Book contents
- Frontmatter
- Contents
- Preface
- Notation, important formulae and physical constants
- 1 Introduction
- 2 Special Relativity, non-inertial effects and electromagnetism
- 3 Differential geometry I: vectors, differential forms and absolute differentiation
- 4 Differential geometry II: geodesics and curvature
- 5 Einstein field equations, the Schwarzschild solution and experimental tests of General Relativity
- 6 Gravitomagnetic effects: gyroscopes and clocks
- 7 Gravitational collapse and black holes
- 8 Action principle, conservation laws and the Cauchy problem
- 9 Gravitational radiation
- 10 Cosmology
- 11 Gravitation and field theory
- References
- Index
Preface
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Notation, important formulae and physical constants
- 1 Introduction
- 2 Special Relativity, non-inertial effects and electromagnetism
- 3 Differential geometry I: vectors, differential forms and absolute differentiation
- 4 Differential geometry II: geodesics and curvature
- 5 Einstein field equations, the Schwarzschild solution and experimental tests of General Relativity
- 6 Gravitomagnetic effects: gyroscopes and clocks
- 7 Gravitational collapse and black holes
- 8 Action principle, conservation laws and the Cauchy problem
- 9 Gravitational radiation
- 10 Cosmology
- 11 Gravitation and field theory
- References
- Index
Summary
This book is designed for final year undergraduates or beginning graduate students in physics or theoretical physics. It assumes an acquaintance with Special Relativity and electromagnetism, but beyond that my aim has been to provide a pedagogical introduction to General Relativity, a subject which is now – at last – part of mainstream physics. The coverage is fairly conventional; after outlining the need for a theory of gravity to replace Newton's, there are two chapters devoted to differential geometry, including its modern formulation in terms of differential forms and coordinate-free vectors, then the Einstein field equations, the Schwarzschild solution, the Lense–Thirring effect (recently confirmed observationally), black holes, the Kerr solution, gravitational radiation and cosmology. The book ends with a chapter on field theory, describing similarities between General Relativity and gauge theories of particle physics, the Dirac equation in Riemannian space-time, and Kaluza–Klein theory.
As a research student I was lucky enough to attend the Les Houches summer school in 1963 and there, in the magnificent surroundings of the French alps, began an acquaintance with many of the then new aspects of this subject, just as it was entering the domain of physics proper, eight years after Einstein's death. A notable feature was John Wheeler's course on gravitational collapse, before he had coined the phrase ‘black hole’. In part I like to think of this book as passing on to the community of young physicists, after a gap of more than 40 years, some of the excitement generated at that school.
- Type
- Chapter
- Information
- Introduction to General Relativity , pp. xiiiPublisher: Cambridge University PressPrint publication year: 2009