Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Preamble
- 1 Variational assimilation
- 2 Interpretation
- 3 Implementation
- 4 The varieties of linear and nonlinear estimation
- 5 The ocean and the atmosphere
- 6 Ill-posed forecasting problems
- References
- Appendix A Computing exercises
- Appendix B Euler–Lagrange equations for a numerical weather prediction model
- Author index
- Subject index
Appendix B - Euler–Lagrange equations for a numerical weather prediction model
Published online by Cambridge University Press: 09 November 2009
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Preamble
- 1 Variational assimilation
- 2 Interpretation
- 3 Implementation
- 4 The varieties of linear and nonlinear estimation
- 5 The ocean and the atmosphere
- 6 Ill-posed forecasting problems
- References
- Appendix A Computing exercises
- Appendix B Euler–Lagrange equations for a numerical weather prediction model
- Author index
- Subject index
Summary
The dynamics are those of the standard σ-coordinate, Primitive-Equation model of a moist atmosphere on the sphere (Haltiner and Williams, 1980, p. 17). A penalty functional and the associated Euler–Lagrange equations are given in continuous form; CMFortran code for finite-difference forms is available at an anonymous ftp site. Details of the measurement functionals for reprocessed cloud-track wind observations (see §5.4), and the associated impulses in the adjoint equations, have been suppressed here. The details may be found in the code.
- Type
- Chapter
- Information
- Inverse Modeling of the Ocean and Atmosphere , pp. 212 - 220Publisher: Cambridge University PressPrint publication year: 2002