Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T13:45:35.487Z Has data issue: false hasContentIssue false

10 - Quantifying uncertainty

Published online by Cambridge University Press:  06 January 2010

Dean S. Oliver
Affiliation:
University of Oklahoma
Albert C. Reynolds
Affiliation:
University of Tulsa
Ning Liu
Affiliation:
Chevron Energy Technology Company, California
Get access

Summary

Reservoir engineers are not typically concerned with the value of permeability and its uncertainty at some particular location in the reservoir. More commonly, they need to quantify uncertainty in some function of all the reservoir variables. They might, for example, require an estimate of time until water-cut reaches 30%, or the oil production rate five years in the future, and the uncertainty in those estimates. In Chapter 8, we discussed computation of the mean and the covariance for linear inverse problems whose posterior probability distributions were multi-normal. We also discussed computation of the mode and a local approximation to the covariance when the problem was nonlinear. In most history-matching applications, the covariance is a relatively poor measure of uncertainty, in which case Monte Carlo methods may be required. By simulating the future performance of many realizations that have been sampled according to their probability of being correct, it is possible to characterize the uncertainty in reservoir production. For Monte Carlo methods, the key to quantifying uncertainty is to generate the samples correctly and efficiently.

In this chapter, we introduce methods of generating realizations from a PDF either unconditional or conditional to observations. We first present methods for unconditional simulation of Gaussian and truncated Gaussian random fields because this is the initial step for many methods of generating conditional realizations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×