Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T01:51:15.974Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  02 February 2010

I. Moerdijk
Affiliation:
Universiteit Utrecht, The Netherlands
J. Mrcun
Affiliation:
University of Ljubljana
Get access

Summary

The purpose of this book is to give a quick introduction to the theory of foliations, as well as to Lie groupoids and their infinitesimal version – Lie algebroids. The book is written for students who are familiar with the basic concepts of differential geometry, and all the results presented in this book are proved in detail.

The topics in this book have been chosen so as to emphasize the relations between foliations, Lie groupoids and Lie algebroids. Lie groupoids form the main tool for the study of the ‘transversal structure’ (the space of leaves) of a foliation, by means of its holonomy groupoid. Foliations are also a special kind of Lie algebroids. At the same time, the elementary theory of foliations is a very useful tool in studying Lie groupoids and Lie algebroids.

In Chapter 1 we present the basic definitions, examples and constructions of foliations. Chapter 2 introduces the notion of holonomy, which plays a central role in this book. The Reeb stability theorems are discussed, as well as Riemannian foliations and their holonomy. This chapter also contains an introduction to the theory of orbifolds (or V-manifolds). Orbifolds provide a language to describe the richer structure of the space of leaves of certain foliations; e.g. the space of leaves of a Riemannian foliation is often an orbifold.

In Chapter 3 we present two classical milestones of the theory of foliations in codimension 1, namely the theorems of Haefliger and Novikov, with detailed proofs. Although the proofs make essential use of the notion of holonomy, this chapter is somewhat independent of the rest of the book (see the figure).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • I. Moerdijk, Universiteit Utrecht, The Netherlands, J. Mrcun, University of Ljubljana
  • Book: Introduction to Foliations and Lie Groupoids
  • Online publication: 02 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615450.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • I. Moerdijk, Universiteit Utrecht, The Netherlands, J. Mrcun, University of Ljubljana
  • Book: Introduction to Foliations and Lie Groupoids
  • Online publication: 02 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615450.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • I. Moerdijk, Universiteit Utrecht, The Netherlands, J. Mrcun, University of Ljubljana
  • Book: Introduction to Foliations and Lie Groupoids
  • Online publication: 02 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511615450.001
Available formats
×