Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T16:15:23.544Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 March 2021

Ashish K. Srivastava
Affiliation:
St Louis University, Missouri
Askar Tuganbaev
Affiliation:
National Research University 'Moscow Power Engineering Institute'
Pedro A. Guil Asensio
Affiliation:
Universidad de Murcia, Spain
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abyzov, A. N., Kosan, M. T. and Quynh, T. C., On (weakly) co-Hopfian automorphism-invariant modules, Comm. Algebra, (2020), doi: 10.1080/00927872.2020.1723613.Google Scholar
[2] Abyzov, A. N., Le, V. T., Truong, C. Q. and Tuganbaev, A. A., Modules coinvariant under the idempotent endomorphisms of their covers, Sib. Math. J., 60, 6 (2019), 927939.Google Scholar
[3] Abyzov, A. N., Quynh, T. C. and Tai, D. D., Dual automorphism-invariant modules over perfect rings, Sib. Math. J., 58, 5 (2017), 743751.Google Scholar
[4] Abyzov, A. N. and Truong, C. Q., Lifting of automorphisms of factor modules, Comm. Algebra, 46, 11 (2018), 50735082.Google Scholar
[5] Alahmadi, A., Er, N. and Jain, S. K., Modules which are invariant under monomorphisms of their injective hulls, J. Aust. Math. Soc., 79 (2005), 349360.CrossRefGoogle Scholar
[6] Alahmadi, A., Facchini, A. and Tung, N. K., Automorphism-invariant modules, Rend. Sem. Mat. Univ. Padova, 133 (2015), 241259.Google Scholar
[7] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.CrossRefGoogle Scholar
[8] Ara, P., Goodearl, K. R., ÓMera, K. C. and Pardo, E., Diagonalization of matrices over regular rings, Linear Algebra Appl., 265 (1997), 147163.Google Scholar
[9] Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95, 3 (1960), 466488.CrossRefGoogle Scholar
[10] Beidar, K. I., Jain, S. K., The structure of right continuous right π-rings, Comm. Algebra, 32, 1 (2004), 315332.CrossRefGoogle Scholar
[11] Bican, L., El Bashir, R., Enochs, E., All modules have flat covers, Bull. London Math. Soc., 33 (2001), 385390.Google Scholar
[12] Boyle, A. K., Hereditary QI-rings, Trans. Amer. Math. Soc., 192 (1974), 115120.Google Scholar
[13] Breaz, S., Calugareanu, G. and Schultz, P., Subgroups which admit extensions of homomorphisms, Forum Math., 27, 5 (2015), 25332549.Google Scholar
[14] Bumby, R. T., Modules which are isomorphic to submodules of each other, Arch. der Math. 16 (1965), 184185.Google Scholar
[15] Connell, I., On the group ring, Canad. J. Math., 15 (1963), 650685.Google Scholar
[16] Cortés-Izurdiaga, M., Guil Asensio, P. A., Kalebog̃az, B. and Srivastava, A. K., Ziegler partial morphisms in additive exact categories, Bull. Math. Sci., (2020), doi: 10.1142/S1664360720500125.CrossRefGoogle Scholar
[17] Crawley-Boevey, W., Locally finitely presented additive categories, Comm. Algebra 22 (1994), 16411674.Google Scholar
[18] Camillo, V. P., Distributive modules, J. Algebra, 36, 1 (1975), 1625.Google Scholar
[19] Camillo, V. P. and Yu, H.-P., Exchange rings, units and idempotents, Comm. Algebra, 22, 12 (1994), 47374749.CrossRefGoogle Scholar
[20] Camillo, V. P., Khurana, D., Lam, T. Y., Nicholson, W. K. and Zhou, Y., Continuous modules are clean, J. Algebra, 304, 1 (2006), 94111.Google Scholar
[21] Crawley, P. and Jónsson, B., Refinements for infinite direct decompositions of algebraic systems, Pacific J. Math., 14 (1964), 797855.Google Scholar
[22] Dickson, S. E. and Fuller, K. R., Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math., 31, 3 (1969), 655658.Google Scholar
[23] Dieudonné, J., La théorie de Galois des anneux simples et semi-simples, Comment. Math. Helv., 21 (1948), 154184.CrossRefGoogle Scholar
[24] Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R., Extending Modules, John Wiley and Sons Inc., New York, 1994.Google Scholar
[25] Eckmann, B. and Schopf, A., Uber injektive moduln, Archiv der Math., 4, 2, (1953), 7578.Google Scholar
[26] Eisenbud, D. and Griffith, P., Serial rings, J. Algebra, 17 (1971), 389400.Google Scholar
[27] Enochs, E., Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, (1981), 189209.Google Scholar
[28] Enochs, E., García Rozas, J. R., Jenda, O. M. G. and Oyonarte, L., Compact coGalois groups, Math. Proc. Cambridge Phil. Soc., 128, 2 (2000), 233244.Google Scholar
[29] Enochs, E., Estrada, S. and García Rozas, J. R., Galois and coGalois groups associated with cotorsion theories, Houston J. Math., 32, 3 (2006), 651663.Google Scholar
[30] Enochs, E., Estrada, S., García Rozas, J. R. and Oyonarte, L., Flat covers in the category of quasi-coherent sheaves over the projective line, Comm. Algebra, 32, 4 (2004), 14971508.Google Scholar
[31] Er, N., Rings whose modules are direct sums of extending modules, Proc. Amer. Math. Soc., 137, 2 (2009), 22652271.CrossRefGoogle Scholar
[32] Er, N., Singh, S. and Srivastava, A. K., Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), 223229.Google Scholar
[33] Faith, C., Algebra: Rings, Modules and Categories I, Springer, Berlin, New York, 1973.Google Scholar
[34] Faith, C., Algebra II, Springer, Berlin, New York, 1976.Google Scholar
[35] Faith, C. and Utumi, Y., Quasi-injective modules and their endomorphism rings, Arch. Math., 15 (1964), 166174.Google Scholar
[36] Fuchs, L., On quasi-injective modules, Ann. Sculoa Norm. Sup. Pisa, 23 (1969), 541546.Google Scholar
[37] Göbel, R. and Trlifaj, J., Approximations and Endomorphism Algebras of Modules, Volume 1, Approximations. 2nd revised and extended ed. de Gruyter Expositions in Mathematics, 41. Walter de Gruyter GmbH & Co. KG, Berlin, 2012.Google Scholar
[38] Goel, S. C. and Jain, S. K., Semiperfect rings with quasi-projective left ideals, Math. J. Okayama, 19 (1976), 3943.Google Scholar
[39] Goodearl, K. R., Ring Theory, Marcel Dekker, New York, 1976.Google Scholar
[40] Goodearl, K. R., Von Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991.Google Scholar
[41] Goodearl, K. R. and Warfield, R. B., An Introduction to Noncommutative Noetherian rings, London Mathematical Society Student Texts 16, Cambridge University Press, Cambridge (1989).Google Scholar
[42] Gordon, R. and Robson, J. C., Krull dimension, memoirs. Amer. Math. Soc., 133 (1973), 178.Google Scholar
[43] Gowers, W. T., A solution to the Schroeder–Bernstein problem for Banach spaces, Bull. London Math. Soc., 28 (1996), 297304.Google Scholar
[44] Guil Asensio, P. A. and Herzog, I., Left cotorsion rings, Bull. London Math. Soc., 36 (2004), 303309.Google Scholar
[45] Guil Asensio, P. A. and Herzog, I., Sigma-cotorsion rings, Adv. Math., 191, 1 (2005), 1128.Google Scholar
[46] Guil Asensio, P. A. and Srivastava, A. K., Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388 (2013), 101106.Google Scholar
[47] Guil Asensio, P. A. and Srivastava, A. K., Additive unit representations in endomorphism rings and an extension of a result of Dickson and Fuller, Ring Theory and Its Applications, Contemp. Math., Amer. Math. Soc., 609 (2014), 117–121.Google Scholar
[48] Guil Asensio, P. A. and Srivastava, A. K., Automorphism-invariant modules, Noncommutative rings and their applications, Contemp. Math., Amer. Math. Soc., 634 (2015), 19–30.Google Scholar
[49] Guil Asensio, P. A., Keskin Tütüncü, D. and Srivastava, A. K., Modules invariant under automorphisms of their covers and envelopes, Israel J. Math., 206 (2015), 457482.CrossRefGoogle Scholar
[50] Guil Asensio, P. A., Keskin Tütüncü, D. and Srivastava, A. K., Modules invariant under monomorphisms of their envelopes, Contemporary Math., Amer. Math. Soc., volume 715 (2018), 171179.Google Scholar
[51] Guil Asensio, P. A., Keskin Tütüncü, D., Kalebog̃az, Berke and Srivastava, A. K., Modules which are coinvariant under automorphisms of their projective covers, J. Algebra, 466 (2016), 147–152.Google Scholar
[52] Guil Asensio, P. A., Kalebog̃az, Berke and Srivastava, A. K., Schröder–Bernstein problem for modules, J. Algebra, 498 (2018), 153–164.Google Scholar
[53] Guil Asensio, P. A., Quynh, T. C. and Srivastava, A. K., Additive unit structure of endomorphism rings and invariance of modules, Bull. Math. Sci., 7 (2017), 229246.CrossRefGoogle Scholar
[54] Guralnick, R. and Lanski, C., Pseudosimilarity and cancellation of modules, Linear Algebra Appl., 47 (1982), 111115.Google Scholar
[55] Handelman, D., Strongly semiprime rings, Pacific J. Math., 60, 1 (1975), 115122.Google Scholar
[56] Handelman, D., Perspectivity and cancellation in regular rings, J. Algebra, 48 (1977), 116.Google Scholar
[57] Handelman, D. and Lawrence, J., Strongly prime rings, Trans. Amer. Math. Soc., 211 (1975), 209223.CrossRefGoogle Scholar
[58] Hattori, A., A foundation of torsion theory for modules over general rings, Nagoya Math. J., 17 (1960), 147158.Google Scholar
[59] Hochschild, G., Automorphisms of simple algebras, Trans. Amer. Math. Soc., 69 (1950), 292301.CrossRefGoogle Scholar
[60] Huisgen-Zimmermann, B. and Zimmermann, W., Algebraically compact rings and modules, Math. Z., 161 (1978), 8193.CrossRefGoogle Scholar
[61] Huisgen-Zimmermann, B. and Zimmermann, W., Classes of modules with the exchange property, J. Algebra, 88(2) (1984), 416434.Google Scholar
[62] Ivanov, G., On a generalisation of self-injective von Neumann regular rings, Proc. Amer. Math. Soc., 124, 4 (1996), 10511060.Google Scholar
[63] Jain, S. K. and Singh, S., On pseudo-injective modules and self-pseudo-injective rings, J. Math. Sci., 2 (1967), 2331.Google Scholar
[64] Jain, S. K. and Singh, S., Quasi-injective and pseudo-injective modules, Canadian Math. Bull., 18, 3 (1975), 359366.Google Scholar
[65] Jain, S. K. and Singh, S., Rings with quasi-projective left ideals, Pacific J. Math., 60 (1975), 169181.Google Scholar
[66] Jain, S. K., Singh, S. and Srivastava, A. K., On Σ-q rings, J. Pure Appl. Algebra, 213(6) (2009), 969976.CrossRefGoogle Scholar
[67] Jain, S. K., Srivastava, A. K. and Tuganbaev, A. A., Cyclic Modules and the Structure of Rings, Oxford University Press, Oxford, 2012.Google Scholar
[68] Janakiraman, S. Skew projective Abelian groups, Indag. Math., 76, 3 (1973), 233–236.Google Scholar
[69] Jategaonkar, A. V., Jacobson’s conjecture and modules over fully bounded noetherian rings, J. Algebra, 30 (1974), 103121.Google Scholar
[70] Jeremy, L., Modules et anneaux quasi-continus, Canad. Math. Bull., 17, 2 (1974), 217228.Google Scholar
[71] Johnson, R. E. and Wong, F. T., Quasi-injective modules and irreducible rings, J. London Math. Soc., 36 (1961), 260268.Google Scholar
[72] Kaplansky, I., Rings of operators, Mathematics Lecture Note Series, W. A. Benjamin, New York, 1968.Google Scholar
[73] Khurana, D. and Srivastava, A. K., Right self-injective rings in which each element is sum of two units, J. Alg. Appl., 6, 2 (2007), 281286.Google Scholar
[74] Khurana, D. and Srivastava, A. K., Unit sum numbers of right self-injective rings, Bull. of Aust. Math. Soc., 75, 3 (2007), 355360.Google Scholar
[75] Kuratomi, Y., Decompositions of dual automorphism invariant modules over semiperfect rings, Sib. Math. J., 60, 3 (2019), 490496.CrossRefGoogle Scholar
[76] Kutami, M. and Oshiro, K., Strongly semiprime rings and nonsingular quasi-injective modules, Osaka J. Math., 17 (1980), 4150.Google Scholar
[77] Lam, T. Y., Exercises in Classical Ring Theory, Springer, New York, 1995.Google Scholar
[78] Lawrence, J., A singular primitive ring, Trans. Amer. Math. Soc., 45, 1 (1974), 5962.Google Scholar
[79] Lee, T. K. and Zhou, Y., Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 6, 2 (2013), 9 pp.Google Scholar
[80] Lenagan, T. H., Bounded hereditary Noetherian prime rings, J. London Math. Soc., 6 (1973), 241246.Google Scholar
[81] McConnell, J. C. and Robson, J. C., Noncommutative Noetherian Rings. New York: Wiley-Interscience, 1987.Google Scholar
[82] Mishina, A. P., On automorphisms and endomorphisms of Abelian groups, Moscow Univ. Math. Bull., 1 (1972), 6266.Google Scholar
[83] Mohamed, S. H. and Müller, B. J., Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.Google Scholar
[84] Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229, (1977), 269278.Google Scholar
[85] Nielsen, P. P., Square-free modules with the exchange property, J. Algebra, 323, 7 (2010), 19932001.Google Scholar
[86] Quynh, T. C., Abyzov, A. N., Ha, N. T. T. and Yildirim, T., Modules close to the automorphism-invariant and coinvariant, J. Algebra Appl., 18, 12 (2019), 1950235.Google Scholar
[87] Selvaraj, C. and Santhakumar, A. S., Automorphism-liftable modules, Comment. Math. Univ. Carolin., 59, 1 (2018), 3544.Google Scholar
[88] Simson, D., On pure semi-simple Grothendieck categories I, Fund. Math., 100 (1978), 211222.Google Scholar
[89] Singh, S., On pseudo-injective modules, Riv. Mat. Univ. Parma., 9 (1969), 5965.Google Scholar
[90] Singh, S., Quasi-injective and quasi-projective modules over hereditary Noetherian prime rings, Canad. J. Math., 26, 5 (1974), 11731185.Google Scholar
[91] Singh, S., Modules over hereditary Noetherian prime rings, Canad. J. Math., 27, 4 (1975), 867883.Google Scholar
[92] Singh, S. and Al-Bleehed, H., Rings with indecomposable modules local, Beiträge zur Algebra und Geometrie, 45 (2005), 239251.Google Scholar
[93] Singh, S. and Srivastava, A. K., Dual automorphism-invariant modules, J. Algebra, 371 (2012), 262275.Google Scholar
[94] Singh, S. and Srivastava, A. K., Rings of invariant module type and automorphism-invariant modules, Ring Theory and Its Applications, Contemporary Mathematics, Amer. Math. Soc., 609 (2014), 299311.Google Scholar
[95] Skornyakov, L. A., Compelemented Modular Lattices and Regular Rings, Oliver & Boyd, Edinburgh, 1964.Google Scholar
[96] Stenström, B., Rings of Quotients, Springer, Berlin, New York, 1975.Google Scholar
[97] Stephenson, W., Modules whose lattice of submodules is distributive, Proc. London Math. Soc., 28, 2 (1974), 291310.Google Scholar
[98] Stringall, R. W., Endomorphism rings of abelian groups generated by automorphism groups, Acta. Math., 18 (1967), 401404.Google Scholar
[99] Tachikawa, H., QF-3 rings and categories of projective modules, J. Algebra, 28, 3 (1974), 408413.Google Scholar
[100] Teply, M. L., Pseudo-injective modules which are not quasi-injective, Proc. Amer. Math. Soc., 49, 2 (1975), 305310.Google Scholar
[101] Tuganbaev, A. A., Structure of modules close to injective, Sib. Math. J., 18, 4 (1977), 631637.Google Scholar
[102] Tuganbaev, A. A., The structure of modules close to projective modules, Sbornik: Mathematics, 35, 2 (1979), 219228.Google Scholar
[103] Tuganbaev, A. A., Self-injective rings, Soviet Math. (Iz. VUZ), 24, 2 (1980), 8791.Google Scholar
[104] Tuganbaev, A. A., Quasi-projective modules, Sib. Math. J., 21, 3 (1980), 446450.Google Scholar
[105] Tuganbaev, A. A., Semiprojective modules, Sib. Math. J., 21, 5 (1980), 725728.Google Scholar
[106] Tuganbaev, A. A., Poorly injective rings, Soviet Math. (Iz. VUZ), 25, 9 (1981), 5963.Google Scholar
[107] Tuganbaev, A. A., Rings over which all cyclic modules are skew-injective [In Russian], Trudi sem. Petrovskogo, 6 (1981), 257262.Google Scholar
[108] Tuganbaev, A. A., Integrally closed rings, Math. USSR-Sb. 43, 4 (1982), 485498.Google Scholar
[109] Tuganbaev, A. A., Semiinjective modules, Math. Notes, 31, 3 (1982), 230234.Google Scholar
[110] Tuganbaev, A. A., Small-injective rings, Russian Math. Surveys, 37, 5 (1982), 196197.Google Scholar
[111] Tuganbaev, A. A., Rings with skew-injective cyclic modules [In Russian], Abelian Groups and Modules, Tomsk State University, Tomsk (1986), 151158.Google Scholar
[112] Tuganbaev, A. A., Rings with skew-injective factor rings, Soviet Math. (Iz. VUZ), 35, 1 (1991), 97108.Google Scholar
[113] Tuganbaev, A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht-Boston-London, 1998.CrossRefGoogle Scholar
[114] Tuganbaev, A. A., Modules over bounded Dedekind prime rings, Sbornik: Mathematics, 192, 5 (2001), 705724.Google Scholar
[115] Tuganbaev, A. A., Rings over which all modules are completely integrally closed, Discrete Math. Appl., 21, 4 (2011), 477497.Google Scholar
[116] Tuganbaev, A. A., Automorphisms of submodules and their extensions, Discrete Math. Appl., 23, 1 (2013), 115124.Google Scholar
[117] Tuganbaev, A. A., Characteristic submodules of injective modules, Discrete Math. Appl., 23, 2 (2013), 203209.Google Scholar
[118] Tuganbaev, A. A., Extensions of automorphisms of submodules, J. Math. Sci. (New York), 206, 5 (2015), 583596.CrossRefGoogle Scholar
[119] Tuganbaev, A. A., Automorphism-invariant modules, J. Math. Sci. (New York), 206, 6 (2015), 694698.Google Scholar
[120] Tuganbaev, A. A., Characteristic submodules of injective modules over strongly prime rings, Discrete Math. Appl., 24, 4 (2014), 253256.Google Scholar
[121] Tuganbaev, A. A., Automorphism-extendable modules, Discrete Math. Appl., 25, 5 (2015), 305309.Google Scholar
[122] Tuganbaev, A. A., Modules over strongly prime rings, J. Algebra Appl., 14, 5 (2015), 9 pp.Google Scholar
[123] Tuganbaev, A. A., Automorphism-extendable semi-Artinian modules, J. Algebra Appl., 16, 2 (2017), 1750029, 5 pp.Google Scholar
[124] Tuganbaev, A. A., Automorphism-invariant non-singular rings and modules, J. Algebra, 485 (2017), 247253.Google Scholar
[125] Tuganbaev, A. A., Injective and automorphism-invariant non-singular modules, Communications in Algebra, 46, 4 (2018), 1716–172.Google Scholar
[126] Tuganbaev, A. A., Modules over strongly semiprime rings, Discrete Math. Appl., 29, 2 (2019), 143147.Google Scholar
[127] Tuganbaev, Askar, Automorphism-Liftable Modules, to appear. Also see (2019), arXiv:1907.00947 [math.RA].Google Scholar
[128] Tuganbaev, A. A., Automorphism-extendable and endomorphism-extendable Modules, J. Math. Sci. (New York), 245, 2 (2020), 234284.Google Scholar
[129] Utumi, Y., On continuous rings and self injective rings, Trans. Amer. Math. Soc., 118 (1965), 111.Google Scholar
[130] Vamos, P., 2-Good rings, The Quart. J. Math., 56 (2005), 417430.Google Scholar
[131] Warfield, R. B., Jr., Decompositions of injective modules, Pacific J. Math., 31 (1969), 263276.Google Scholar
[132] Warfield, R. B., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), 699719.CrossRefGoogle Scholar
[133] Warfield, R. B., Exchange rings and decompositions of modules, Math. Ann., 199 (1972), 3136.Google Scholar
[134] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.Google Scholar
[135] Wolfson, K. G., An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math., 75 (1953), 358386.Google Scholar
[136] Wu, L. E. T. and Jans, J. P., On quasi-projectives, Illinois J. Math., 11 (1967), 439448.Google Scholar
[137] Xu, J., Flat covers of modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996.Google Scholar
[138] Yu, H.-P., Stable range one for exchange rings, J. Pure Appl. Algebra, 98 (1995), 105109.Google Scholar
[139] Zelinsky, D., Every lnear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc., 5 (1954), 627630.Google Scholar
[140] Ziegler, M., Model theory of modules, Ann. Pure Appl. Logic, 26, 2 (1984), 149213.Google Scholar
[141] Zimmermann, W., (Σ-) algebraic compactness of rings. J. Pure Appl. Algebra, 23 (1982), 319–328.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×