Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T22:33:08.831Z Has data issue: false hasContentIssue false

7 - Magnetism

Published online by Cambridge University Press:  18 December 2014

João Paulo Casquilho
Affiliation:
Universidade Nova de Lisboa, Portugal
Paulo Ivo Cortez Teixeira
Affiliation:
Instituto Superior de Engenharia de Lisboa, Portugal
Get access

Summary

Introduction

In this chapter we extend the study of the magnetic properties of solids beyond the simple, ideal-gas-type paramagnetic models of previous chapters. Our purpose is to describe more complex magnetic phenomena, such as ferromagnetism, antiferromagnetism, and elementary excitations in solids. In addition to its intrinsic interest, magnetism here plays an important role in illustrating how the methods of statistical physics can be applied to systems of interacting particles and to phase transitions, which are of great importance in condensed matter physics.

Electrons in solids generate magnetic fields, since they are moving charges with intrinsic magnetic dipole moments due to their spin. The magnetic fields generated by the nuclear spins are much smaller than those of the electrons, and their contribution to the magnetisation of a solid can be neglected. If the atoms in a solid have permanent magnetic dipole moments, the solid will be paramagnetic or ferromagnetic. More complex behaviours such as antiferromagnetism and ferrimagnetism are also possible (see Figure 7.1). The main contributions to the magnetisation of a solid can come either from the interaction between the electrons and an applied magnetic field, or from interactions between the electrons themselves. If the latter are weak enough to be negligible, the system of magnetic moments can, to a first approximation, be regarded as ideal. This was the subject of our study of paramagnetism in Chapter 3, where we treated a paramagnetic solid as an isolated system, and in Chapter 4, where we treated it as a system in equilibrium with a heat reservoir. Otherwise, when the interactions between electrons are to be taken into account, the collective behaviour of a large number of magnetic moments has to be studied in the more general framework of non-ideal systems. Such is the case with ferromagnetism and antiferromagnetism, for which we shall develop models in this chapter.

A simplified model of a paramagnetic solid was introduced in Chapter 4 that consisted of N identical, ideal spins located at the sites of a lattice and in equilibrium with a heat reservoir, which is the sample itself.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Christman, J. R. 1988. Fundamentals of Solid State Physics. Wiley.Google Scholar
Goldenfeld, N. 1992. Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley.Google Scholar
Ibach, H., and Luth, H. 2003. Solid State Physics, 3rd edition. Springer Verlag.CrossRefGoogle Scholar
Kittel, C. 1995. Introduction to Solid State Physics, 7th edition. Wiley.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1960. Electrodynamics of Continuous Media. Pergamon Press.Google Scholar
Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P. 1980. Statistical Physics, Part 1, 3rd edition. Pergamon Press.Google Scholar
Schiff, L. I. 1968. Quantum Mechanics, 3rd edition. McGraw-Hill.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×