. Coultas, Whitney South Sea Expedition, vol. IV, October 1933–March 1935. In Department of Ornithology, American Museum of Natural History, New York.
Crawford, R. L., Sugg, P. M. and Edwards, J. S. (1995). Spider arrival and primary establishment on terrain depopulated by volcanic eruption at Mount St. Helens, Washington. American Midland Naturalist 133, 60–75.CrossRefGoogle Scholar
D'Addario, G. W. (1972). The 1968 eruption of Long Island. In Johnson, R. W., Taylor, G. A. M. and Davies, R. A. (eds.) Geology and Petrology of Quaternary Volcanic Islands off the North Coast of New Guinea, Bureau of Mineral Resources, Geology and Geophysics Record no. 21. Canberra, Commonwealth of Australia, Department of National Development, pp. 110–112.Google Scholar
Dammerman, K. W. (1922). The fauna of Krakatau, Verlaten Island and Sebesy. Treubia 3, 61–112.Google Scholar
Dammerman, K. W. (1948). The Fauna of Krakatau 1883–1933. Verhandlungen Koninlijk Nederlandsche Akademie Wetenschaft 44, 1–594.Google Scholar
Boer, J. L. and Sanders, D. T. (2002). Volcanoes in Human History: The Far-Reaching Effects of Major Eruptions. Princeton, NJ, Princeton University Press.Google Scholar
Decker, R. W. (1990). How often does a Minoan eruption occur? In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 444–452.Google Scholar
del Moral, R. and Bliss, L. C. (1987). Initial vegetation recovery on subalpine slopes of Mount St. Helens, Washington. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 148–167.Google Scholar
del Moral, R. and Bliss, L. C. (1993). Mechanisms of primary succession: insights resulting from the eruption of Mount St. Helens. Advances in Ecological Research 24, 1–66.CrossRefGoogle Scholar
del Moral, R. and Wood, D. M. (1986). Subalpine vegetation recovery five years after the Mount St. Helens eruptions. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press, pp. 215–221.Google Scholar
del Moral, R., Titus, J. H. and Cook, A. M. (1995). Early primary succession on Mount St. Helens, Washington, USA. Journal of Vegetation Science 6, 107–123.CrossRefGoogle Scholar
Diamond, J. M. (1970). Ecological consequences of island colonization by southwest Pacific birds. Proceedings of the National Academy of Sciences of the USA 67, 529–563.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1972). Reconstitution of bird community structure on Long Island, New Guinea, after a volcanic explosion. National Geographical Society Research Reports 13, 191–204.Google Scholar
Diamond, J. M. (1973). Distributional ecology of New Guinea birds. Science 179, 759–769.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1974a). Colonization of exploded volcanic islands by birds: the supertramp strategy. Science 184, 803–806.CrossRefGoogle Scholar
Diamond, J. M. (1974b). Recolonization of exploded volcanic islands by New Guinea birds. Exploration Journal, March, 2–10.Google Scholar
Diamond, J. M. (1975). Assembly of species communities. In Cody, M. L. and Diamond, J. M. (eds.) Ecology and Evolution of Communities. Cambridge, MA, Harvard University Press, pp. 342–444.Google Scholar
Diamond, J. M. (1976). Preliminary results of ornithological exploration of the islands of Vitiaz and Dampier Straits, Papua New Guinea. Emu 76, 1–7.CrossRefGoogle Scholar
Diamond, J. M. (1977). Colonization of a volcano inside a volcano. Nature 270, 13–14.CrossRefGoogle Scholar
Diamond, J. M. (1981). Reconstitution of bird community structure on Long Island, New Guinea, after a volcanic explosion. National Geographical Society Research Reports 1, 191–204.Google Scholar
Diamond, J. M. (1989). This-fellow frog, name belong-him Dakwo. Natural History, April, 16–23.Google Scholar
Diamond, J. M., Bishop, K. D. and Balen, S. (1987). Bird survival in an isolated Javan woodland: island or mirror?Conservation Biology 1, 132–142.CrossRefGoogle Scholar
Diamond, J. M., Pimm, S. L., Gilpin, M. E. and LeCroy, M. (1989). Rapid evolution of character displacement in myzomelid honeyeaters. American Naturalist 413, 675–708.CrossRefGoogle Scholar
Diapoulis, C. (1971). The development of the flora of the volcanic islands Palaia Kammeni and Nea Kammeni. Acta 1st International Congress on Volcano Thera 1969, 238–247.Google Scholar
Dickerson, J. E. Jr and Robinson, J. V. (1985). Microcosms as islands: a test of the MacArthur–Wilson equilibrium theory. Ecology 66, 966–980.CrossRefGoogle Scholar
Leeuwen, Docters W. M. (1923). The vegetation of the island of Sebesy, situated in the Sunda Strait, near the islands of the Krakatau group, in the year 1921. Annales du Jardin Botanique de Buitenzorg 32, 135–192.Google Scholar
Leeuwen, Docters W. M. (1924). On the present state of the vegetation of the Krakatau Group and of the island of Sebesy. Proceedings of the 2nd Pan Pacific Science Congress 1923, 313–318.Google Scholar
Leeuwen, Docters W. M. (1936). Krakatau 1883–1933: a botany. Annales du Jardin Botanique de Buitenzorg 46–47, 1–507.Google Scholar
Dommergues, Y. (1966). La fixation symbiotique de l'azote chez les Casuarina. Annales de l'Institut Pasteur 111 (Suppl.), 247–259.Google Scholar
Downey, W. and Tarling, D. (1984). The end of the Minoan civilization. New Scientist, 13 September, 49–52.Google Scholar
Drake, J. A. (1990a). Communities as assembled structures: do rules govern pattern?Trends in Ecology and Evolution 5, 159–164.CrossRefGoogle Scholar
Drake, J. A. (1990b). The mechanics of community assembly and succession. Journal of Theoretical Biology 147, 213–233.CrossRefGoogle Scholar
Drake, J. A. (1991). Community-assembly mechanics and the structure of an experimental species ensemble. American Naturalist 137, 1–26.CrossRefGoogle Scholar
Druitt, T. H. and Francaviglia, V. (1990). An ancient caldera cliff line at Phira, and its significance for the topography and geology of pre-Minoan Santorini. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 362–369.Google Scholar
Dwyer, P. D. (1978). A study of Rattus exulans (Peale) (Rodentia: Muridae) in the New Guinea Highlands. Australian Wildlife Research 5, 221–248.CrossRefGoogle Scholar
Dwyer, P. D. (1984). From garden to forest: small rodents and plant succession in Papua New Guinea. Australian Mammalogy 7, 29–36.Google Scholar
Edwards, J. S. (1986). Derelicts of dispersal: arthropod fallout on Pacific northwest volcanoes. In Danthanarayana, W. (ed.) Insect Flight: Dispersal and Migration. Berlin, Springer-Verlag, pp. 196–203.CrossRefGoogle Scholar
Edwards, J. S. (1987). Arthropods of alpine aeolian ecosystems. Annual Review of Entomology 32, 163–179.CrossRefGoogle Scholar
Edwards, J. S. (1988). Life in the allobiosphere. Trends in Ecology and Evolution 3, 111–114.CrossRefGoogle ScholarPubMed
Edwards, J. S. (1996). Arthropods as pioneers: recolonization of the blast zone on Mt. St. Helens. Northwest Environmental Journal 2, 63–74.Google Scholar
Edwards, J. S. (2005) Animals and volcanoes: survival and revival. In Martí, J. and Ernst, G. L. (eds.) Volcanoes and the Environment. Cambridge, Cambridge University Press, pp. 250–272.CrossRefGoogle Scholar
Edwards, J. S. and Banko, P. C. (1976). Arthropod fallout and nutrient transport: a quantitative study of Alaskan snowpatches. Arctic and Alpine Research 8, 237–245.CrossRefGoogle Scholar
Edwards, J. S. and Schwarz, L. M. (1981). Mount St. Helens ash: a natural insecticide. Canadian Journal of Zoology 59, 714–715.CrossRefGoogle Scholar
Edwards, J. S. and Sugg, P. (1993). Arthropod fallout as a resource in the colonization of Mount St. Helens. Ecology 74, 954–958.CrossRefGoogle Scholar
Edwards, J. S. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. VI. A pioneer arthropod community on Motmot. Journal of Biogeography 28, 1379–1388.CrossRefGoogle Scholar
Edwards, J. S., Crawford, R. L., Sugg, P. M. and Peterson, M. A. (1986). Arthropod recolonization in the blast zone of Mount St. Helens. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press, pp. 329–333.Google Scholar
Eggler, W. A. (1948). Plant communities in the vicinity of the volcano El Paricutin, Mexico, after two and a half years of eruption. Ecology 29, 415–436.CrossRefGoogle Scholar
Eggler, W. A. (1959). Manner of invasion of volcanic deposits by plants with further evidence from Paricutin and Jorullo. Ecological Monographs 29, 268–284.CrossRefGoogle Scholar
Eggler, W. A. (1963). Plant life of Paricutin volcano, Mexico, eight years after activity ceased. American Midland Naturalist 69(12), 38–68.CrossRefGoogle Scholar
Ernst, A. (1908). The New Flora of the Volcanic Island of Krakatau. London, Cambridge University Press.Google Scholar
Evans, A. (1921–35). The Palace of Minos at Knossos, 4 vols. London, Macmillan.Google Scholar
Evans, G. (1940). The characteristic vegetation of recent volcanic islands in the Pacific. Bulletin of Miscellaneous Information, Botanic Gardens, Kew 1939, 43–44.Google Scholar
Fisher, R. V. and Schminke, H.-U. (1984). Pyroclastic Rocks. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Fisher, R. V., Heiken, G. and Hulen, J. B. (1997). Volcanoes: Crucibles of Change. Princeton, NJ, Princeton University Press.Google Scholar
Flannery, T. F. (1995). Mammals of New Guinea. Sydney, Reed Books.Google Scholar
Fosberg, F. R. (1985). Botanical visits to Krakatoa in 1958 and 1963. Atoll Research Bulletin 292, 39–45.Google Scholar
Fouqué, F. (1879). Santorin et ses Éruptions. Paris, G. Masson.Google Scholar
Fouqué, F. (1998). Santorini and its Eruptions, translation and comments by A. R. McBirney. Baltimore, MD, Johns Hopkins University Press.Google Scholar
Frederiksen, H. B., Pedersen, A. L. and Christensen, S. (2000). Substrate-induced respiration and microbial growth in soil during the primary succession on Surtsey, Iceland. Surtsey Research Progress Reports 11, 29–35.Google Scholar
Freidrich, W. L. (2000). Fire in the Sea: The Santorini Volcano – Natural History and the Legend of Atlantis, translation by A. R. McBirney. Cambridge, Cambridge University Press.Google Scholar
Freidrich, W. L., Seidenkrantz, M.-S. and Nielsen, O. B. (2000). Santorini (Greece) before the Minoan eruption: reconstruction of the ring-island natural resources and clay deposits from the Akrotiri Excavation. In McGuire, W. J., Griffiths, D. R., Hancock, P. L. and Stewart, I. (eds.) The Archaeology of Geological Catastrophes. London, Geological Society, pp. 71–80.Google Scholar
Fridriksson, S. (1975). Surtsey: Evolution of Life on a Volcanic Island. London, Butterworth.Google Scholar
Fridriksson, S. (1987). Plant colonization of a volcanic island: Surtsey, Iceland. Arctic and Alpine Research 19, 425–431.CrossRefGoogle Scholar
Fridriksson, S. (1992). Vascular plants on Surtsey 1981–1990. Surtsey Research Progress Reports 10, 17–30.Google Scholar
Fridriksson, S. (1994). Surtsey: Lifriki i Motun (Surtsey: the development of life on a young volcanic island). Reykjavik, Society of Natural History and Surtsey Research Society. (In Icelandic)Google Scholar
Fridriksson, S. (2000). Vascular plants on Surtsey 1991–98. Surtsey Research Progress Reports 11, 21–28.Google Scholar
Fridriksson, S. and Magnússon, B. (1992). Development of the ecosystem on Surtsey with reference to Anak Krakatau. GeoJournal 28, 287–291.CrossRefGoogle Scholar
Frith, H. J. (1982). Pigeons and Doves of Australia. Adelaide, Rigby.Google Scholar
Fritsch, F. E. (1931). Some aspects of the ecology of freshwater algae. Journal of Ecology 19, 232–272.Google Scholar
Frör, E. and Beutler, A. (1970). The herpetofauna of the oceanic islands in the Santorini archipelago, Greece. Spixiana 1, 301–308.Google Scholar
Fytikas, M., Kolios, N. and Vougioukalakis, G. (1990). Post-Minoan volcanic activity of the Santorini Volcano: volcanic hazard and risk, forecasting possibilities. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 183–198.Google Scholar
Galanopoulos, A. G. (1971). The eastern Mediterranean trilogy in the Bronze Age. Proceedings of the International Scientific Congress on the Volcano of Thera, Athens, pp. 184–210.Google Scholar
Galloway, R. B. and Liritzis, Y. (1992). Provenance of Aegean volcanic tephras by high resolution gamma-ray spectroscopy. Nuclear Geophysics 6, 405–411.Google Scholar
Gates, F. C. (1914). The pioneer vegetation of Taal Volcano. Philippine Journal of Science, Series C, Botany 9, 391–434.Google Scholar
Gathorne-Hardy, F. J., Jones, D. T. and Mawdsley, N. A. (2000). The recolonization of the Krakatau islands by termites (Isoptera) and their biogeographical origins. Biological Journal of the Linnean Society 71, 252–267.CrossRefGoogle Scholar
Gennardus, Br. (Balvers, L. F.) (1983). Enkele waarnemingen aan verschillenke Kweken van rupien en vlinders na een vulkanische asregen op Java. Entomologische Berichten 43, 69–71.Google Scholar
Gersich, F. M. and Brusven, A. M. (1982). Volcanic ash accumulation and ash-voiding mechanisms of aquatic insects. Journal of the Kansas Entomological Society 55, 290–296.Google Scholar
Gilham, M. E. (1970). Seed dispersal by birds. In Perring, F. (ed.) The Flora of a Changing Britain. Faringdon, E. W. Classey, pp. 909–98.Google Scholar
Gilpin, M. E. (1980). The role of stepping-stone islands. Theoretical Population Biology 17, 247–253.CrossRefGoogle ScholarPubMed
Gilpin, M. E. and Diamond, J. M. (1982). Factors contributing to non-randomness in species co-occurrences on islands. Oecologia 52, 75–84.CrossRefGoogle ScholarPubMed
Gilpin, M., Carpenter, M. P. and Pomeranz, M. J. (1986). The assembly of a laboratory community: multispecies competition in Drosophila. In Diamond, J. M. and Case, T. J. (eds.) Community Ecology. New York, Harper and Row, pp. 23–40.Google Scholar
Gjelstrup, P. (2000). Soil mites and collembolans on Surtsey, Iceland, 32 years after the eruption. Surtsey Research Progress Reports 11, 43–50.Google Scholar
Gorschkov, S. G. (ed.) (1974). Atlas of the Oceans: Pacific Ocean. Moscow, Ministry of Defence, USSR Navy.Google Scholar
Greuter, W. (1979). The origins and evolution of island floras as exemplified by the Aegean Archipelago. In Bramwell, D. (ed.) Plants and Islands. London, Academic Press, pp. 87–93.Google Scholar
Grimm, R. (1981). Die Fauna der Ägäis-Insel Santorin. II. Tenebrionidae (Coleoptera). Stuttgarter Beiträge zur Naturkunde A, Biologie 348, 1–14.Google Scholar
Gross, C. L. (1993). The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau, Indonesia. Australian Journal of Botany 41, 591–599.CrossRefGoogle Scholar
Hall, G. (1987). Seed dispersal by birds of prey. Zimbabwe Science News 21, 9.Google Scholar
Halvorson, J. J., Smith, J. L. and Franz, E. H. (1991). Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia 87, 162–170.CrossRefGoogle ScholarPubMed
Hammer, C. U., Clausen, H. B. and Dansgaard, W. (1980). Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288, 230–235.CrossRefGoogle Scholar
Hammer, C., Clausen, H., Friedrich, W. and Tauber, H. (1987). The Minoan eruption of Santorini in Greece dated to 1645 BC?Nature 328, 517–519.CrossRefGoogle Scholar
Hansen, A. (1971). Flora der Inselgruppe Santorin. Candollea 26, 109–163.Google Scholar
Harding, A. F. (1989). Blind dating. New Scientist, 6 May, 52–53.Google Scholar
Hardy, D. A. and Renfrew, A. C. (eds.) 1990. Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation.Google Scholar
Harrison, R. D., Yamuna, R. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. II. The vascular flora. Journal of Biogeography 28, 1131–1137.CrossRefGoogle Scholar
Heatwole, H. (1971). Marine-dependent terrestrial biotic communities on some cays in the Coral Sea. Ecology 52, 363–366.CrossRefGoogle Scholar
Heatwole, H. (1981). A Coral Island: The History of One Tree Reef. Sydney, Collins.Google Scholar
Heatwole, H. and Levins, R. (1972a). Biogeography of the Puerto Rican Bank: flotsam transport of terrestrial animals. Ecology 53, 112–117.CrossRefGoogle Scholar
Heatwole, H. and Levins, R. (1972b). Trophic structure stability and faunal change during recolonization. Ecology 53, 531–534.CrossRefGoogle Scholar
Heatwole, H. and Levins, R. (1973). Biogeography of the Puerto Rican Bank: species turnover on a small cay, Cayo Ahogado. Ecology 54, 1042–1055.CrossRefGoogle Scholar
Heiken, G. and McCoy, F. (1990). Precursory activity to the Minoan eruption, Thera, Greece. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 79–88.Google Scholar
Heiken, G., McCoy, F. and Sheridan, M. (1990). Palaeotopographical and palaeogeological reconstruction of Minoan Thera. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 370–376.Google Scholar
Heinis, F. (1928). Die Moosfauna des Krakatau. Treubia 10, 231–244.Google Scholar
Heldreich, T. von (1899). Die Flora der Insel Thera. In Gärtringen, Hiller F. (ed.) Die Insel Thera in Altertum und Gegenwart, vol. 1. Berlin, Georg Reoimer, pp. 122–140.Google Scholar
Heldreich, T. von (1902). Die Flora der Insel Thera. In Gärtringen, Hiller F. (ed.) Die Insel Thera in Altertum und Gegenwart, vol. 4. Berlin, Georg Reoimer, pp. 119–130.Google Scholar
Hendrix, L. B. and Smith, S. D. (1986). Post-eruption revegetation of Isla Fernandina, Galapagos. II. National Geographic Research 2, 6–16.Google Scholar
Henriksson, L. E. and Rodgers, G. A. (1978). Further studies in the nitrogen cycle of Surtsey, 1974–1976. Surtsey Research Progress Reports 8, 30–40.Google Scholar
Hodkinson, I. D., Coulson, S. J., Webb, N. R.et al. (1996). Temperature and the biomass of flying midges (Diptera: Chironomidae) in the high Arctic. Oikos 75, 241–248.CrossRefGoogle Scholar
Hodkinson, I. D., Coulson, S. J., Harrison, J. and Webb, N. R. (2001). What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic – some counter-intuitive ideas on community structure. Oikos 95, 349–352.CrossRefGoogle Scholar
Hommel, P. W. F. M. (1987). Landscape Ecology of Ujung Kulon (West Java, Indonesia). Wageningen, Soil Survey Institute.Google Scholar
Hoogerwerf, A. (1953a). Some notes about the nature reserve Pulau Panaitan (Prinseneiland) in Strait Sunda with special reference to the avifauna. Treubia 21, 481–505.Google Scholar
Hoogerwerf, A. (1953b). Notes on the vertebrate fauna of the Krakatau Islands, with special reference to the birds. Treubia 22, 319–353.Google Scholar
Housley, R. A., Hedges, R. E. M., Law, I. A. and Bronk, C. R. (1990). Radiocarbon dating by AMS of the destruction of Akrotiri. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 207–215.Google Scholar
Howarth, F. G. (1979). Neogeoaeolian habitats on new lava flows on Hawaii island: an ecosystem supported by windborne debris. Pacific Insects 20, 133–144.Google Scholar
Howarth, F. G. (1987). Evolutionary ecology of aeolian and subterranean habitats in Hawaii. Trends in Ecology and Evolution 2, 220–223.CrossRefGoogle ScholarPubMed
Howarth, F. G. and Montgomery, S. L. (1980). Notes on the ecology of the high altitude aeolian zone on Mauna Ke'a. ‘Elepaio 41, 21–22.Google Scholar
Ibkar-Kramadibrata, H., Soeriaatmadja, R. E., Syarif, H.et al. (1986). Explorasi Biologis dan Ecologis dari Daerah Daratan di Gugus Kepulauan Krakatau menjelang 100 tahun sesudah Peletusan. Bandung, Institut Teknologi.Google Scholar
Jacobson, E. R. (1909). Die nieuwe fauna van Krakatau. Jaarverslag van der Topographischen Dienst Nederlandsch-Indie 4, 192–211.Google Scholar
Janzen, D. H. (2000). Costa Rica's Area de Conservación Guanacaste: a long march to survival through non-damaging biodevelopment. Biodiversity 1, 7–20.CrossRefGoogle Scholar
Janzen, D. H. (2004). Setting up tropical biodiversity for conservation through non-damaging use: participation by parataxonomists. Journal of Applied Ecology 41, 181–187.CrossRefGoogle Scholar
Jimenez, C., Ortega-Rubio, A., Alvcarez-Cardenas, S. and Arnaud, G. (1994). Ecological aspects of the land crab Geocarcinus planatus (Decapoda: Gecarcinidae) in Socorro island, Mexico. Biological Conservation 69, 9–13.CrossRefGoogle Scholar
Johnson, R. W. (1976). Late Cainozoic volcanism and plate tectonics at the southern margin of the Bismarck Sea, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 101–116.Google Scholar
Johnson, R. W. and Smith, I. E. (1974). Volcanoes and rocks of St Andrews Strait, Papua New Guinea. United States Naval Medical Bulletin 46, 1628–1632.Google Scholar
Johnson, R. W., Taylor, G. A. M. and Davies, R. A. (1972). Geology and Petrology of Quaternary Volcanic Islands off the North Coast of New Guinea, Bureau of Mineral Resources, Geology and Geophysics Record no. 21. Canberra, Commonwealth of Australia, Department of National Development.Google Scholar
Johnstone, B. (1997). Who killed the Minoans?New Scientist 154, 36–39.Google Scholar
Jones, P. (1986). The bryophytes of the Krakatau Islands. Department of Geography, University of Hull, Miscellaneous Series 33, 77–86.Google Scholar
Jones, P. D., Briffa, K. R. and Schweingruber, F. H. (1995). Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophysical Research Letters 22, 1333–1336.CrossRefGoogle Scholar
Keenan, D. J. (2003). Volcanic ash residue from the GRIP ice core is not from Thera. Geochemistry, Geophysics, Geosystems 4(110) 1097. doi:10.1029/3003GC000608.CrossRefGoogle Scholar
Keller, S. A. C. (ed.) (1986). Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press.Google Scholar
Kingsley, C. (1915). The Water Babies. London, Constable.Google Scholar
Kisokau, K. (1974). Analysis of avifauna stomach contents of Long and Crown Islands, Madang District. Science in New Guinea 2, 261–262.Google Scholar
Kisokau, K., Pohei, Y. and Lindgren, E. (1984). Tuluman Island after Thirty Years: An Inventory of Plants and Animals of Tuluman Island, Manus Province. Boroko, Office of Environment and Conservation, Papua New Guinea.Google Scholar
Kitching, R. L. (2000). Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Koopman, K. F. (1979). Zoogeography of mammals from islands of the northeastern coast of New Guinea. American Museum Novitates 2690, 1–17.Google Scholar
Krafft, M. (1991). Volcanoes: Fire from the Earth. London, Thames and Hudson.Google Scholar
Kristinsson, H. (1974). Lichen colonization in Surtsey, 1971–1973. Surtsey Research Progress Reports 7, 9–16.Google Scholar
Kuniholm, P. I. (1990). Overview and assessment of the evidence for the date of the eruption of Thera. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundaton, pp. 13–18.Google Scholar
Kuniholm, P. I., Kromer, B., Manning, S. W.et al. (1996). Anatolian tree rings and the absolute chronology of the eastern Mediterranean, 2220–718 BC. Nature 381, 780–783.CrossRefGoogle Scholar
Kunkel, G. (1981). Die Kanarischen Inseln und ihre Pflanzenwelt. Stuttgart, Gustav Fischer.Google Scholar
Kuwayama, S. (1929). Eruption of Mt Komagatake and insects. Kontyu 3, 271–273.Google Scholar
Lack, D. (1976). Island Biology, Illustrated by the Land Birds of Jamaica. Oxford, Blackwell Scientific Publications.Google Scholar
Marche, V. C. and Hirschboeck, K. K. (1984). Frost rings in trees as records of major volcanic eruptions. Nature 307, 121–126.Google Scholar
Lamb, H. H. (1970). Volcanic dust in the atmosphere; with its chronology and assessment of its meteorological significance. Philosophical Transactions of the Royal Society of London A 266, 425–533.CrossRefGoogle Scholar
Lambert, F. R. and Marshall, A. G. (1991). Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rain forest. Journal of Ecology 79, 793–809.CrossRefGoogle Scholar
Lawton, J. H. (1987). Are there assembly rules for successional communities? In Gray, A. J., Crawley, M. J. and Edwards, P. J. (eds.) Colonization, Succession and Stability. Oxford, Blackwell Scientific Publications, pp. 225–244.Google Scholar
Lindroth, C. H., Andersson, H., Bödvarsson, H. and Richter, S. H. (1973). Surtsey, Iceland: the development of a new fauna 1963–1970 – terrestrial invertebrates. Entomologica Scandinavica 5 (Suppl.), 1–280.Google Scholar
Linsley, E. G. and Gressitt, J. L. (1972). Editorial preface to Robert Leslie Usinger: Autobiography of an Entomologist. San Francisco, CA, Pacific Coast Entomological Society.Google Scholar
MacArthur, R. H. (1970). Species packing and competitive equilibrium for many species. Theoretical Population Biology 1, 1–11.CrossRefGoogle ScholarPubMed
MacArthur, R. H. (1972). Geographical Ecology. New York, Harper and Row.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution 17, 373–387.CrossRefGoogle Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ, Princeton University Press.Google Scholar
MacMahon, J. A., Parmentier, R. R., Johnson, K. A. and Crisafulli, C. M. (1989). Small mammal recolonization on the Mount St. Helens volcano: 1980–1987. American Midland Naturalist 122, 365–387.CrossRefGoogle Scholar
Maeto, K. and Thornton, I. W. B. (1993). A preliminary appraisal of the braconid (Hymenoptera) fauna of the Krakatau Islands (Indonesia) in 1984–1986, with comments on the colonizing abilities of parasitoid modes. Japanese Journal of Entomology 61, 787–801.Google Scholar
Magnússon, B. and Magnússon, S. H. (2000). Vegetation succession on Surtsey, Iceland, during 1990–1998 under the influence of breeding gulls. Surtsey Research Progress Reports 12, 119–120.Google Scholar
Magnússon, B., Magnússon, S. H. and Gudmundsson, J. (1996). Gódurframvinder í Surtsey (Vegetation succession on the volcanic island Surtsey). Búvísindi 10, 253–272. (In Icelandic, with English summary)Google Scholar
Maguire, B. Jr (1963). The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecological Monographs 33, 161–185.CrossRefGoogle Scholar
Manning, S. W. (1988). The Bronze Age eruption of Thera: absolute dating, Aegean chronology and Mediterranean cultural interpretation. Journal of Mediterranean Archaeology 1, 17–82.CrossRefGoogle Scholar
Manning, S. W. (1989). A new age for Minoan Crete. New Scientist, 11 February, 60–63.Google Scholar
Manning, S. W. (1990a). The eruption of Thera: date and implications. In Hardy, D. A. and Renfrew, A. C. (eds.), Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 29–40.Google Scholar
Manning, S. W. (1990b). The Thera eruption: the Third Congress and the problem of the date. Archaeometry 32, 91–100.CrossRefGoogle Scholar
Manning, S. W. (1998). Correction. New GISP2 ice-core evidence supports 17th century BC date for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, 1039–1042.CrossRefGoogle Scholar
Manning, S. W., Kromer, B., Kuniholm, P. I. and Newton, M. W. (2001). Anatolian tree rings and a new chronology for the East Mediterranean Bronze–Iron Ages. Science 294, 2532–2535.CrossRefGoogle Scholar
Manuwal, D. A., Huff, M., Bauer, M., Chappell, C. and Hegstad, K. (1987). Summer birds of the upper subalpine zone of Mount St Helens, Mount Adams and Mount Rainier, Washington. Northeast Scientist 61, 82–92.Google Scholar
Marinatos, S. (1939). The volcanic destruction of Minoan Crete. Antiquity 13, 425–439.CrossRefGoogle Scholar
Mazzoleni, S. and Ricciardi, M. (1993). Primary succession on the cone of Vesuvius. In Miles, J. and Walton, D. W. H. (eds.) Primary Succession on Land. Oxford, Blackwell Scientific Publications, pp. 101–112.Google Scholar
McKee, C. O., Cooke, R. J. S. and Wallace, D. A. (1976). 1974–75 eruptions of Karkar volcano, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 173–190.Google Scholar
McKenzie, F., Benton, M. and Hoge, E. J. (1971). Biological Inventory of the Waters and Keys of Northeast Puerto Rico, 2nd Report to Division of Natural Resources. San Juan, Commonwealth of Puerto Rico.
McKenzie, N. L., Gunnell, A. C., Yani, M. and Williams, M. R. (1995). Correspondence between flight morphology and foraging ecology in some Palaeotropical bats. Australian Journal of Zoology 43, 241–257.CrossRefGoogle Scholar
Mees, G. F. (1986). A list of birds recorded from Bangka Island, Indonesia. Zoologische Verhandlungen 232, 1–176.Google Scholar
Mennis, M. R. (1978). The existence of Yomba Island near Madang: fact or fiction?Oral History 6, 2–81.Google Scholar
Mennis, M. R. (1981). Yomba Island: a real or mythical volcano?Geological Survey of Papua New Guinea Memoirs 10, 115–123.Google Scholar
Menzies, J. L. (1975). Handbook of Common New Guinea Frogs. Wau, Papua New Guinea, Wau Ecology Institute.Google Scholar
Michelangeli, F. (2000). Species composition and species-area relationships in vegetation isolates of the Rorairna Tepui. Journal of Tropical Ecology 16, 69–82.CrossRefGoogle Scholar
Miles, J. and Walton, D. W. H. (1993). Primary succession revisited. In Miles, J. and Walton, D. W. H. (eds.) Primary Succession on Land. Oxford, Blackwell Scientific Publications, pp. 295–302.Google Scholar
Moore, J. G. (1967). Base surges in recent volcanic eruptions. Bulletin of Volcanology 30, 337–363.CrossRefGoogle Scholar
Myers, N. (1988). Threatened biotas: ‘hot spots’ in tropical forests. Environmentalist 8, 187–208.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, da G. A. B. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.CrossRefGoogle ScholarPubMed
Narashimhan, M. J. (1918). Preliminary study of the root nodules of Casuarina. Indian Forester 44, 265–268.Google Scholar
New, T. R. and Thornton, I. W. B. (1988). A pre-vegetation population of crickets subsisting on allochthonous aeolian debris on Anak Krakatau. Philosophical Transactions of the Royal Society of London B 322, 481–485.CrossRefGoogle Scholar
New, T. R. and Thornton, I. W. B. (1992a). Colonization of the Krakatau Islands by invertebrates. GeoJournal 28, 219–224.CrossRefGoogle Scholar
New, T. R. and Thornton, I. W. B. (1992b). The butterflies of Anak Krakatau, Indonesia: faunal development in early succession. Journal of the Lepidopterists' Society 46, 83–96.Google Scholar
New, T. R., Bush, M. B., Thornton, I. W. B. and Sudarman, H. K. (1988). The butterfly fauna of the Krakatau Islands after a century of recolonization. Philosophical Transactions of the Royal Society of London B 322, 445–457.CrossRefGoogle Scholar
Newhall, C. G. and Self, S. (1982). The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research 87, 1231–1238.CrossRefGoogle Scholar
O'Brien, T. G. and Kinnaird, M. F. (1996). Changing populations of birds and mammals in North Sulawesi. Oryx 30, 150–156.CrossRefGoogle Scholar
Ólafsson, E. (1978). The development of the land-arthropod fauna on Surtsey, Iceland, during 1971–1976, with notes on terrestrial Oligochaeta. Surtsey Research Progress Reports 8, 41–46.Google Scholar
Ólafsson, E. (1982). The status of the land-arthropod fauna on Surtsey, Iceland, in summer 1981. Surtsey Research Progress Reports 9, 68–72.Google Scholar
Osborne, P. I. and Murphy, R. (1989). Botanical colonization of Motmot Island, Lake Wisdom, Madang Province. Science in New Guinea 15, 57–63.Google Scholar
Osman, R. W. (1982). Artificial substrates as ecological islands. In Cairns, J. (ed.) Artificial Substrates. Ann Arbor, MI, Ann Arbor Science Publications, pp. 71–114.Google Scholar
Pain, C. F. and Blong, R. J. (1979). The distribution of tephras in the Papua New Guinea highlands. Search 10, 228–230.Google Scholar
Pain, C. F., Blong, R. J. and McKee, C. O. (1981). Pyroclastic deposits and eruptive sequences on Long Island, Papua New Guinea. Papua New Guinea Geological Survey Memoirs 10, 101–107.Google Scholar
Palfreyman, W. D. and Cooke, R. J. S. (1976). Eruptive history of Manam volcano, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 117–131.Google Scholar
Partomihardjo, T. (1995). Studies on the ecological succession of plants and their associated insects on the Krakatau Islands, Indonesia. D. Phil. thesis, University of Kagoshima, Japan.
Partomihardjo, T. (1997). Flora of Sebesi Island: its role and potential in the recolonization process of the Krakatau Islands. Seminar Nasional Konservasi Flora Nusantara, 1997, 15–19.Google Scholar
Partomihardjo, T., Mirmanto, E. and Whittaker, R. J. (1992). Anak Krakatau's vegetation and flora circa 1991, with observations on a decade of development and change. GeoJournal 28, 233–248.CrossRefGoogle Scholar
Partomihardjo, T., Mirmanto, E., Riswan, S. and Suzuki, E. (1993). Drift fruit and seeds on Anak Krakatau beaches, Indonesia. Tropics 2, 143–156.CrossRefGoogle Scholar
Patrick, R. (1967). The effect of invasion rate, species pool, and size of area on the structure of the diatom community. Proceedings of the National Academy of Sciences of the USA 58, 1335–1342.CrossRefGoogle ScholarPubMed
Patrick, R. (1968). The structure of diatom communities in similar ecological conditions. American Naturalist 102, 173–183.CrossRefGoogle Scholar
Peck, S. (1996). Origin and development of an insect fauna on a remote tropical archipelago: the Galapagos Islands, Ecuador. In Keast, A. and Miller, S. E. (eds.) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam, SPB Academic Publishers, pp. 91–121.Google Scholar
Pendick, D. (1996). Return to Mount St. Helens. Earth 4, 24–33.Google Scholar
Polach, H. A. (1981). Pyroclastic deposits and eruptive sequences of Long Island. II. Radiocarbon dating of Long Island and Tibito tephras. Geological Survey of Papua New Guinea Memoirs 10, 108–113.Google Scholar
Poonamperuma, C., Young, R. S. and Caren, L. D. (1967). Some chemical and microbiological studies of Surtsey. Surtsey Research Progress Reports 3, 70–80.Google Scholar
Post, W. M. and Pimm, S. L. (1983). Community assembly and food web stability. Mathematical Biosciences 64, 169–192.CrossRefGoogle Scholar
Pratt, W. E. (1911). The eruption of Taal Volcano, 30 January 1911. Philippine Journal of Science, Series A 6, 63–83.Google Scholar
Preston, F. W. (1962). The canonical distribution of commonness and rarity. Ecology 43, 185–215, 410–432.CrossRefGoogle Scholar
Pyke, D. A. (1984). Initial effect of volcanic ash from Mount St Helens on Peromyscus maniculatus and Microtus montanus. Journal of Mammalogy 65, 678–680.CrossRefGoogle Scholar
Pyle, D. M. (1990a). New estimates for the volume of the Minoan eruption. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 113–121.Google Scholar
Pyle, D. M. (1990b). The application of tree-ring and ice-core studies to the dating of the Minoan eruption. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 167–173.Google Scholar
Pyle, R. M. (1984). The impact of recent vulcanism on Lepidoptera. In Vane-Wright, R. I. and Ackery, P. R. (eds.) The Biology of Butterflies. London, Academic Press, pp. 323–326.Google Scholar
Raab, T. K., Lipson, D. A. and Monson, R. K. (1999). Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80, 2408–2419.CrossRefGoogle Scholar
Rackham, O. (1978). The flora and vegetation of Thera and Crete before and after the great eruption. In Doumas, C. (ed.) Thera and the Aegean World, vol. 1. London, The Thera Foundation, pp. 755–764.Google Scholar
Rackham, O. (1990). Observations on the historical ecology of Santorini. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2 Earth Sciences. London, The Thera Foundation, pp. 384–391.Google Scholar
Rampino, M. R. and Self, S. (1982). Historic eruptions of Tambora (1815), Krakatau (1883) and Agung (1963), their stratospheric aerosols and climatic impact. Quaternary Research 18, 127–143.CrossRefGoogle Scholar
Rampino, M. R. and Self, S. (1984). Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310, 677–679.CrossRefGoogle Scholar
Raus, T. (1986). Floren- und Vegetationsdynamik auf der Vulcaninsel Nea Kameni (Santorin-Archipel, Kykladen, Griechenland). Abhandlung der Landesmuseum für Naturkunde Münster Westfalen 48, 373–394.Google Scholar
Raus, T. (1988). Vascular plant colonization and vegetation development on sea-born volcanic islands in the Aegean (Greece). Vegetatio 77, 139–147.CrossRefGoogle Scholar
Raus, T. (1991). Die Flora (Farne und Blutenpflanzen) des Santorin-Archipels. In Schmalfuss, H. (ed.) Santorin: Leben auf Schutt und Asche. Weikersheim, Verlag J. Margaraf, pp. 109–124.Google Scholar
Rawlinson, P. A., Widjoya, A. H. T., Hutchinson, M. N. and Brown, G. W. (1990). The terrestrial vertebrate fauna of the Krakatau Islands, Sunda Strait, 1883–1986. Philosophical Transactions of the Royal Society of London B 328, 3–28.CrossRefGoogle Scholar
Rawlinson, P. A., Zann, R. A., Balen, S. and Thornton, I. W. B. (1992). Colonization of the Krakatau Islands by vertebrates. GeoJournal 28, 225–231.CrossRefGoogle Scholar
Recher, H. F. and Serventy, D. L. (1991). Long-term changes in the relative abundance of birds in Kings Park, Perth, Western Australia. Conservation Biology 5, 90–120.CrossRefGoogle Scholar
Rechinger, K. (1910). Botanische und zoologische Ergebnisse einer Forschungsreise nach den Sampa-inseln, dem Neuguinea-archipel und den Salomoninseln. III. Siphonogamen der Samoa-inseln. Denkschriften der Akademie der Wissenschaften Wien 85, 202–388.Google Scholar
Renfrew, A. C. (1990a.) Introductory remarks. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 11–13.Google Scholar
Renfrew, A. C. (1990b.) Summary of the progress in chronology. In Hardy, D. A. and Renfrew, A. C. (eds.) Thera and the Aegean World III, vol. 3, Chronology. London, The Thera Foundation, pp. 342.Google Scholar
Renfrew, C. (1996). Kings, tree rings and the Old World. Nature 381, 733–734.CrossRefGoogle Scholar
Reynolds, M. A. and Best, J. G. (1976). Survey of the 1953–57 eruption of Tuluman Volcano, Papua New Guinea. In Johnson, R. W. (ed.) Volcanism in Australasia. Amsterdam, Elsevier, pp. 287–296.Google Scholar
Richards, P. W. (1952). Tropical Rainforest: An Ecological Study. Cambridge, Cambridge University Press.Google Scholar
Robinson, J. V. and Dickerson, J. E. Jr (1987). Does invasion sequence affect community structure?Ecology 68, 587–589.CrossRefGoogle Scholar
Robinson, J. V. and Edgemon, M. A. (1988). An experimental evaluation of the effect of invasion history on community structure. Ecology 69, 1410–1417.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Roughgarden, J. (1989). The structure and assembly of communities. In Roughgarden, J., May, R. M. and Levin, S. A. (eds.) Perspectives in Ecological Theory. Princeton, NJ, Princeton University Press, pp. 203–226.CrossRefGoogle Scholar
Runciman, D., Cook, S., Riley, J.Wardell, J. and Thornton, I. W. B. (1998). The avifauna of Sebesi, a possible stepping stone to the Krakatau Islands. Tropical Biodiversity 5, 1–9.Google Scholar
Sands, W. N. (1912). An account of the return of vegetation and the revival of agriculture in the area devastated by the Soufriere of St Vincent in 1902/3. West Indian Bulletin 12, 22–23.Google Scholar
Schedvin, N., Cook, S. and Thornton, I. W. B. (1995). The diversity of bats on the Krakatau Islands, Indonesia. Biodiversity Letters 2, 87–92.CrossRefGoogle Scholar
Schipper, C., Shanahan, M., Cook, S. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. III. Colonization by birds. Journal of Biogeography 28, 1339–1352.CrossRefGoogle Scholar
Schmalfuss, H. and Schawaller, W. (1984). Die Fauna der Ägäis-Insel Santorin. V. Arachnida und Crustacea. Stuttgarter Beiträge Naturkunde, Serie A, Biologie 371, 1–16.Google Scholar
Schmalfuss, H., Steidel, C. and Schlegel, M. (1981). Die Fauna der Ägäis-Insel Santorin. I. Stuttgarter Beiträge Naturkunde, Serie A, Biologie 347, 1–14.Google Scholar
Schmidt, E. R., Thornton, I. W. B. and Hancock, D. (1994). Tropical fruitflies (Diptera: Tephritidae) of the Krakatau Archipelago in 1990 and comments on faunistic changes since 1982. Ecological Research 9, 1–8.CrossRefGoogle Scholar
Schmitt, S. F. and Partomihardjo, T. (1997). Disturbance and its significance for forest succession and diversification on the Krakatau Islands, Indonesia. In Dransfield, J., Coode, M. J. E. and Simpson, D. A. (eds.) Plant Diversity in Malesia III. Kew, Royal Botanic Gardens, pp. 247–263.Google Scholar
Schoener, A. (1988). Experimental island biogeography. In Myers, A. A. and Giller, P. S. (eds.) Analytical Biogeography: An Integrated Approach to the Study of Animal and Plant Distributions. London, Chapman and Hall, pp. 483–512.CrossRefGoogle Scholar
Schwabe, G. H. (1971). Die Ökogenese im terrestrichen Bereich postvulcanische Substrate, Schematische Obersicht bischeriger Befunde auf Surtsey, Iceland. Petermanns Geographische Mitteilungen 4, 168–173.Google Scholar
Sear, C. B., Kelley, P. M., Jones, P. D. and Goodess, C. M. (1987). Global surface temperature responses to major volcanic eruptions. Nature 330, 365–367.CrossRefGoogle Scholar
Selenka, E. and Selenka, K. (1905). Sonnige Welten, 2nd edn. Wiesbaden, C. W. Kneidels Verlag.Google Scholar
Shanahan, M. and Compton, S. G. (2001). Vertical stratification of figs and fig eaters in a Bornean lowland rainforest: how is the canopy different?Plant Ecology 153, 121–132.CrossRefGoogle Scholar
Shanahan, M., Harrison, R. D., Yamuna, R. and Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. V. Colonization by figs (Ficus species), their dispersers and pollinators. Journal of Biogeography 28, 1365–1377.CrossRefGoogle Scholar
Shilton, L. A., Altringham, J. D., Compton, S. G. and Whittaker, R. J. (1999). Old World fruit bats can be long-distance seed dispersers through extended retention of viable seed in their gut. Proceedings of the Royal Society of London B 266, 219–223.CrossRefGoogle Scholar
Shiro, T. (1991). Species turnover and diversity during early stages of vegetation recovery on the volcano Usu, northern Japan. Journal of Vegetation Science 2, 301–306.Google Scholar
Shiro, T. and del Moral, R. (1993). Species attributes in early primary succession on volcanoes. Journal of Vegetation Science 6, 517–522.Google Scholar
Shmida, A. and Ellner, S. (1984). Coexistence of plant species with similar niches. Vegetatio 58, 29–55.Google Scholar
Sigurdardóttir, H. (2000). Status of collembolans (Collembola) on Surtsey, Iceland in 1995 and first encounter of earthworms (Lumbricidae) in 1993. Surtsey Research 11, 51–55.Google Scholar
Silvester, W. B. (1977). Dinitrogen fixation by plant associations excluding legumes. In Hardy, R. W. F. and Gibson, A. H. (eds.) A Treatise on Dihydrogen Fixation. New York, John Wiley, pp. 141–190.Google Scholar
Simberloff, D. (1976). Species turnover and equilibrium island biogeography. Ecology 57, 629–648.CrossRefGoogle Scholar
Simberloff, D. and Wilson, E. O. (1969). Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296.CrossRefGoogle Scholar
Simberloff, D. and Wilson, E. O. (1970). Experimental zoogeography of islands: a two-year record of colonization. Ecology 51, 934–937.CrossRefGoogle Scholar
Sipman, H. J. M. and Raus, T. (1995). Lichen observations from Santorini (Greece). Bibliotheca Lichenologica 57, 409–428.Google Scholar
Smith, B. J. and Djajasasmita, M. (1988). The land molluscs of the Krakatau Islands, Indonesia. Philosophical Transactions of the Royal Society of London B 323, 379–400.CrossRefGoogle Scholar
Smith, J. D. and Hood, C. S. (1981). Preliminary notes on bats from the Bismarck Archipelago (Mammalia: Chiroptera). Science in New Guinea 8, 81–121.Google Scholar
Sohlenius, B. (1974). Nematodes from Surtsey. II. Surtsey Research Progress Reports 7, 35.Google Scholar
Sparks, R. S. J. and Wilson, C. J. N. (1990). The Minoan deposits: a review of their characteristics and interpretation. In Hardy, D. A., Doumas, C. G., Sakellarakis, J. A. and Warren, P. M. (eds.) Thera and the Aegean World III, vol. 1, Archaeology. London, The Thera Foundation, pp. 89–98.Google Scholar
Specht, J., Ball, E. E, Blong, R. J.et al. (1982) Long Island, Papua New Guinea: introduction. Records of the Australian Museum 34, 407–417.CrossRefGoogle Scholar
Sprent, J. I. (1993). The role of nitrogen fixation in primary succession on land. In Miles, J. and Walton, D. W. H. (eds.) Primary Succession on Land. Oxford, Blackwell Scientific Publications, pp. 209–220.Google Scholar
Sugg, P. M. (1986). Arthropod populations at Mount St. Helens: survival and revival. In Keller, S. A. C. (ed.) Mount St. Helens: Five Years Later. Spokane, WA, Eastern Washington University Press, pp. 325–328.Google Scholar
Sugg, P. M. and Edwards, J. S. (1998). Pioneer Aeolian community development on pyroclastic flows after the eruption of Mount St Helens. Arctic and Alpine Research 30, 400–407.CrossRefGoogle Scholar
Sugg, P. M., Greve, L. and Edwards, J. S. (1994). Neuropteroidea from Mount St. Helens and Mount Rainier: dispersal and immigration in volcanic landscapes. Pan-Pacific Entomologist 70, 212–221.Google Scholar
Sullivan, D. G. (1988). The discovery of Santorini Minoan tephra in western Turkey. Nature 333, 552–554.CrossRefGoogle Scholar
Surtsey (2006). Bibliography of Scientific Research. Available online at www.surtsey.is/
Swanson, F. J. (1987). Ecological effects of the eruption of Mount St. Helens: an overview. In Bilderback, D. E. (ed.) Mount St. Helens 1980: Botanical Consequences of the Explosive Eruption. Berkeley, CA, University of California Press, pp. 1–2.Google Scholar
Tagawa, H. (1992). Primary succession and the effect of first arrivals on the subsequent development of forest types. GeoJournal 28, 175–183.CrossRefGoogle Scholar
Tagawa, H. (2005). The Krakataus: Changes in a Century since Catastrophic Eruption in 1883. Kagoshima, University of Kagoshima.Google Scholar
Tagawa, H., Suzuki, E., Partomihardjo, T. and Suriadarma, A. (1985). Vegetation and succession on the Krakatau Islands, Indonesia. Vegetatio 60, 131–145.Google Scholar
Talling, J. F. (1951). The element of chance in pond populations. The Naturalist, October–December, 157–170.Google Scholar
Taylor, G. A. M. (1953). Seismic and tilt phenomena preceding a Pelean type eruption from a basaltic volcano. Bulletin of Volcanology 26, 5–11.CrossRefGoogle Scholar
Thorarinsson, S. (1971). Damage caused by the tephra fall in some big Icelandic eruptions and its relation to the thickness of the tephra layers. Proceedings of the International Scientific Congress on the Volcano of Thera, Athens, pp. 213–236.Google Scholar
Thorarinsson, S. (1978). Some comments on the Minoan eruption of Santorini. In Thera and the Aegean World I, Papers presented at the 2nd International Scientific Congress, Antorini, Greece, August 1978. London, Thera and the Aegean World, pp. 263–276.Google Scholar
Thornton, I. (1971). Darwin's Islands: A Natural History of the Galapagos. New York, Doubleday.Google Scholar
Thornton, I. W. B. (1991). Krakatau: studies on the origin and development of a fauna. In Dudley, E. C. (ed.) The Unity of Evolutionary Biology. Portland, OR, Dioscorides Press, pp. 396–408.Google Scholar
Thornton, I. W. B. (ed.) (1992a). Krakatau: a century of change. GeoJournal 28, 81–302.Google Scholar
Thornton, I. W. B. (1992b). K. W. Dammerman: fore-runner of island equilibrium theory?Global Ecology and Biogeography Letters 2, 145–148.CrossRefGoogle Scholar
Thornton, I. W. B. (1994) Figs, frugivores and falcons: an aspect of the assembly of mixed tropical forest on the emergent volcanic island Anak Krakatau. South Australian Geographical Journal 93, 3–21.Google Scholar
Thornton, I. (1996a). Krakatau: The Destruction and Reassembly of an Island Ecosystem. Cambridge, MA, Harvard University Press.Google Scholar
Thornton, I. W. B. (1996b). The origins and development of island biotas as illustrated by Krakatau. In Keast, A. and Miller, S. G. (eds.) The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam, SPB Academic Publishing, pp. 67–90.Google Scholar
Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. I. General introduction. Journal of Biogeography 28, 1299–1310.CrossRefGoogle Scholar
Thornton, I. W. B. and New, T. R. (1988a). Freshwater communities on the Krakatau Islands. Philosophical Transactions of the Royal Society of London B 322, 487–492.CrossRefGoogle Scholar
Thornton, I. W. B. and New, T. R. (1988b). Krakatau invertebrates: the 1980s fauna in the context of a century of colonization. Philosophical Transactions of the Royal Society of London B 322, 493–522.CrossRefGoogle Scholar
Thornton, I. W. B. and Walsh, D. (1992). Photographic evidence of rate of development of plant cover on the emergent island Anak Krakatau from 1971 to 1991 and implications for the effect of volcanism. GeoJournal 28, 249–259.CrossRefGoogle Scholar
Thornton, I. W. B., New, T. R., McLaren, D. A., Sudarman, H. K. and Vaughan, P. J. (1988). Air-borne arthropod fall-out on Anak Krakatau and a possible pre-vegetation pioneer community. Philosophical Transactions of the Royal Society of London B 322, 471–479.CrossRefGoogle Scholar
Thornton, I. W. B., Zann, R. A., Rawlinson, P. A.et al. (1989). Colonization of the Krakatau Islands by vertebrates: equilibrium, succession, and possible delayed extinction. Proceedings of the National Academy of Sciences of the USA 85, 515–518.CrossRefGoogle Scholar
Thornton, I. W. B., Zann, R. A. and Stephenson, D. G. (1990a). Colonization of the Krakatau Islands by land birds, and the approach to an equilibrium number of species. Philosophical Transactions of the Royal Society of London B 328, 55–93.CrossRefGoogle Scholar
Thornton, I. W. B., New, T. R., Zann, R. A. and Rawlinson, P. A. (1990b). Colonization of the Krakatau Islands by animals: a perspective from the 1980s. Philosophical Transactions of the Royal Society of London B 328, 132–165.CrossRefGoogle Scholar
Thornton, I. W. B., Ward, S. A., Zann, R. A. and New, T. R. (1992). Anak Krakatau: a colonization model within a colonization model?GeoJournal 28, 271–286.CrossRefGoogle Scholar
Thornton, I. W. B., Zann, R. A. and Balen, S. (1993). Colonization of Rakata (Krakatau Is.) by non-migrant land birds from 1883 to 1992 and implications for the value of island equilibrium theory. Journal of Biogeography 20, 441–452.CrossRefGoogle Scholar
Thornton, I. W. B., Compton, S. G. and Wilson, C. N. (1996). The role of animals in the colonization of the Krakatau Islands by fig trees (Ficus species). Journal of Biogeography 23, 577–592.CrossRefGoogle Scholar
Thornton, I. W. B., Mawdsley, N. A. and Partomihardjo, T. (2000). Persistence of biota on Anak Krakatau after a three-year period of volcanic activity. Tropical Biodiversity 7, 25–43.Google Scholar
Thornton, I. W. B., Cook, S., Edwards, J. S.et al. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and of an emergent island, Motmot, in its caldera lake. VII. Overview and discussion. Journal of Biogeography 28, 1389–1408.CrossRefGoogle Scholar
Thornton, I. W. B., Runciman, D., Cook, S.et al. (2002). How important were stepping stones in the colonization of Krakatau?Biological Journal of the Linnean Society 77, 275–317.CrossRefGoogle Scholar
Tidemann, C. R., Kitchener, D. J., Zann, R. A. and Thornton, I. W. B. (1990). Recolonization of the Krakatau Islands and adjacent areas of West Java, Indonesia, by bats (Chiroptera) 1883–1886. Philosophical Transactions of the Royal Society of London B 328, 123–130.CrossRefGoogle Scholar
Toft, C. A. and Schoener, T. W. (1983). Abundance and diversity of orb spiders on 106 Bahamian islands: biogeography at an intermediate trophic level. Oikos 41, 411–426.CrossRefGoogle Scholar
Torrey, J. G. (1983). Casuarina: actinorhizal dinitrogen-fixing tree of the tropics. In Midgley, S. J., Turnbull, J. W. and Johnston, R. D. (eds.) Casuarina Ecology Management and Utilization. Canberra, CSIRO, pp. 193–204.Google Scholar
Toxopeus, L. J. (1950). Over de pioneer-fauna van Anak Krakatau, met enige beschouwingen over het onstaat van de Krakatau-fauna. Chronica Naturae 106, 27–34.Google Scholar
Trantalidou, C. (1990). Animals and human diet in the prehistoric Aegean. In Hardy, D. A., Keller, J., Galanopoulos, V. P., Flemming, N. C. and Druitt, T. H. (eds.) Thera and the Aegean World III, vol. 2, Earth Sciences. London, The Thera Foundation, pp. 392–405.Google Scholar
Treub, M. (1888). Notice sur la nouvelle flore de Krakatau. Annales du Jardin Botanique de Buitenzorg 7, 213–223.Google Scholar
Turner, B. (1992). The colonization of Anak Krakatau: interactions between wild sugar cane, Saccharum spontaneum, and the ant lion, Myrmeleon frontalis. Journal of Tropical Ecology 8, 435–449.CrossRefGoogle Scholar
Turner, B. D. (1997). Patterns of change in arthropod biodiversity living on Casuarina equisetifolia, an early successional tree species on the island of Anak Krakatau, Indonesia. Tropical Biodiversity 4, 241–257.Google Scholar
Underwood, A. J., Denley, E. J. and Moran, M. J. (1983). Experimental analysis of the structure and dynamics of mid-shore intertidal communities in New South Wales. Oecologia 56, 202–219.CrossRefGoogle Scholar
Bemmelen, R. W. (1971). Four volcanic outbursts that influenced human history: Toba, Sunda, Merapi, and Thera. Proceedings of the International Scientific Conference on the Volcano of Thera, Athens, pp. 5–50.Google Scholar
Waalkes, Borsum J. (1954). The Krakatau Islands after the eruption of October 1952. Penggemar Alam 34, 97–104.Google Scholar
Waalkes, Borssum J. (1960). Botanical observations on the Krakatau Islands in 1951 and 1952. Annales Bogoriensis 4, 5–63.Google Scholar
Tol, J. (1990). Zoological expeditions to the Krakataus 1984 and 1985. Odonata. Tijdschrifte vor Entomologie 133, 273–279.Google Scholar
Vaupel, F. (1910). Die Vegetation der Samoa-Inseln. Botanisches Jahrbuch 44, 47–58.Google Scholar
Verbeek, R. D. M. (1884). The Krakatoa eruption. Nature 30: 10–15.CrossRefGoogle Scholar
Verbeek, R. D. M. (1885). Krakatau. Batavia, Landsdrukkerij.Google Scholar
Waide, R. B. (1991). Summary of the responses of animal populations to hurricanes in the Caribbean. Biotropica 23, 508–512.CrossRefGoogle Scholar
Waldron, H. H. (1967). Debris Flow and Erosion Control Problems Caused by the Ash Eruptions of Irazu Volcano, Costa Rica, US Geological Survey Bulletin no. 1241-1. Washington, DC, Government Printing Office.Google Scholar
Ward, S. A. and Thornton, I. W. B. (1998). Guest editorial: equilibrium theory and alternative stable equilibria. Journal of Biogeography 25, 615–622.CrossRefGoogle Scholar
Ward, S. A. and Thornton, I. W. B. (2000). Chance and determinism in the development of isolated communities. Global Ecology and Biogeography Letters 9, 7–18.CrossRefGoogle Scholar
Warren, P. (1984). Absolute dating of the Bronze Age eruption of Thera (Santorini). Nature 305, 492–493.CrossRefGoogle Scholar
Waters, A. C. and Fisher, R. V. (1971). Base surges and their deposits: Capelhinos and Taal volcanoes. Journal of Geophysical Research 76, 5595–5614.CrossRefGoogle Scholar
Watkins, N. D., Sparks, R. S. J., Sigurdsson, H.et al. (1978). Volume and extent of the Minoan tephra from Santorini Volcano: new evidence from deep-sea sediment cores. Nature 271, 122–126.CrossRefGoogle Scholar
Whittaker, R. J. (1998). Island Biogeography: Ecology, Evolution and Conservation. Oxford, Oxford University Press.Google Scholar
Whittaker, R. J. and Jones, S. H. (1994). The role of frugivorous bats and birds in the rebuilding of a tropical forest ecosystem, Krakatoa, Indonesia. Journal of Biogeography 21, 246–258.CrossRefGoogle Scholar
Whittaker, R. J., Bush, M. B. and Richards, K. (1989). Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecological Monographs 59, 59–123.CrossRefGoogle Scholar
Whittaker, R. J., Bush, M. B., Partomihardjo, T., Asquith, N. M. and Richards, K. (1992a). Ecological aspects of plant colonization of the Krakatau Islands. GeoJournal 28, 201–211.CrossRefGoogle Scholar
Whittaker, R. J., Walden, J. and Hill, J. (1992b). Post-1883 ash fall on Panjang and Sertung and its ecological impact. GeoJournal 28, 153–171.CrossRefGoogle Scholar
Whittaker, R. J., Partomihardjo, T. and Riswan, S. (1995). Surface and buried seed banks from Krakatau, Indonesia: implications for the sterilization hypothesis. Biotropica 27, 345–354.CrossRefGoogle Scholar
Whittaker, R. J., Jones, S. H. and Partomaihardjo, T. (1997). The re-building of an isolated rain forest assembly; how disharmonious is the flora of Krakatau?Biodiversity and Conservation 6, 1671–1696.CrossRefGoogle Scholar
Whittaker, R. J., Field, R. and Partomihardjo, T. (2000). How to go extinct: lessons from the lost plants of Krakatau. Journal of Biogeography 27, 1049–1064.CrossRefGoogle Scholar
Williamson, M. (1982). Island Populations. Oxford, Oxford University Press.Google Scholar
Wilson, E. O. (1992). The Diversity of Life. Cambridge, MA, Harvard University Press.Google Scholar
Winchester, S. (2003). Krakatoa: The Day the World Exploded – 27th August 1883. London, Viking.Google Scholar
Winoto Suatmadji, R., Coomans, A., Rashid, F., Gevaert, E. and McLaren, D. A. (1988). Nematodes of the Krakatau archipelago, Indonesia: a preliminary overview. Philosophical Transactions of the Royal Society of London B 322, 369–378.CrossRefGoogle Scholar
Wissel, C. and Maier, B. (1992). A stochastic model for the species-area relationship. Journal of Biogeography 19, 355–362.CrossRefGoogle Scholar
Wurmli, M. (1974). Biocenoses and their successions on the lava and ash of Mt. Etna, Part 1. Image Roche 59, 32–40.Google Scholar
Yamane, S. (1988). The aculeate fauna of the Krakatau Islands (Insecta, Hymenoptera). Reports of the Faculty of Science, Kagoshima University (Earth Sciences and Biology) 16, 75–107.Google Scholar
Yamane, S. and Tomiyama, K. (1986). A small collection of land snails from the Krakatoa Islands, Indonesia. Venus, 45, 61–64.Google Scholar
Yamane, S., Abe, T. and Yukawa, J. (1992). Recolonization of the Krakataus by Hymenoptera and Isoptera (Insecta). GeoJournal 28, 213–218.CrossRefGoogle Scholar
Yih, K., Boucher, D. H., Vandermeer, J. H. and Zamora, N. (1991). Recovery of the rain forest of southeastern Nicaragua after destruction by Hurricane Joan. Biotropica 23, 106–113.CrossRefGoogle Scholar
Yokoyama, I. (1978). The tsunami generated by the prehistoric eruption of Thera. In Thera and the Aegean World I, Papers presented at the 2nd International Scientific Congress, Antorini, Greece, August 1978. London, Thera and the Aegean World, pp. 277–286.Google Scholar
Yukawa, J. (1984). Geographical ecology of the butterfly fauna of the Krakatau Islands, Indonesia. Tyô to Ga 36, 181–184.Google Scholar
Yukawa, J. and Yamane, S. (1985). Odonata and Hemiptera collected from the Krakataus and the surrounding islands, Indonesia. Kontyû 53, 690–698.Google Scholar
Yukawa, J., Abe, T., Iwamoto, T. and Yamane, S. (1984). The fauna of Krakatau, Peucang and Panaitan islands. In Tagawa, H. (ed.) Researches on the Ecological Succession and the Formation Process of Volcanic Ash Soils on the Krakatau Islands. Kagoshima, Kagoshima University, pp. 91–114.Google Scholar
Yukawa, J., Partomihardjo, T., Yata, O. and Hirowatari, T. (2000). An assessment of the role of Sebesi Island as a stepping stone for the colonization of the Krakatau islands by butterflies. Esakia 40, 1–10.Google Scholar
Zann, R. A. and Darjono, . (1992). The birds of Anak Krakatau: the assembly of an avian community. GeoJournal 28, 261–270.CrossRefGoogle Scholar
Zann, R. A., Male, E. B. and Darjono, . (1990). Bird colonization of Anak Krakatau, an emergent volcanic island. Philosophical Transactions of the Royal Society of London B 328, 95–121.CrossRefGoogle Scholar
Z'graggen, J. A. (1975). The Languages of the Madang District, Papua New Guinea, Pacific Linguistics Series B, No. 41. Canberra, Department of Linguistics, Research School of Pacific Studies, Australian National University.Google Scholar
Zielinski, G. A. and Germani, M. S. (1998a). New ice-core evidence challenges the 1620s BC age for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, 279–289.CrossRefGoogle Scholar
Zielinski, G. A. and Germani, M. S. (1998b). Reply to: Correction. New GISP2 Ice-Core evidence supports 17th century BC date for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, 1043–1045.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1994). Record of volcanism since 7000 BC from the GISP2 Greenland Ice Core and implications for the volcano-climate system. Science 264, 948–951.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S. and Twickler, M. (1996). A 110 000-year record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45, 109–118.CrossRefGoogle Scholar
Zimmerman, J. K., Willig, M. R., Walker, L. R. and Silver, W. L. (1996). Introduction, disturbance and Caribbean ecosystems. Biotropica 28, 414–423.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ian Thornton
  • Edited by Tim New, La Trobe University, Victoria
  • Book: Island Colonization
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618710.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ian Thornton
  • Edited by Tim New, La Trobe University, Victoria
  • Book: Island Colonization
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618710.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ian Thornton
  • Edited by Tim New, La Trobe University, Victoria
  • Book: Island Colonization
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618710.020
Available formats
×