Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T06:58:13.149Z Has data issue: false hasContentIssue false

2 - Review of thermodynamics

Published online by Cambridge University Press:  18 December 2014

João Paulo Casquilho
Affiliation:
Universidade Nova de Lisboa, Portugal
Paulo Ivo Cortez Teixeira
Affiliation:
Instituto Superior de Engenharia de Lisboa, Portugal
Get access

Summary

Introduction

When confronted with a physical system, such as a gas in a closed container fitted with a moving piston, or a crystal in a magnetic field, our first task is to identify suitable observable quantities to describe the system. If we opt for a macroscopic description, these will be properties of the system as a whole that are, for the most part, readily perceptible to our senses, such as its temperature, pressure, volume, internal energy or entropy. The laws of thermodynamics relate these quantities when the system exchanges energy with its surroundings. If, on the other hand, we choose to carry out a microscopic description, we shall be using quantities of which we have no direct experience, such as the position, linear momentum, kinetic energy, magnetic moment, etc., of each and every atom, molecule or ion in the system. Statistical mechanics allows us to predict the macroscopic properties of the system starting from these microscopic quantities. Before we delve into the principles of statistical mechanics in the next chapter, we shall review here the basic concepts of classical (equilibrium) thermodynamics and how they can be applied to study magnetic systems and dielectrics.

Basic concepts of equilibrium thermodynamics

2.2.1 The laws of thermodynamics

Thermodynamics is a phenomenological theory concerned with the equilibrium properties of, and energy (heat or work) exchanges between thermodynamics systems – macroscopic systems about whose structure thermodynamics makes no assumptions.

The basic hypothesis is that a thermodynamic system at equilibrium has well-defined properties, described by a few macroscopic parameters such as its temperature T, pressure P, etc. A thermodynamic state is specified by the values of all thermodynamic parameters describing the system, called thermodynamic variables. A system is said to be in thermodynamic equilibrium when its state does not change in time. At equilibrium, thermodynamic variables such as the density or temperature are the same everywhere in the system, i.e., there are no density or temperature gradients as exist in a non-equilibrium state.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Callen, H. 1985. Thermodynamics and an Introduction to Thermostatistics, 2nd edition. Wiley.Google Scholar
Hill, T. L. 1986. An Introduction to Statistical Thermodynamics. Dover Publications.Google Scholar
Huang, K. 1987. Statistical Mechanics, 2nd edition. Wiley.Google Scholar
Landau, L. D., and Lifshitz, E. 1960. Electrodynamics of Continuous Media. Pergamon Press.Google Scholar
Reif, F. 1985. Fundamentals of Statistical and Thermal Physics. McGraw-Hill.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×