Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T15:24:03.366Z Has data issue: false hasContentIssue false

Complement 5A: Squeezed states of light: the reduction of quantum fluctuations

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

We showed in Section 5.2 of the present chapter that according to quantum theory the value of the electric field of an electromagnetic wave could not be predicted to arbitrarily high precision, this being a consequence of the uncertainty relation satisfied by the two quadrature components of the field (Equation 5.32), which imposed a finite limit on the product of their variances. This limit is more than an abstract theoretical limit; it is often the overriding factor determining the resolution of high-precision optical measurements. In such situations measurements by photodetectors on the field exhibit uncontrollable fluctuations of quantum origin known as quantum noise. Fortunately, as we shall show in this complement, it is possible to overcome this by using non-classical states of the radiation field, namely the squeezed states, provided measurements are made of a single one of a pair of conjugate field variables. A field mode prepared in such a state exhibits reduced quantum noise in one of the variables at the expense of increased noise in the other, so that the uncertainty relation involving their variances is still satisfied. The potential of such states for increasing the obtainable precision of optical measurements is self-evident. However, the practical realization of the potential benefits requires delicate experimental techniques that we describe only briefly here.

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 387 - 397
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×