Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T06:04:30.318Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 December 2020

C. P. Burgess
Affiliation:
McMaster University and Perimeter Institute for Theoretical Physics
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelquist, T. and Carazzone, J. 1975. Infrared Singularities and Massive Fields. Physical Review D11 (1974) 2856.Google Scholar
Weinberg, S. 1979. Phenomenological Lagrangians. Physica A 96 (1979) 327.Google Scholar
Nambu, Y. 1960. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Physical Review 117 (1960) 648.CrossRefGoogle Scholar
Goldstone, J. 1961. Field Theories with Superconductor Solutions. Nuovo Cimento 19 (1961) 154.CrossRefGoogle Scholar
Goldstone, J., Salam, Abdus and Weinberg, S. 1962. Broken Symmetries. Physical Review 127 (1962) 965.Google Scholar
Heisenberg, W. 1938. Zur Theorie der explosionsartigen Schauer in der kosmischen Strahlung. II Zeitschrift für Physik 113 61.Google Scholar
Sakata, S., Umezawa, H. and Kamefuchi, S. 1952. On the Green-Functions of the Quantum Electrodynamics. Progress in Theoretical Physics 7 327.Google Scholar
Borchers, H. 1960. Über die mannigfaltigkeit der interpolierenden felder zu einer kausalen S-matrix. Nuovo Cimento 15 (1960) 784.CrossRefGoogle Scholar
Chisholm, J. S. R. 1961. Change of Variables in Quantum Field Theories. Nuclear Physics 26 (1961) 469.CrossRefGoogle Scholar
Kamefuchi, S., O’Raifeartaigh, L. and Salam, A. 1961. Change of Variables and Equivalence Theorems in Quantum Field Theories. Nuclear Physics 28 (1961) 529.Google Scholar
Weinberg, S. 1968. Nonlinear Realizations of Chiral Symmetry. Physical Review 166 (1968) 1568.Google Scholar
Coleman, S. R., Wess, J., and Zumino, B. 1969. Structure of Phenomenological Lagrangians, 1. Physical Review 177 (1969) 2239.Google Scholar
Callan, C. G., Coleman, S. R., Wess, J., and Zumino, B. 1969. Structure of Phenomenological Lagrangians, 2. Physical Review 177 (1969) 2247.CrossRefGoogle Scholar
Weinberg, S. 1969. Feynman Rules for Any Spin III. Physical Review 181 (1969) 1893.Google Scholar
Jona-Lasinio, G. 1964. Relativistic Field Theories with Symmetry Breaking Solutions. Nuovo Cimento 34 (1964) 1790.Google Scholar
Symanzik, K. 1970. Renormalizable Models with Simple Symmetry Breaking 1. Symmetry Breaking by a Source Term. Communications in Mathematical Physics 16 (1970) 48.Google Scholar
Coleman, S. 2010. Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, 2010.Google Scholar
Wick, G. C. 1950. The Evaluation of the Collision Matrix. Physical Review 80 (1950) 268.Google Scholar
Kaplan, D. B. 2005. Five Lectures on Effective Field Theory. (arXiv:nucl-th/0510023).Google Scholar
Politzer, H. D. 1980. Power Corrections at Short Distances. Nuclear Physics B172 (1980) 349.Google Scholar
Iliopoulos, J., Itzykson, C. and Martin, A. 1975. Functional Methods and Perturbation Theory. Reviews of Modern Physics 47 (1975) 165.Google Scholar
Taylor, J. C. 1971. Ward Identities and Charge Renormalization of the Yang-Mills Field. Nuclear Physics B33 (1971) 436.Google Scholar
Slavnov, A. A. 1972. Ward Identities in Gauge Theories. Theoretical and Mathematical Physics 10 (1972) 99 (Teoreticheskaya i Matematischeskaya Fizika 10 (1972) 153).Google Scholar
Burgess, C. P. 2004. Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory. Living Reviews of Relativity 7 (2004) 5 (arXiv:gr-qc/0311082).CrossRefGoogle ScholarPubMed
Polchinski, J. 1984. Renormalization and Effective Lagrangians. Nuclear Physics B231 (1984) 269.Google Scholar
Wetterich, C. 1993. Exact Evolution Equation for the Effective Potential. Physics Letters B301 (1993) 90(arXiv:1710.05815).Google Scholar
Morris, T. 1993. Exact Renormalization Group and Approximate Solutions.Google Scholar
Morris, T. International Journal of Modern Physics A9 (1993) 2411 (arXiv:hepph/9308265).Google Scholar
Burgess, C. P. and London, D. 1993. Uses and Abuses of Effective Lagrangians. Physical Review D48 (1993) 4337 (arXiv:hep-ph/9203216).Google Scholar
Beneke, M. and Smirnov, V. A. 1998. Asymptotic Expansion of Feynman Integrals Near Threshold. Nuclear Physics B522 (1998) 321344 (hep-ph/9711391).Google Scholar
Smirnov, V. A. 1999. Problems of the Strategy of Regions. Physics Letters B465 (1999) 226234 (hep-ph/9907471).Google Scholar
Becher, T., Broggio, A. and Ferroglia, A. 2014. Introduction to Soft-Collinear Effective Theory. Lecture Notes in Physics 896 (2015) 1 (arXiv:1410.1892 (hep-ph)).Google Scholar
Weinberg, S. 1980. Effective Gauge Theories. Physics Letters 91B (1980) 51.Google Scholar
Gasser, J. and Leutwyler, H. 1984. Chiral Perturbation Theory to One Loop. Annals of Physics 158 (1984) 142.Google Scholar
Bollini, C. and Giambiagi, J. J. 1972. Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter. Nuovo Cimento B12 (1972) 20.Google Scholar
‘t Hooft, G. and Veltman, M. 1972. Regularization and Renormalization of Gauge Fields. Nuclear Physics B44 (1972) 189.Google Scholar
‘t Hooft, G. 1973. Dimensional Regularization and the Renormalization Group. Nuclear Physics B61 (1973) 455.Google Scholar
‘t Hooft, G. 1973. An Algorithm for the Poles at Dimension Four in the Dimensional Regularization Procedure. Nuclear Physics B62 (1973) 444.CrossRefGoogle Scholar
Weinberg, S. 1973. New Approach to the Renormalization Group. Physical Review D8 (1973) 3497.Google Scholar
Landau, L. D. 1959. On Analytic Properties of Vertex Parts in Quantum Field Theory. Nuclear Physics 13 181.CrossRefGoogle Scholar
‘t Hooft, G. and Veltman, M. J. G. 1974. Diagrammar. NATO Science Series B4 (1974) 177.Google Scholar
Weinberg, S. 1981. Why the Renormalization Group Is a Good Thing. Cambridge, Proceedings Asymptotic Realms of Physics (1981) 119.Google Scholar
Wigner, E. P. 1931. Gruppentheorie und ihre Anwendung auf die Quanten-mechanik der Atom-spektren. Braunschweig, 1931. (English translation, Academic Press Inc, New York 1959).Google Scholar
Noether, E. 1918. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften, Gottingen, Mathematisch-Physikalische Klasse 2 (1918) 98. (English translation: in Transport Theory and Statistical Physics 1 186. See also (arXiv:physics/0503066).)Google Scholar
Fabri, E. and Picasso, L. E. 1966. Quantum Field Theory and Approximate Symmetries. Physical Review Letters 16 (1966) 408.CrossRefGoogle Scholar
Weinberg, S. 1972. Approximate Symmetries and PseudoGoldstone Bosons. Physical Review Letters 29 (1972)1698.Google Scholar
Gell-Mann, M. 1964. The Symmetry Group of Vector and Axial Vector Currents. Physics Physique Fizika 1 (1964) 63.Google Scholar
Weisberger, W. 1965. Renormalization of the Weak Axial-Vector Coupling Constant. Physical Review Letters 14 (1965) 1047.CrossRefGoogle Scholar
Adler, S. 1965. Calculation of the Axial-Vector Coupling Constant Renormalization in Beta Decay. Physical Review Letters 14 (1965) 1051.CrossRefGoogle Scholar
Weinberg, S. 1966. Pion Scattering Lengths. Physical Review Letters 17 (1966) 616.Google Scholar
Weinberg, S. 1966. Dynamical Approach to Current Algebra. Physical Review Letters 18 (1966) 188.Google Scholar
Cartan, E. 1904. Sur la structure des groupes infinis de transformation. Annales scientifiques de lécole normal supërieur 3e srie, tome 21, (1904) p. 153.Google Scholar
Weinberg, S. 1964. Feynman Rules for Any Spin 2: Massless Particles. Physical Review 134 (1964) B882.Google Scholar
Weinberg, S. 1964. Photons and Gravitons in S Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass. Physical Review 135 (1964) B1049.Google Scholar
Weinberg, S. 1965. Infrared Photons and Gravitons. Physical Review 140 (1965) B516.Google Scholar
Weinberg, S. and Witten, E. 1980. Limits on Massless Particles. Physics Letters 96B (1980) 59.Google Scholar
Brout, R. and Englert, F. 1964. Broken Symmetry and the Mass of Gauge Vector Mesons. Physical Review Letters 13 (1964) 321.Google Scholar
Guralnik, G. S., Hagen, C. R. and Kibble, T. W. B. 1964. Global Conservation Laws and Massless Particles. Physical Review Letters 13 (1964) 585.Google Scholar
Kibble, T. W. B. 1967. Symmetry Breaking in NonAbelian Gauge Theories. Physical Review 155 (1967) 1554.Google Scholar
Higgs, P. W. 1964. Broken Symmetries, Massless Particles and Gauge Fields Physics Letters 12 (1964) 132.Google Scholar
Higgs, P. W. 1964. Broken Symmetries and the Masses of Gauge Bosons. Physical Review Letters 13 (1964) 508.Google Scholar
Anderson, P. W. 1963. Plasmons, Gauge Invariance, and Mass. Physical Review 130 (1963) 439.CrossRefGoogle Scholar
Weinberg, S. 1967. A Model of Leptons. Physical Review Letters 19 (1967) 1264.Google Scholar
Olive, K. A. et al. (Particle Data Group). 2014. Chinese Physics C38, 090001 (2014).Google Scholar
Stueckelberg, E. 1938. Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kräfte. Helvetica Physica Acta 11 (1938) 225.Google Scholar
Weinberg, S. 1971. Physical Processes in a Convergent Theory of the Weak and Electromagnetic Interactions. Physical Review Letters 27 (1971) 1688.Google Scholar
Weinberg, S. 1973. General Theory of Broken Local Symmetries. Physical Review D7 (1973) 1068.Google Scholar
Fujikawa, K., Lee, B. W. and Sanda, A. 1972. Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories. Physical Review D6 (1972) 2923.Google Scholar
Lee, B. W., Quigg, C. and Thacker, H. B. 1977. Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass. Physical Review D16 (1977) 1519.Google Scholar
Froissart, M. 1961. Asymptotic Behavior and Subtractions in the Mandelstam Representation. Physical Review 123 1053.Google Scholar
Cornwall, J. M., Levin, D. N. and Tiktopoulos, G. 1974. Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the S Matrix. Physical Review D10 1145; Erratum: (Phys. Rev. D11 (1975) 972).Google Scholar
Bell, J. S. and Jackiw, R. 1969. A PCAC Puzzle: π0 → γγ in the σ Model. Nuovo Cimento A60 (1969) 47.Google Scholar
Adler, S. L. 1969. Axial Vector Vertex in Spinor Electrodynamics. Physical Review 177 (1969) 2426.Google Scholar
Bardeen, W. A. 1969. Anomalous Ward Identities in Spinor Field Theories. Physical Review 184 (1969) 1848.Google Scholar
Adler, S. L. and Bardeen, W. A. 1969. Absence of Higher Order Corrections in the Anomalous Axial Vector Divergence Equation. Physical Review 182 (1969) 1517.Google Scholar
Coleman, S. R. and Grossman, B. 1982.’t Hooft’s Consistency Condition as a Consequence of Analyticity and Unitarity. Nuclear Physics B203 (1982) 205.Google Scholar
Capper, D. M. and Duff, M. J. 1974. Trace Anomalies in Dimensional Regularization. Nuovo Cimento A23 (1974) 173.Google Scholar
Fujikawa, K. 1979. Path Integral Measure for Gauge Invariant Fermion Theories,. Physical Review Letters 42 (1979) 1195.Google Scholar
Green, M. B. and Schwarz, J. H. 1984. Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory. Physics Letters 149B (1984) 117.Google Scholar
Wess, J. and Zumino, B. 1971. Consequences of Anomalous Ward Identities. Physics Letters B37 (1971) 95.Google Scholar
Weisskopf, V. F. 1939. On the Self-Energy and the Electromagnetic Field of the Electron. Physical Review 56 (1039) 72.Google Scholar
‘t Hooft, G. 1980. Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking. In the proceedings of ‘Recent Developments in Gauge Theories’ NATO Advanced Study Institute, Cargese, NATO Science Series B59 (1980) 135.Google Scholar
Finkelstein, R. J. 1947. The γ-Instability of Mesons. Physical Review 72 (1947) 415.CrossRefGoogle Scholar
Fukuda, H. and Miyamoto, Y. 1949. On the γ-Decay of Neutral Meson. Progress of Theoretical Physics 4 (1949) 347.Google Scholar
Steinberger, J. 1949. On the Use of Subtraction Fields and the Lifetimes of Some Types of Meson Decay. Physical Review 76 (1949) 1180.Google Scholar
Schwinger, J. S. 1951. On Gauge Invariance and Vacuum Polarization. Physical Review 82 (1951) 664.Google Scholar
Sutherland, D. G. 1967. Current Algebra and Some Nonstrong Mesonic Decays. Nuclear Physics B2 (1967) 433.Google Scholar
Veltman, M. 1967. Theoretical Aspects of High Energy Neutrino Interactions. Proceedings of the Royal Society of London A301 (1967) 107.Google Scholar
Duff, M. J., Inami, T., Pope, C. N., Sezgin, E. and Stelle, K. S. 1988. Semiclassical Quantization of the Supermembrane. Nuclear Physics B297 (1988) 515.Google Scholar
Polchinski, J. 1995. Dirichlet Branes and Ramond-Ramond charges. Physical Review Letters 75 (1995) 4724 (arXiv:hep-th/9510017).Google Scholar
Burgess, C. P., Horbatsch, M. W. and Patil, S. P. 2013. Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys. Journal of High Energy Physics 1301 (2013) 133 (arXiv:1209.5701 (hep-th)).Google Scholar
Ostrogradsky, M. 1850. Mémoires sur les équations différentielles, relatives au problème des isopéimètres. Mémoires de l’Académie impériale des sciences de St. Pétersbourg VI 4 (1850) 385.Google Scholar
Woodard, R. P. 2015. Ostrogradsky’s Theorem on Hamiltonian Instability. Scholarpedia 10 (2015) 32243 (arXiv:1506.02210 (hep-th)).Google Scholar
Motohashi, H. and Suyama, T. 2015. Third Order Equations of Motion and the Ostrogradsky Instability. Physical Review D91 (2015) 085009 (arXiv:1411.3721 (physics.class-ph)).Google Scholar
Burgess, C. P. and Williams, M. 2014. Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs. Journal of High Energy Physics 1408 (2014) 074 (arXiv:1404.2236 (gr-qc)).Google Scholar
Horndeski, G. W. 1974. Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space. International Journal of Theoretical Physics 10 (1974) 363.CrossRefGoogle Scholar
Nicolis, A., Rattazzi, R. and Trincherini, E. 2009. The Galileon as a Local Modification of Gravity. Physical Review D79 (2009) 064036 (arXiv:0811.2197 (hep-th)).Google Scholar
Deffayet, C., Gao, X., Steer, D. A. and Zahariade, G. 2011. From k-Essence to Generalised Galileons. Physical Review D84 (2011) 064039 (arXiv:1103.3260 (hep-th)).Google Scholar
Solomon, A. R. and Trodden, M. 2018. Higher-Derivative Operators and Effective Field Theory for General Scalar-Tensor Theories. Journal of Cosmology and Astroparticle Physics 1802 (2018) 031 (arXiv:1709.09695 (hep-th)).Google Scholar
Sarbach, O. and Tiglio, M. 2012. Continuum and Discrete Initial-Boundary-Value Problems and Einsteins Field Equations. Living Reviews of Relativity 15 (2012) 100 (arXiv:1203.6443 (gr-qc)).Google Scholar
Kreiss, H.-O. and Lorenz, J. 1989. Initial-Boundary Value Problems and the Navier-Stokes Equations. Pure and Applied Mathematics 136, Academic Press, San Diego, 1989.Google Scholar
Hadamard, J. 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin 13 (1902) 4952.Google Scholar
Papallo, G. and Reall, H. S. 2017. On the Local Well-Posedness of Lovelock and Horndeski Theories. Physical Review D96 (2017) 044019 (arXiv:1705.04370 (gr-qc)).Google Scholar
Tikhonov, A. N. and Arsenin, V. Y. 1977. Solutions of Ill-Posed Problems. Winston Press, New York, 1977.Google Scholar
Allwright, G. and Lehner, L. 2018. Towards the Nonlinear Regime in Extensions to GR: Assessing Possible Options. (arXiv:1808.07897 (gr-qc)).Google Scholar
Cheung, C., Creminelli, P., Fitzpatrick, A. L., Kaplan, J. and Senatore, L. 2008. The Effective Field Theory of Inflation. Journal of High Energy Physics 0803 (2008) 014 (arXiv:0709.0293 (hep-th)).Google Scholar
Nicolis, A. and Piazza, F. 2011. Spontaneous Symmetry Probing. Journal of High Energy Physics 1206 (2012) 025 (arXiv:1112.5174 (hep-th)).Google Scholar
Volkov, D. V. 1973. Phenomenological Lagrangians. Soviet Journal of Nuclear Physics 4 (1973) 1; (Fizika Elementarnykh Chastits i Atomnogo Yadra 4 (1973) 3).Google Scholar
Burgess, C. P. 2000. Goldstone and Pseudo-Goldstone Bosons in Nuclear, Particle and Condensed Matter Physics. Physics Reports 330 (2000) 193 (hep-th/9808176).Google Scholar
Watanabe, H. and Murayama, H. 2012. Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance. Physical Review Letters 108 (2012) 251602 (arXiv:1203.0609 (hep-th)).Google Scholar
Glashow, S. L. 1961. Partial Symmetries of Weak Interactions. Nuclear Physics 22 (1961) 579.Google Scholar
Salam, A. 1968. Weak and Electromagnetic Interactions. Conference Proceedings C 680519 (1968) 367.Google Scholar
Glashow, S. L., Iliopoulos, J. and Maiani, L. 1970. Weak Interactions with Lepton-Hadron Symmetry. Physical Review D2 (1970) 1285.Google Scholar
Cabibbo, N. 1963. Unitary Symmetry and Leptonic Decays. Physical Review Letters 10 (1963) 531.Google Scholar
Kobayashi, M. and Maskawa, T. 1973. CP Violation in the Renormalizable Theory of Weak Interaction. Progress in Theoretical Physics 49 (1973) 652.Google Scholar
Pontecorvo, B. 1957. Inverse Beta Processes and Nonconservation of Lepton Charge. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 34 247 (Soviet Physics JETP 7 (1958) 172).Google Scholar
Maki, Z., Nakagawa, M. and Sakata, S. 1962. Remarks on the Unified Model of Elementary Particles. Progress of Theoretical Physics 28 870.Google Scholar
Fermi, E. 1933. Tentativo di una teoria dei raggi β. La Ricerca Scientifica 2 (12). Il Nuovo Cimento 11 1.Google Scholar
Fermi, E. 1934. Versuch einer Theorie der beta-Strahlen. I. Zeitschrift für Physik 88 161. For an English translation see Wilson, F. L. 1968. Fermi’s Theory of Beta Decay. American Journal of Physics 36 1150.Google Scholar
Feynman, R. P. and Gell-Mann, M. 1958. Theory of the Fermi Interaction. Physical Review 109 193.CrossRefGoogle Scholar
Sudarshan, E. C. and Marshak, R. E. 1958. Chirality Invariance and the Universal Fermi Interaction. Physical Review 109 1860.Google Scholar
Dirac, P. A. M. 1927. The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society of London A 114 243.Google Scholar
Fermi, E. 1932. Quantum Theory of Radiation. Reviews of Modern Physics 4 87.Google Scholar
Dirac, P. A. M. 1928. The Quantum Theory of the Electron. Proceedings of the Royal Society A: 117 610.Google Scholar
Tomonaga, S. 1946. On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. Progress of Theoretical Physics 1 27.Google Scholar
Schwinger, J. 1948. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review 73 416.Google Scholar
Feynman, R. P. 1949. SpaceTime Approach to Quantum Electrodynamics. Physical Review 76 769. The Theory of Positrons. Physical Review 76 749.Google Scholar
Dyson, F. 1949. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Physical Review 75 486.Google Scholar
Furry, W. H. 1937. A Symmetry Theorem in Positron Theory. Physical Review 51 125.Google Scholar
Dyson, F. J. 1949. The S-matrix in Quantum Electrodynamics. Physical Review 75 (1949) 1736.CrossRefGoogle Scholar
Rutherford, E. 1911. The Scattering of α and β rays by Matter and the Structure of the Atom. Philosophical Magazine 6 21.Google Scholar
Euler, H. and Kockel, B. 1935. Über die Streuung von Licht an Licht nach der Diracschen Theorie. Die Naturwissenschaften 23 246.Google Scholar
Heisenberg, W. and Euler, H. 1936. Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift für Physik 98 714.Google Scholar
Karplus, R. and Neuman, M. 1951. The Scattering of Light by Light. Physical Review 83 (1951) 776.Google Scholar
Low, F. E. 1954. Scattering of Light of Very Low Frequency by Systems of Spin 1/2. Physical Review 96 (1954) 1428.Google Scholar
Gell-Mann, M. and Goldberger, M. L. 1954. Scattering of Low-Energy Photons by Particles of Spin 1/2. Physical Review 96 (1954) 1433.Google Scholar
Bloch, F. and Nordsieck, A. 1937. Note on the Radiation Field of the Electron. Physical Review 52 (1937) 54.Google Scholar
Yennie, D. R., Frautschi, S. C. and Suura, H. 1955. The Infrared Divergence Phenomena and High-Energy Processes. Annals of Physics (NY) 13 (1955) 379.Google Scholar
Kinoshita, T. 1962. Mass Singularities of Feynman Amplitudes. Journal of Mathematical Physics 3 (1962) 650.Google Scholar
Lee, T.-D. and Nauenberg, M. 1964. Degenerate Systems and Mass Singularities. Physical Review D133 (1964) B1549,Google Scholar
Callan, C. G. 1970. Broken Scale Invariance in Scalar Field Theory. Physical Review D2 (1970) 1541.Google Scholar
Symanzik, K. 1970. Small Distance Behaviour in Field Theory and Power Counting. Communications in Mathematical Physics 18 (1970) 227.Google Scholar
Gell-Mann, M. 1961. The Reaction γ + γ → nu + ν̅. Physical Review Letters 6 (1961) 70.Google Scholar
Dicus, D. A. and Repko, W. W. 1993. Photon Neutrino Scattering. Physical Review D48 (1993) 5106 (arXiv:hep-ph/9305284).Google Scholar
Dicus, D. A and Repko, W. W. 1997. Photon – Neutrino Interactions. Physical Review Letters 79 (1997) 569 (arXiv:hep-ph/9703210).Google Scholar
Aghababaie, Y. and Burgess, C. P. 2000. Two Neutrino Five Photon Scattering at Low-Energies. Physical Review D 63 (2001) 113006 (arXiv:hep-ph/0006165).Google Scholar
Yang, C. N. 1950. Selection Rules for the Dematerialization of a Particle into Two Photons. Physical Review 77 (1950) 242.Google Scholar
Bowick, M. J. and Travesset, A. 2000. The Statistical Mechanics of Membranes. Physics Reports 344 (2001) 255 (cond-mat/0002038 (cond-mat.soft)).Google Scholar
Aghababaie, Y. and Burgess, C. P. 2003. Effective Actions, Boundaries and Precision Calculations of Casimir Energies. Physical Review D70 (2004) 085003 (hep-th/0304066).Google Scholar
Casimir, H. B. G. 1948. On the Attraction between Two Perfectly Conducting Plates. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793.Google Scholar
Jaffe, R. 2005. Casimir Effect and the Quantum Vacuum. Physical Review D72 (2005) 021301 (arXiv:hep-th/0503158).Google Scholar
Sparnaay, M. J. 1957. Attractive Forces between Flat Plates. Nature 180 (1957) 334.Google Scholar
Lamoreaux, S. K. 1997. Demonstration of the Casimir Force in the 0.6 to 6 μm Range. Physical Review Letters 78 5.Google Scholar
Mohideen, U. and Roy, A. 1998. Precision Measurement of the Casimir Force from 0.1 to 0.9 μm. Physical Review Letters 81 4549. (arXiv:physics/9805038).Google Scholar
Brown, L. S. and Maclay, G. J. 1969. Vacuum Stress between Conducting Plates: An Image Solution. Physical Review 184 (1969) 1272.Google Scholar
Ravndal, F. and Thomassen, J. B. 2001. Radiative Corrections to the Casimir Energy and Effective Field Theory. Physical Review D63 (2001) 113007 (hep-th/0101131).Google Scholar
Bordag, M., Wieczorek, E. and Robaschik, D. 1984. Radiation Corrections to the Casimir Effect (in Russian). Soviet Journal of Nuclear Physics 39 (1984) 663 (Yadernaya Fizika 39 (1984) 1053).Google Scholar
Bordag, M., Wieczorek, E. and Robaschik, D. 1985. Quantum Field Theoretic Treatment of the Casimir Effect. Annals of Physics 165 (1985) 192.Google Scholar
Gell-Mann, M. 1964. A Schematic Model of Baryons and Mesons. Physics Letters 8 (1964) 214.Google Scholar
Zweig, G. 1964. An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Version 1. (preprint CERN-TH-401). An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Version 2. in Developments in the Quark Theory of Hadrons, Volume 1, ed. by D. Lichtenberg and S. Rosen, pp. 22–101 (preprint CERN-TH-412).Google Scholar
Bjorken, B. J. and Glashow, S. L. 1964. Elementary Particles and SU(4). Physics Letters 11 255.CrossRefGoogle Scholar
Feynman, R. P. 1969. Very High-Energy Collisions of Hadrons. Physical Review Letters 23 (1969) 1415.Google Scholar
Greenberg, O. W. 1964. Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons. Physical Review Letters 13 (1964) 598.Google Scholar
Han, M. Y. and Nambu, Y. 1965. Three-Triplet Model with Double SU(3) Symmetry. Physical Review 139 (1965) B1006.Google Scholar
Struminsky, B. V. 1965. Magnetic Moments of Baryons in the Quark Model. JINR-Preprint P-1939 Dubna, Russia.Google Scholar
Fritzsch, H., Gell-Mann, M. and Leutwyler, H. 1973. Advantages of the Color Octet Gluon Picture. Physics Letters 47B (1973) 365.Google Scholar
Vanyashin, V. S. and Terent’ev, M. V. 1965. The Vacuum Polarization of a Charged Vector Field. Journal of Experimental and Theoretical Physics 21 (1965) 375.Google Scholar
Khriplovich, I. B. 1970. Green’s Functions in Theories with Non-Abelian Gauge Group. Soviet Journal of Nuclear Physics 10 (1970) 235.Google Scholar
‘t Hooft, G. 1972. Unpublished talk at the Marseille conference on Renormalization of YangMills Fields and Applications to Particle Physics.Google Scholar
Gross, D. J. and Wilczek, F. 1973. Ultraviolet Behavior of Non-Abelian Gauge Theories. Physical Review Letters 30 1343.Google Scholar
Politzer, H. D. 1973. Reliable Perturbative Results for Strong Interactions. Physical Review Letters 30 1346.CrossRefGoogle Scholar
Schael, S. et al. (ALEPH and DELPHI and L3 and OPAL and SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group). 2005. Precision Electroweak Measurements on the Z Resonance. Physics Reports 427 (2006) 257 (hep-ex/0509008).Google Scholar
Gross, D. J. and Wilczek, F. 1973. Asymptotically Free Gauge Theories I. Physical Review D8 (1973) 3633.Google Scholar
Weinberg, S. 1973. Nonabelian Gauge Theories of the Strong Interactions. Physical Review Letters 31 (1973) 494.Google Scholar
Glashow, S. L., Jackiw, R. and Shei, S.-S. 1969. Electromagnetic Decays of Pseudoscalar Mesons. Physical Review 187 (1969) 1916.Google Scholar
t Hooft, G. 1976. Symmetry Breaking through Bell-Jackiw Anomalies. Physical Review Letters 37 (1976) 8.Google Scholar
Jackiw, R. and Rebbi, C. 1976. Physical Review Letters 37 (1976) 172.Google Scholar
Callan, C. G., Dashen, R. F. and Gross, D. J. 1976. The Structure of the Gauge Theory Vacuum. Physics Letters 63B (1976) 334.Google Scholar
Vafa, C. and Witten, E. 1984. Parity Conservation in QCD. Physical Review Letters 53 (1984) 535.Google Scholar
Heisenberg, W. 1932. Über den Bau der Atomkerne. Zeitschrift für Physik 77 1.Google Scholar
Wigner, E. 1937. On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei. Physical Review 51 106.CrossRefGoogle Scholar
Adler, S. L. 1965. Calculation of the Axial Vector Coupling Constant Renormalization in Beta Decay. Physical Review Letters 14 (1965) 1051;Google Scholar
Weisberger, W. I. 1965. Renormalization of the Weak Axial Vector Coupling Constant. Physical Review Letters 14 (1965) 1047.Google Scholar
Gell-Mann, M., Oakes, R. J. and Renner, B. 1968. Behavior of Current Divergences under SU3?SU3. Physical Review 175 (1968) 2195.Google Scholar
Bardeen, W. A., Bijnens, J. and Gérard, J.-M. 1989. Hadronic Matrix Elements and the π+ – π0 Mass Difference. Physical Review Letters 62 (1989) 1343.Google Scholar
Donoghue, J. F. and Perez, A. F. 1997. The Electromagnetic Mass Differences of Pions and Kaons. Physical Review D55 (1997) 7075 (hep-ph/9611331).Google Scholar
Ruderman, M. and Finkelstein, R. 1949. Note on the Decay of the π-Meson Physical Review 76 (1949) 1458.Google Scholar
Goldberger, M. L. and Treiman, S. 1958. Decay of the Pi Meson. Physical Review 110 (1958) 1178.Google Scholar
Jenkins, E. E. and Manohar, A. V. 1990. Baryon Chiral Perturbation Theory Using a Heavy Fermion Lagrangian. Physics Letters B255 (1991) 558.Google Scholar
Goldberger, M. L. and Treiman, S. 1958. Form Factors in β Decay and μ Capture. Physical Review 111 (1958) 354.Google Scholar
Donoghue, J. F., Golowich, E. and Holstein, B. R. 1992. Dynamics of the Standard Model. Cambridge Monographs in Particle Physics, Nuclear Physics and Cosmology 2 (1992) 1 (2nd edition: Cambridge Monographs in Particle Physics, Nuclear Physics and Cosmology 35 (2014)).Google Scholar
Glashow, S. and Weinberg, S. 1968. Breaking Chiral Symmetry. Physical Review Letters 20 (1968) 224.Google Scholar
Gell-Mann, M. 1961. Caltech Synchrotron Laboratory Report CTSL-20 (1961), reproduced in the book The Eightfold Way, by M. Gall=Mann and Y. Ne’eman (Benjamin, New York, 1964).Google Scholar
Okubo, S. 1962. Note on Unitary Symmetry in Strong Interactions. Progress in Theoretical Physics 27 (1962) 949.Google Scholar
Dashen, R. 1969. Chiral SU(3) × SU(3) As a Symmetry of the Strong Interactions. Physical Review 183 (1969) 1245.Google Scholar
Burgess, C. P. and Moore, G. D. The Standard Model: A Modern Primer (Cambridge Press, 2007; post-Higgs update 2013).Google Scholar
Weinberg, S. 1979. Baryon and Lepton Nonconserving Processes. Physical Review Letters 43 (1979) 1566.Google Scholar
Perl, M. et al. 1975. Evidence for Anomalous Lepton Production in e + e ? Annihilation. Physical Review Letters 35 (1975) 1489.Google Scholar
Zel’dovich, Ia. B. 1952. Doklady Akademii Nauk SSSR 86 (1952) 505 (1952 ).Google Scholar
Davis, R., Harmer, D. S. and Hoffman, K. C. 1968. Search for Neutrinos from the Sun. Physical Review Letters 20 (1968) 1205.Google Scholar
Fukudae, Y. et al. (Super-Kamiokande Collaboration) 1998. Evidence for Oscillation of Atmospheric Neutrinos. Physical Review Letters 81 (1998) 1562 (arXiv:hep-ex/9807003).Google Scholar
Ahmad, Q. R. et al. (SNO Collaboration) 2001. Measurement of the Rate of νe + d → p + p + e Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters 87 (1968) 071301 (arXiv:nucl-ex/0106015).Google Scholar
Abe, Y. et al. (Double Chooz collaboration) 2012. Indication for the Disappearance of Reactor Electron Antineutrinos in the Double Chooz Experiment. Physical Review Letters 108 (2012) 131801 (arXiv:1112.6353).Google Scholar
An, F. P. et al. (Daya Bay Collaboration) 2012. Observation of Electron-Antineutrino Disappearance at Daya Bay. Physical Review Letters 108 (2012) 171803 (arXiv:1203.1669).Google Scholar
Pontecorvo, B. 1957. Mesonium and Anti-Mesonium. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 33 (1957) 549 (Soviet Physics JETP 6 (1957) 429431).Google Scholar
Pontecorvo, B. 1968. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 53 (1968) 1717 (Soviet Physics JETP 26 (1968) 984).Google Scholar
Chivukula, R. S. and Georgi, H. 1987. Composite Technicolor Standard Model. Physics Letters B188 (1987) 99.Google Scholar
DAmbrosio, G., Giudice, G. F., Isidori, G. and Strumia, A. 2002. Minimal Flavour Violation: An Effective Field Theory Approach. Nuclear Physics B645 (2002) 155 (arXiv:hep-ph/0207036).Google Scholar
Georgi, H. and Glashow, S. L. 1972. Gauge Theories without Anomalies. Physical Review D6 (1972) 429.Google Scholar
Bouchiat, C., Iliopoulos, J. and Meyer, P. 1972. An Anomaly Free Version of Weinberg’s Model. Physics Letters 38B (1972) 519.Google Scholar
Gross, D. J. and Jackiw, R. 1972. Effect of Anomalies on Quasirenormalizable Theories. Physical Review D6 (1972) 477.Google Scholar
Alvarez-Gaume, L. and Witten, E. Gravitational Anomalies. Nuclear Physics B234 (1984) 269.Google Scholar
Minahan, J. A., Ramond, P. and Warner, R. C. 1990. A Comment on Anomaly Cancellation in the Standard Model. Physical Review D41 (1990) 715.Google Scholar
Weinberg, S. 1980. Varieties of Baryon and Lepton Nonconservation. Physical Review D22 (1980) 1694.Google Scholar
Minkowski, P. 1977. μ → eγ at a Rate of One Out of a Billion Muon Decays? Physics Letters 67B (1977) 421.Google Scholar
Gell-Mann, M., Ramond, P. and Slansky, R. 1979. in Supergravity, ed. by D. Freedman and P. Van Nieuwenhuizen, North Holland, Amsterdam (1979), p. 315.Google Scholar
Wilczek, F. and Zee, A. 1979. Operator Analysis of Nucleon Decay. Physical Review Letters 43 (1979) 1571.Google Scholar
Abbott, L. F. and Wise, M. B. 1980. The Effective Hamiltonian for Nucleon Decay. Physical Review D22 (1980) 2208.Google Scholar
Buchmuller, W. and Wyler, D. 1986. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. Nuclear Physics B268 (1986) 621.Google Scholar
Grzadkowski, B., Iskrzynski, M., Misiak, M. and Rosiek, J. 2010. Dimension-Six Terms in the Standard Model Lagrangian. Journal of High Energy Physics 1010 (2010) 085 (arXiv:1008.4884 (hep-ph)).Google Scholar
Georgi, H. and Glashow, S. L. 1974. Unity of All Elementary Particle Forces. Physical Review Letters 32 (1974) 438.Google Scholar
Georgi, H., Quinn, H. R. and Weinberg, S. 1974. Hierarchy of Interactions in Unified Gauge Theories. Physical Review Letters 33 (1974) 451.Google Scholar
Dimopoulos, S., Raby, S. and Wilczek, F. 1981. Supersymmetry and the Scale of Unification. Physical Review D24 (1981) 1681.Google Scholar
Ibanez, L. E. and Ross, G. G. 1981. Low-Energy Predictions in Supersymmetric Grand Unified Theories. Physics Letters B105 (1981) 439.Google Scholar
Dimopoulos, S. and Georgi, H. 1981. Softly Broken Supersymmetry and SU(5). Nuclear Physics B193 (1981) 150.Google Scholar
Peccei, R. D. and Quinn, H. R. 1977. CP Conservation in the Presence of Pseudoparticles. Physical Review Letters 38 (1977) 1440.Google Scholar
Weinberg, S. 1977. A New Light Boson? Physical Review Letters 40 (1978) 223.Google Scholar
Wilczek, F. 1977. Problem of Strong P and T Invariance in the Presence of Instantons. Physical Review Letters 40 (1978) 279.Google Scholar
Weinberg, S. 1975. Implications of Dynamical Symmetry Breaking. Physical Review D13 (1976) 974 Addendum: (Phys. Rev. D19 (1979) 1277).Google Scholar
Susskind, L. 1978. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Physical Review D20 (1979) 2619.Google Scholar
Gervais, J.-L. and Sakita, B. 1971. Field Theory Interpretation of Supergauges in Dual Models. Nuclear Physics B34 632.Google Scholar
Volkov, D. V. and Akulov, V. P. 1972. Possible Universal Neutrino Interaction. Pisma Zh.Eksp.Teor.Fiz. 16 (1972) 621; (JETP Letters 16 (1972) 438) Is the Neutrino a Goldstone Particle? Physics Letters 46B (1973) 109; Teor.Mat.Fiz. 18 (1974) 39.Google Scholar
Wess, J. and Zumino, B. 1974. Supergauge Transformations in Four Dimensions. Nuclear Physics B70 39.Google Scholar
Farrar, G. R. and Fayet, P. 1978. Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry. Physics Letters 76B (1978) 575.Google Scholar
Fayet, P. 1977. Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions. Physics Letters 69B (1977) 489.Google Scholar
Witten, E. 1981. Dynamical Breaking of Supersymmetry. Nuclear Physics B188 (1981) 513.Google Scholar
Alvarez-Gaume, L., Polchinski, J. and Wise, M. B. 1983. Minimal Low-Energy Supergravity. Nuclear Physics B221 (1983) 495.Google Scholar
Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. 1998. The Hierarchy Problem and New Dimensions at a Millimeter. Physics Letters B429 (1998) 263 (arXiv:hep-ph/9803315);Google Scholar
Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. 1999. Phenomenology, Astrophysics and Cosmology of Theories with Submillimeter Dimensions and TeV Scale Quantum Gravity. Physical Review D59 (1999) 086004 (arXiv:hep-ph/9807344).Google Scholar
Randall, L. and Sundrum, R. 1999. Large Mass Hierarchy from a Small Extra Dimension. Physical Review Letters 83 (1999) 33703373 (arXiv:hep-ph/9905221).Google Scholar
Randall, L. and Sundrum, R. 1999. An Alternative to Compactification. Physical Review Letters 83 (1999) 4690 (arXiv:hep-th/9906064).Google Scholar
Riess, A. G. et al. 1998. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal 116 (1998) 100938 (arXiv:astro-ph/9805201).Google Scholar
Perlmutter, S. et al. 1999. Measurements of Omega and Lambda from 42 High Redshift Supernovae. Astrophysical Journal 517 (1999) 565 (arXiv:astro-ph/9812133).Google Scholar
Weinberg, S. 1989. The Cosmological Constant Problem. Reviews of Modern Physics 61 (1989) 1.Google Scholar
Einstein, E. 1915. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 10301085.Google Scholar
Einstein, E. 1915. Die Feldgleichungen der Gravitation. ibid., 844847.Google Scholar
Einstein, E. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 49 769822.Google Scholar
Feynman, R. P. 1963. Quantum Theory of Gravitation. Acta Physica Polonica 24 (1963) 697.Google Scholar
DeWitt, B. S. 1967. Quantum Theory of Gravity. 1. The Canonical Theory. Physical Review 160 (1967) 1113.Google Scholar
DeWitt, B. S. 1967. Quantum Theory of Gravity. 2. The Manifestly Covariant Theory. Physical Review 162 (1967) 1195.Google Scholar
DeWitt, B. S. 1967. Quantum Theory of Gravity. 3. Applications of the Covariant Theory. Physical Review 162 (1967) 1239.Google Scholar
Hilbert, D. 1915. Die Grundlagen der Physik. Königliche Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse. Nachrichten, 395407.Google Scholar
Lovelock, D. 1971. The Einstein Tensor and Its Generalizations. Journal of Mathematical Physics 12 498501.Google Scholar
Lovelock, D. 1972. The Four-Dimensionality of Space and the Einstein Tensor. Journal of Mathematical Physics 13 874876.Google Scholar
Donoghue, J. F. 1994. Leading Quantum Correction to the Newtonian Potential. Physical Review Letters 72 (1994) 2996 (gr-qc/9310024).Google Scholar
Donoghue, J. F. 1994. General Relativity as an Effective Field Theory: The Leading Quantum Corrections. Physical Review D50 (1994) 3874 (gr-qc/9405057).Google Scholar
Gross, D. J. and Sloan, J. H. 1986. The Quartic Effective Action for the Heterotic String. Nuclear Physics B291 (1987) 41.Google Scholar
Simon, J. Z. 1991. The Stability of Flat Space, Semiclassical Gravity, and Higher Derivatives. Physical Review D43 (1991) 3308.Google Scholar
Burgess, C. P., Holman, R., Tasinato, G. and Williams, M. 2014. EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical. Journal of High Energy Physics 03 090 (arXiv:1408.5002 (hep-th)).Google Scholar
Burgess, C.P., Holman, R. and Tasinato, G. 2015. Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation. Journal of High Energy Physics 01 153 (arXiv:1512.00169 (gr-qc)).Google Scholar
Will, C. M. 2014. The Confrontation between General Relativity and Experiment. Living Reviews of Relativity 17 (2014) 4 (arXiv:1403.7377 (gr-qc)).Google Scholar
Berti, E. et al. 2015. Testing General Relativity with Present and Future Astrophysical Observations. Classical and Quantum Gravity 32 (2015) 243001 (arXiv:1501.07274 (gr-qc)).Google Scholar
Hawking, S. W. 1974. Black Hole Explosions? Nature 248 (5443) 3031.Google Scholar
Hawking, S. W. 1974. Particle Creation by Black Holes. Communications in Mathematical Physics 43 (1975) 199 Erratum: (Communications in Mathematical Physics 46 (1976) 206).Google Scholar
Peebles, P. J. E. 1980. The Large-Scale Structure of the Universe. (Princeton Press, 1980).Google Scholar
Peebles, P. J. E. 1993. Principles of Physical Cosmology. (Princeton Press, 1993).Google Scholar
Mukhanov, V. F. 2005. Physical Foundations of cosmology. (Cambridge Press, 2005).Google Scholar
Jeans, J. H. 1902. The Stability of a Spherical Nebula. Philosophical Transactions of the Royal Society A 199 153.Google Scholar
Mukhanov, V. F. and Chibisov, G. V. 1981. Quantum Fluctuations and a Nonsingular Universe. Pisma Zh.Eksp.Teor.Fiz. 33 (1981) 549; (JETP Letters 33 (1981) 532). Guth, A. H. and Pi, S. Y. 1982. Fluctuations in the New Inflationary Universe. Physical Review Letters 49 (1982) 1110.Google Scholar
Starobinsky, A. A. 1982. Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations. Physics Letters 117B (1982) 175.Google Scholar
Hawking, S. W. 1982. The Development of Irregularities in a Single Bubble Inflationary Universe. Physics Letters 115B (1982) 295.Google Scholar
Linde, A. D. 1982. Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario. Physics Letters 116B (1982) 335.Google Scholar
Bardeen, J. M., Steinhardt, P. J. and Turner, M. S. 1983. Spontaneous Creation of Almost Scale – Free Density Perturbations in an Inflationary Universe. Physical Review D28 (1983) 679.Google Scholar
Aghanim, N. et al. (Planck Collaboration) 2018. Planck 2018 Results. VI. Cosmological parameters. (arXiv:1807.06209 (astro-ph.CO)).Google Scholar
Guth, A. H. 1981. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D23 (1981) 347–356.Google Scholar
Linde, A. D. 1982. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters 108B (1982), 389–393.Google Scholar
Albrecht, A. and Steinhardt, P. J. 1982. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters 48 (1982) 1220–1223.Google Scholar
Linde, A. D. 1983. Chaotic Inflation. Physics Letters 129B (1983) 177.Google Scholar
Burgess, C. P., Lee, H. M. and Trott, M. 2009. Power-Counting and the Validity of the Classical Approximation during Inflation. Journal of High Energy Physics 0909 (2009) 103 (arXiv:0902.4465 (hep-ph)).Google Scholar
Adshead, P., Burgess, C. P., Holman, R. and Shandera, S. 2018. Power-Counting during Single-Field Slow-Roll Inflation. Journal of Cosmology and Astroparticle Physics 1802 (2018) 016 (arXiv:1708.07443 (hep-th)).Google Scholar
Liddle, A. R. and Lyth, D. H. 1992. COBE, Gravitational Waves, Inflation and Extended Inflation. Physics Letters 291B (1992) 391 (astro-ph/9208007).Google Scholar
Akrami, Y. et al. (Planck Collaboration). 2018. Planck 2018 Results. X. Constraints on Inflation. (arXiv:1807.06211 (astro-ph.CO)).Google Scholar
Oriti, D. 2009. Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter (Cambridge Press, 2009).Google Scholar
Nambu, Y. 1970. Quark model and the Factorization of the Veneziano Amplitude. In Symmetries and Quark Models: Proceedings of the International Conference World Scientific 1969 (pp. 258–267).Google Scholar
Nielsen, H. B. 1969. An almost physical interpretation of the dual N point function. Nordita preprint (1969) unpublished.Google Scholar
Susskind, L. 1969. Harmonic Oscillator Analogy for the Veneziano Amplitude. Physical Review Letters 23 545547.Google Scholar
Susskind, L. 1970. Structure of Hadrons Implied by Duality. Physical Review D1 11821186.Google Scholar
Ramond, P. 1971. Dual Theory for Free Fermions. Physical Review D3 2415.Google Scholar
Neveu, A. and Schwarz, J. 1971. Tachyon-Free Dual Model with a Positive-Intercept Trajectory. Physics Letters 34B 517518.Google Scholar
Gliozzi, F., Scherk, J. and Olive, D. I. 1977. Supersymmetry, Supergravity Theories and the Dual Spinor Model. Nuclear Physics B122 (1977) 253.Google Scholar
Duff, M., Howe, P., Inami, T. and Stelle, K. 1987. Superstrings in D = 10 from Supermembranes in D = 11. Nuclear Physics B191 7074.Google Scholar
Witten, E. 1995. String Theory Dynamics in Various Dimensions. Nuclear Physics B443 (1995) 85 (hep-th/9503124).Google Scholar
Horava, P. and Witten, E. 1995. Heterotic and Type I String Dynamics from Eleven Dimensions. Nuclear Physics B 460 506524 (arXiv:hep-th/9510209).Google Scholar
Duff, M. 1996. M-theory (the Theory Formerly Known As Strings). International Journal of Modern Physics A 11 652341 (arXiv:hepth/9608117).Google Scholar
Green, M. B. and Schwarz, J. H. 1982. Supersymmetrical String Theories. Physics Letters 109B 444448.Google Scholar
Green, M. B. and Schwarz, J. H. 1984. Anomaly Cancellations in Supersymmetric D = 10 Gauge Theory and Superstring Theory. Physics Letters 149B 117122.Google Scholar
Gross, D. J., Harvey, J. A., Martinec, E. J. and Rohm, R. 1985. Heterotic String Theory. 1. The Free Heterotic String. Nuclear Physics B256 (1985) 253.Google Scholar
Gross, D. J., Harvey, J. A., Martinec, E. J. and Rohm, R. 1986. Heterotic String Theory. 2. The Interacting Heterotic String. Nuclear Physics B267 (1986) 75.Google Scholar
Witten, E. 1984. Some Properties of O(32) Superstrings. Physics Letters 149B (1984) 351.Google Scholar
Witten, E. 1986. New Issues in Manifolds of SU(3) Holonomy. Nuclear Physics B268 (1986) 79.Google Scholar
Burgess, C. P., Font, A. and Quevedo, F. 1986. Low-Energy Effective Action for the Superstring. Nuclear Physics B272 (1986) 661.Google Scholar
Burgess, C. P., Escoda, C. and Quevedo, F. 2006. Nonrenormalization of Flux Superpotentials in String Theory. Journal of High Energy Physics 0606 (2006) 044 (hep-th/0510213).Google Scholar
Veneziano, G. 1968. Construction of a Crossing-Symmetric, Regge-Behaved Amplitude for Linearly Rising Trajectories. Nuovo Cimento A57 1907.Google Scholar
Virasoro, M. 1969. Alternative Constructions of Crossing-Symmetric Amplitudes with Regge Behavior. Physical Review 177 23092311.Google Scholar
Shapiro, J. A. 1970. Electrostatic Analogue for the Virasoro Model. Physics Letters 33B 361362.Google Scholar
Gross, D. J. and Witten, E. 1986. Superstring Modifications of Einstein’s Equations. Nuclear Physics B277 (1986) 1.Google Scholar
Candelas, P., Horowitz, G. T., Strominger, A. and Witten, E. 1985. Vacuum Configurations for Superstrings. Nuclear Physics B258 (1985) 46.Google Scholar
Giddings, S. B., Kachru, S. and Polchinski, J. 2002. Hierarchies from Fluxes in String Compactifications. Physical Review D66 (2002) 106006 (hep-th/0105097).Google Scholar
Kaluza, T. 1921. Zum Unitätsproblem in der Physik. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin (Math. Phys.) 966972.Google Scholar
Klein, O. 1926. Quantentheorie und funfdimensionale Relativittstheorie. Zeitschrift für Physik A37 895906.Google Scholar
Klein, O. 1926. The Atomicity of Electricity as a Quantum Theory Law. Nature 118 516.Google Scholar
Witten, E. 1981. Search for a Realistic Kaluza–Klein Theory. Nuclear Physics B186 (1981) 412.Google Scholar
Cremmer, E. and Scherk, J. 1976. Spontaneous Compactification of Space in an Einstein Yang–Mills Higgs Model. Nuclear Physics B108 (1976) 409.Google Scholar
Freund, P. G. O. and Rubin, M. A. 1980. Dynamics of Dimensional Reduction. Physics Letters 97B (1980) 233.Google Scholar
Candelas, P. and Weinberg, S. 1984. Calculation of Gauge Couplings and Compact Circumferences from Self-Consistent Dimensional Reduction. Nuclear Physics B237 (1984) 397.Google Scholar
Salam, A. and Sezgin, E. 1984. Chiral Compactification on Minkowski × S2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions. Physics Letters 147B (1984) 47.Google Scholar
Christensen, S. M. and Duff, M. J. 1979. New Gravitational Index Theorems and Supertheorems. Nuclear Physics B154 (1979) 301.Google Scholar
Hoover, D. and Burgess, C. P. 2005. Ultraviolet Sensitivity in Higher Dimensions. Journal of High Energy Physics 0601 (2006) 058 (hep-th/0507293).Google Scholar
Burgess, C. P. and Hoover, D. 2005. UV Sensitivity in Supersymmetric Large Extra Dimensions: The Ricci-Flat Case. Nuclear Physics B772 (2007) 175 (hep-th/0504004).Google Scholar
Kaloper, N., March-Russell, J., Starkman, G. D. and Trodden, M. 2000. Compact Hyperbolic Extra Dimensions: Branes, Kaluza–Klein Modes and Cosmology. Physical Review Letters 85 (2000) 928 (hep-ph/0002001).Google Scholar
Einstein, A. 1916. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin part 1: 688–696.Google Scholar
Einstein, A. 1918. Über Gravitationswellen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin part 1: 154167.Google Scholar
Lichnerowicz, A. 1961. Propagateurs et commutateurs en relativité générale. Publications Mathématiques de l’Institute des Hautes Études Scientifiques 10 (1961) 293344.Google Scholar
Kachru, S., Kallosh, R., Linde, A. D. and Trivedi, S. P. 2003. De Sitter Vacua in String Theory. Physical Review D68 (2003) 046005 (hep-th/0301240).Google Scholar
Balasubramanian, V., Berglund, P., Conlon, J. P. and Quevedo, F. 2005. Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications. Journal of High Energy Physics 0503 (2005) 007 (hep-th/0502058).Google Scholar
Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R. 1998. New Dimensions at a Millimeter to a Fermi and Superstrings at a TeV. Physics Letters 436B (1998) 257 (hep-ph/9804398).Google Scholar
Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R. 1998. The Hierarchy Problem and New Dimensions at a Millimeter. Physics Letters 429B (1998) 263 (hep-ph/9803315).Google Scholar
Kapner, D. J. et al. (Eot-Wash collaboration). 2007. Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale. Physical Review Letters 98 (2007) 021101 (hep-ph/0611184).Google Scholar
Hawking, S. W. 1976. Breakdown of Predictability in Gravitational Collapse. Physical Review D14 (1976) 2460.Google Scholar
De Witt, B. S. 1965. Dynamical Theory of Groups and Fields. In Relativity, Groups and Topology, ed. by B. S. De Witt and C. De Witt, (New York, Gordon and Breach, 1965).Google Scholar
Gilkey, P. B. 1975. The Spectral Geometry of a Riemannian Manifold. Journal of Differential Geometry 10 601.Google Scholar
Barvinsky, A. O. and Vilkovisky, G. A. 1985. The Generalized Schwinger-DeWitt Technique in Gauge Theories and Quantum Gravity. Physics Reports 119 1.Google Scholar
Vassilevich, D. V. 2003. Heat Kernel Expansion: Users Manual. Physics Reports 388 279 [hep-th/0306138].Google Scholar
Foldy, L. L. and Wouthuysen, S. A. 1950. On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Physical Review 78 2936.Google Scholar
Foldy, L. L. 1952. The Electromagnetic Properties of the Dirac Particles. Physical Review 87 688693.Google Scholar
Pauli, W. 1927. Zur Quantenmechanik des magnetischen Elektrons. Zeitschrift für Physik 43 601623.Google Scholar
Caswell, W. E. and Lepage, G. P. 1986. Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories. Physics Letters 167B (1986) 437.Google Scholar
Labelle, P. 1996. Effective Field Theories for QED Bound States: Extending Nonrelativistic QED to Study Retardation Effects. Physical Review D58 (1998) 093013 (hep-ph/9608491).Google Scholar
Luke, M. E. and Manohar, A. V. 1996. Bound States and Power Counting in Effective Field Theories. Physical Review D55 (1997) 4129 (hep-ph/9610534).Google Scholar
Grinstein, B. and Rothstein, I. Z. 1997. Effective Field Theory and Matching in Nonrelativistic Gauge Theories. Physical Review D57 (1998) 78 (hep-ph/9703298).Google Scholar
Pineda, A. and Soto, J. 1998. Effective Field Theory for Ultrasoft Momenta in NRQCD and NRQED. Nuclear Physics Proceedings Supplement 64 (1998) 428 (hep-ph/9707481).Google Scholar
Bauer, C. W., Fleming, S., Pirjol, D. and Stewart, I. W. 2001. An Effective Field Theory for Collinear and Soft Gluons: Heavy to Light Decays. Physical Review D63 (2001) 114020 (arXiv:hep-ph/0011336).Google Scholar
Bauer, C. W., Pirjol, D. and Stewart, I. W. 2002. Soft-Collinear Factorization in Effective Field Theory. Physical Review D65 (2002) 054022 (arXiv:hep-ph/0109045).Google Scholar
Bauer, C. W., Pirjol, D. and Stewart, I. W. 2002. Power Counting in the Soft-Collinear Effective Theory. Physical Review D66 (2002) 054005 (arXiv:hep-ph/0205289).Google Scholar
Beneke, M., Chapovsky, A. P., Diehl, M. and Feldmann, T. 2002. Soft Collinear Effective Theory and Heavy to Light Currents beyond Leading Power. Nuclear Physics B643 (2002) 431 (hep-ph/0206152).Google Scholar
Goldberger, W. D. and Rothstein, I. Z. 2004. An Effective Field Theory of Gravity for Extended Objects. Physical Review D73 (2006) 104029 (hep-th/0409156).Google Scholar
Bethe, H. A. and Salpeter, E. E. 1957. Quantum Mechanics of One- and Two-Electron Atoms. Springer Verlag doi:10.1007/978-3-662-12869-5.Google Scholar
Sudakov, V. V. 1956. Vertex Parts at Very High-Energies in Quantum Electrodynamics. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 30 (1956) 87–95 (Soviet Physics JETP 3 (1956) 65–71).Google Scholar
Bauer, C. W., Fleming, S. and Luke, M. 2000. Summing Sudakov Logarithms in B → Xs γ in Effective Field Theory. Physical Review D63 (2000) 014006 (arXiv:hep-ph/0005275).Google Scholar
Luke, M. E. and Manohar, A. V. 1992. Reparametrization Invariance Constraints on Heavy Particle Effective Field Theories. Physics Letters B286 (1992) 348 (hep-ph/9205228).Google Scholar
Manohar, A. V. 1997. The HQET / NRQCD Lagrangian to Order α/m3. Physical Review D56 (1997) 230 (hep-ph/9701294).Google Scholar
Heinonen, J., Hill, R. J. and Solon, M. P. 2012. Lorentz Invariance in Heavy Particle Effective Theories. Physical Review D86 (2012) 094020 (arXiv:1208.0601 (hep-ph)).Google Scholar
Labelle, P. and Zebarjad, S. M. 1996. Derivation of the Lamb Shift Using an Effective Field Theory. Canadian Journal of Physics 77 (1999) 267 (hep-ph/9611313).Google Scholar
Hill, R. J., Lee, G., Paz, G. and Solon, M. P. 2012. NRQED Lagrangian at Order 1/M4. Physical Review D87 (2013) 053017 (arXiv:1212.4508 (hep-ph)).Google Scholar
Rosenbluth, M. N. 1950. High Energy Elastic Scattering of Electrons on Protons. Physical Review 79 (1950) 615.Google Scholar
Hofstadter, R. 1956. Electron Scattering and Nuclear Structure. Reviews of Modern Physics 28 (1956) 214.Google Scholar
Klein, O. and Nishina, Y. 1929. Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift fur Physik 52 (1929) 853.Google Scholar
Born, M. and Oppenheimer, J. R. 1927. Zur Quantentheorie der Molekeln. Annalen der Physik 389 (20) 457484.Google Scholar
Kinoshita, T. and Nio, M. 1995. Radiative Corrections to the Muonium Hyperfine Structure: The α2 (Zα) Correction. Physical Review D53 (1996) 4909 (hep-ph/9512327).Google Scholar
Politzer, H. D. and Wise, M. B. 1988. Effective Field Theory Approach to Processes Involving Both Light and Heavy Fields. Physics Letters B208 (1988) 504.Google Scholar
Eichten, E. and Hill, B. R. 1990. An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks. Physics Letters B234 (1990) 511.Google Scholar
Georgi, H. 1990. An Effective Field Theory for Heavy Quarks at Low-energies. Physics Letters B240 (1990) 447.Google Scholar
Falk, A. F., Georgi, H., Grinstein, B. and Wise, M. B. 1990. Heavy Meson Form-factors From QCD. Nuclear Physics B343 (1990) 1.Google Scholar
Coleman, S., Mandula, J. 1967. All Possible Symmetries of the S Matrix. Physical Review 159 1251.Google Scholar
Isgur, N. and Wise, M. B. 1989. Weak Decays of Heavy Mesons in the Static Quark Approximation. Physics Letters B232 (1989) 113.Google Scholar
Voloshin, M. B. and Shifman, M. A. 1987. On Annihilation of Mesons Built from Heavy and Light Quark and anti-B0 ↔ B0 Oscillations. Soviet Journal of Nuclear Physics 45 (1987) 292 (Yadernaya Fizika 45 (1987) 463).Google Scholar
Bauer, C. and Manohar, A. V. 1997. Renormalization Group Scaling of the 1/m2 HQET Lagrangian. Physical Review D57 (1998) 337 (hep-ph/9708306).Google Scholar
Labelle, P., Zebarjad, Z. M. and Burgess, C. P. 1997. NRQED and Next-to-Leading Hyperfine Splitting in Positronium. Physical Review D56 (1997) 8053 (hep-ph/9706449).Google Scholar
Pineda, A. and Soto, J. 1998. Potential NRQED: The Positronium Case. Physical Review D59 (1999) 016005 (hep-ph/9805424).Google Scholar
Fierz, M. 1937. Zur Fermischen Theorie des β-Zerfalls. Zeitschrift fur Physik 104 (1937) 553.Google Scholar
Abalmasov, V. A. 1998. Comment on Nonrelativistic QED and Next-to-Leading Hyperfine Splitting in Positronium. Physical Review D58 (1998) 128701.Google Scholar
Pineda, A. and Soto, J. 1997. Effective Field Theory for Ultrasoft Momenta in NRQCD and NRQED. Nuclear Physics Proceedings Supplement 64 (1998) 428 (hep-ph/9707481); Matching at one loop for the four quark operators in NRQCD. Physical Review D58 (1998) 114011 (hep-ph/9802365).Google Scholar
Lehmann, H., Symanzik, K. and Zimmerman, W. 1955. Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento 1 (1955) 205.Google Scholar
Wheeler, J. A. 1946. Polyelectrons. Annals of the New York Academy of Sciences 46 (1946) 221.Google Scholar
Harris, I. and Brown, L. M. 1957. Radiative Corrections to Pair Annihilation. Physical Review 105 (1957) 1656.Google Scholar
Czarnecki, A., Melnikov, K. and Yelkhovsky, A. 1999. α2 Corrections to Parapositronium Decay. Physical Review Letters 83 (1999) 1135 (hep-ph/9904478). Physical Review A61 (2000) 052502 (hep-ph/9910488).Google Scholar
Ore, A. and Powell, J. L. 1949. Three Photon Annihilation of an Electron Positron Pair. Physical Review 75 (1949) 1696.Google Scholar
Adkins, G. S. 1996. Analytic Evaluation of the Orthopositronium-to-Three-Photon Decay Amplitudes to One-Loop Order. Physical Review Letters 76 (1996) 4903 (hep-ph/0506213).Google Scholar
Hill, R. J. and Lepage, G. P. 2000. Order (α2 Γ, α3 Γ) Binding Effects in Orthopositronium Decay. Physical Review D62 (2000) 111301(R) (hep-ph/0003277).Google Scholar
Kniehl, B. and Penin, A. A. 2000. Order α3 ln(1/α) Corrections to Positronium Decays. Physical Review Letters 85 (2000) 1210; Erratum 85 3065 (hep-ph/0004267).Google Scholar
Melnikov, K. and Yelkhovsky, A., O(α3 ln α) Corrections to Positronium Decay Rates. Physical Review D62 (2000) 116003 (hep-ph/0008099).Google Scholar
Karplus, R. and Klein, A. 1952. Electrodynamics Displacement of Atomic Energy Levels 3. The Hyperfine Structure of Positronium. Physical Review 87 (1952) 848.Google Scholar
Gupta, S. N., Repko, W. W. and Suchyta, C. G. 1989. Muonium and Positronium Potentials. Physical Review D40 (1989) 4100.Google Scholar
Pachucki, K. and Karshenboim, S. G. 1998. Complete Result for Positronium Energy Levels at Order mα6. Physical Review Letters 80 (1998) 2101 (hep-ph/9709387).Google Scholar
Lepage, G. P. and Thacker, B. A. 1988. Effective Lagrangians for Simulating Heavy Quark Systems. Nuclear Physics Proceedings Supplement 4 (1988) 199.Google Scholar
Thacker, B. A. and Lepage, G. P. 1991. Heavy Quark Bound States in Lattice QCD. Physical Review D43 (1991) 196.Google Scholar
Bodwin, G. T., Braaten, E. and Lepage, G. P. 1995. Rigorous QCD Analysis of Inclusive Annihilation and Production of Heavy Quarkonium. Physical Review D51 (1995) 1125 Erratum: (Physical Review D55 (1997) 5853) (hep-ph/9407339).Google Scholar
Zel’dovich, Ya. B. 1957. Parity Nonconservation in the First Order in the Weak-Interaction Constant in Electron Scattering and Other Effects. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 33 1531 (Soviet Physics JETP 6 (1957) 1184).Google Scholar
Borie, E. 2012. Lamb Shift in Light Muonic Atoms: Revisited. Annals of Physics (NY) 327 (2012) 733.Google Scholar
Pineda, A. and Soto, J. 1998. The Lamb Shift in Dimensional Regularization. Physics Letters B420 (1998) 391 (hep-ph/9711292).Google Scholar
Coleman, S. R. 1977. Classical Lumps and Their Quantum Descendents. Subnuclear Series 13 (1977) 297. (reproduced in Aspects of Symmetry: Selected Erice Lectures ref. above).Google Scholar
Salam, A. and Strathdee, J. 1969. Nonlinear Realizations 1: The Role of Goldstone Bosons. Physical Review 184 (1969) 1750.Google Scholar
Nielsen, H. B. and Olesen, P. 1973. Vortex-Line Models for Dual Strings. Nuclear Physics B61 (1973) 4561.Google Scholar
Hughes, J. and Polchinski, J. 1986. Partially Broken Global Supersymmetry and the Superstring. Nuclear Physics 278 (1986) 147.Google Scholar
Chern, S. S. and Simons, J. 1974. Characteristic Forms and Geometric Invariants. Annals of Mathematics 99 (1974) 4869.Google Scholar
Schwarz, A. 1979. The Partition Function of a Degenerate Functional. Communications in Mathematical Physics 67 (1979) 1.Google Scholar
Witten, E. 1988. Topological Quantum Field Theory. Communications in Mathematical Physics 117 (1988) 353.Google Scholar
Atiyah, M. 1988. Topological Quantum Field Theories. Publications Mathématiques de l’IHÉS 68 (1988) 175.Google Scholar
Deser, S. and Zumino, B. 1976. A Complete Action for the Spinning String. Physics Letters B65 (1976) 369.Google Scholar
Brink, L., Di Vecchia, P. and Howe, P. S. 1976. A Locally Supersymmetric and Reparametrization Invariant Action for the Spinning String. Physics Letters B65 (1976) 471.Google Scholar
Polyakov, A. M. 1981. Quantum Geometry of the Bosonic String. Physics Letters B103 (1981) 207.Google Scholar
Grassmann, H. 1844. Die Lineale Ausdehnungslehre Ein neuer Zweig der Mathematik. (Verlag, Leipzig, 1844)Google Scholar
Lw, R., Weimer, H., Nipper, J. and Balewski, J. B., Butscher, B., Büchler, H.-P. and Pfau, T. 2012. An Experimental and Theoretical Guide to Strongly Interacting Rydberg Gases. Journal of Physics B: Atomic, Molecular and Optical Physics 45 (2012) 113001.Google Scholar
Gallagher, T. F. 1994. Rydberg Atoms. (Cambridge Press, 1994)Google Scholar
Burgess, C. P., Hayman, P., Williams, M. and Zalavari, L. 2017. Point-Particle Effective Field Theory I: Classical Renormalization and the Inverse-Square Potential. Journal of High Energy Physics 1704 (2017) 106 (arXiv:1612.07313 (hep-ph)).Google Scholar
de Boer, J., Verlinde, E. P. and Verlinde, H. L. 2000. On the Holographic Renormalization Group. Journal of High Energy Physics 0008 (2000) 003 (hep-th/9912012).Google Scholar
Maldacena, J. M. 1997. The Large N Limit of Superconformal Field Theories and Supergravity. International Journal of Theoretical Physics 38 (1999) 1113 (Advances in Theoretical and Mathematical Physics 2 (1998) 231) (hep-th/9711200).Google Scholar
Witten, E. 1998. Anti-de Sitter Space and Holography. Advances in Theoretical and Mathematical Physics 2 (1998) 253 (hep-th/9802150).Google Scholar
Gubser, S. S., Klebanov, I. R. and Polyakov, A. M. 1998. Gauge Theory Correlators from Noncritical String Theory. Physics Letters B428 (1998) 105 (hep-th/9802109).Google Scholar
Preston, M. A. and Bhaduri, R. K. 1982. Structure of the Nucleus. (Addison-Wesley, Reading Massachusetts, 1975; 2nd printing 1982).Google Scholar
Kaplan, D. B., Savage, M. J. and Wise, M. B. 1998. Two Nucleon Systems from Effective Field Theory. Nuclear Physics B534 (1998) 329 (nucl-th/9802075).Google Scholar
Braaten, E. and Hammer, H.-W. 2006. Universality in Few-Body Systems with Large Scattering Length. Physics Reports 428 (2006) 259 (cond-mat/0410417).Google Scholar
Feshbach, H. 1958. Unified Theory of Nuclear Reactions. Annals of Physics 5 (1958) 357.Google Scholar
Fano, U. 1961. Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review 124 (1961) 1866.Google Scholar
Jackiw, R. 1991. Delta Function Potentials in Two-Dimensional and Three-Dimensional Quantum Mechanics. In Jackiw, R.: Diverse Topics in Theoretical and Mathematical Physics 35–53 (1991).Google Scholar
Weyl, H. 1910. Über gewöhnliche Differentialgleichungen mit Singularitäten und de zeugehörigen Entwicklungen willkürlicher Funktionen. Mathematische Annalen 68 (1910) 220.Google Scholar
von Neumann, J. 1929. Allgemeine Eigenwertheorie Hermitescher Funktionaloperatoren. Mathematische Annalen 102 (1929) 49–131.Google Scholar
Stone, M. H. 1932. On One-Parameter Unitary Groups in Hilbert Space. Annals of Mathematics 33 (1932) 643–648.Google Scholar
Berezin, F. A. and Faddeev, L. D. 1961. A Remark on Schrodingers Equation with a Singular Potential. Proceedings of the Soviet Academy of Sciences 2 (1961) 372 (Doklady Akademii Nauk (Ser. Fiz.) 137 (1961) 1011).Google Scholar
Plestid, R., Burgess, C. P. and O’Dell, D. H. J. 2018. Fall to the Centre in Atom Traps and Point-Particle EFT for Absorptive Systems. Journal of High Energy Physics 1808 (2018) 059 (arXiv:1804.10324 (hep-ph)).Google Scholar
Efimov, V. 1970. Energy Levels Arising from Resonant Two-Body Forces in a Three-Body System. Physics Letters B33 (1970) 563–564.Google Scholar
Braaten, E. and Hammer, H. W. 2007. Efimov Physics in Cold Atoms. Annals of Physics 322 (2007) 120 (cond-mat/0612123).Google Scholar
Burgess, C. P., Plestid, R. and Rummel, M. Effective Field Theory of Black Hole Echoes. Journal of High Energy Physics 1809 (2018) 113 (arXiv:1808.00847 (gr-qc)).Google Scholar
Erickson, G. W. 1977. Energy Levels of One electron Atoms. Journal of Physical Chemistry Reference Data 6 (1977) 831.Google Scholar
Friar, J. L. 1979. Nuclear Finite Size Effects in Light Muonic Atoms. Annals of Physics 122 (1979) 151.Google Scholar
Friar, J. L. and Sick, I. 2005. Muonic Hydrogen and the Third Zemach Moment. Physical Review A72 (2005) 040502 (nucl-th/0508025).Google Scholar
Backenstoss, G. 1970. Pionic Atoms. Annual Reviews of Nuclear and Particle Science 20 (1970) 467.Google Scholar
Deser, S., Goldberger, M. L., Baumann, K. and Thirring, W. E. 1954. Energy Level Displacements in Pi-Mesonic Atoms. Physical Review 96 (1954) 774.Google Scholar
Burgess, C. P., Hayman, P., Rummel, M. and Zalavari, L. 2017. Point-Particle Effective Field Theory III: Relativistic Fermions and the Dirac Equation. Journal of High Energy Physics 1709 (2017) 007 (arXiv:1706.01063 (hep-ph)).Google Scholar
Kaplan, D. B., Lee, J. W., Son, D. T. and Stephanov, M. A. 2009. Conformality Lost. Physical Review D80 (2009) 125005 (arXiv:0905.4752 (hep-th)).Google Scholar
Arnold, V. I., Kozlov, V. V. and Neishtadt, A. I. 1988. Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics. Encyclopedia of Mathematical Science 3 (Springer, Berlin, 1988).Google Scholar
Lochack, P. and Meunier, C. 1988. Multiphase Averaging for Classical Systems. (Springer, New York, 1988.)Google Scholar
Shapere, A. D. and Wilczek, F. 1989. Geometric Phases in Physics. Advanced Series in Mathematical Physics 5 (1989) 1.Google Scholar
Berry, M. V. and Robins, J. M. 1993. Classical Electromagnetic Forces of Reaction: An Exactly Solvable Model. Proceedings of the Royal Academy of Sciences A44 (1993) 631.Google Scholar
Goldberger, W. D. and Rothstein, I. Z. 2004. An Effective Field Theory of Gravity for Extended Objects. Physical Review D73 (2006) 104029 (hep-th/0409156); Dissipative Effects in the Worldline Approach to Black Hole Dynamics. Physical Review D73 (2006) 104030 (hep-th/0511133).Google Scholar
Porto, R. A., Ross, A. and Rothstein, I. Z. 2012. Spin Induced Multipole Moments for the Gravitational Wave Amplitude from Binary Inspirals to 2.5 Post-Newtonian Order. Journal of Cosmology and Astroparticle Physics 1209 (2012) 028 (arXiv:1203.2962 (gr-qc));Google Scholar
Bethe, H. 1935. Theory of Disintegration of Nuclei by Neutrons. Physical Review 47 (1935) 747.Google Scholar
Greene, B. R., Shapere, A. D., Vafa, C. and Yau, S. T. 1990. Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds. Nuclear Physics B337 (1990) 1.Google Scholar
Bayntun, A., Burgess, C. P. and van Nierop, L. 2010. Codimension-2 Brane-Bulk Matching: Examples from Six and Ten Dimensions. New Journal of Physics 12 (2010) 075015 (arXiv:0912.3039 (hep-th)).Google Scholar
Polchinski, J. 1998. String Theory. Vol. 1: An Introduction to the Bosonic String. String Theory. Vol. 2: Superstring Theory and beyond. (Cambridge Press, 1998).Google Scholar
Phillips, T. G. and Rosenberg, H. M. 1966. Spin Waves in Ferromagnets. Reports on Progress in Physics 29 (1966) 285Google Scholar
Heisenberg, W. G. 1928. Zur Theorie des Ferromagnetismus. Zeitschrift für Physik 49 (1928) 619.Google Scholar
Holstein, T. and Primakoff, H. 1940. Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet. Physical Review 58 (1940) 1098.Google Scholar
Dyson, F. J. 1956. General Theory of Spin-Wave Interactions. Physical Review 102 (1956) 1217.Google Scholar
Néel, L. 1932. Influence des fluctuations du champ moléculaire sur les propriétés magnetiques des corps. Annales de Physique 18 (1932) 5.Google Scholar
Bitter, F. 1937. A Generalization of the Theory of Ferromagnetism. Physical Review 54 (1937) 79.Google Scholar
van Vleck, J. H. 1941. On the Theory of Antiferromagnetism. Journal of Chemical Physics 9 (1941) 85.Google Scholar
Brouwer, L. E. J. 1912. Uber Abbildung von Mannigfaltigkeiten. Mathematische Annalen 71 (1912) 97.Google Scholar
Milnor, J. 1978. Analytic Proofs of the ‘Hairy Ball Theorem’ and the Brouwer Fixed Point Theorem. The American Mathematical Monthly 85 (1978, ) 521.Google Scholar
Dirac, P. 1931. Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society (London) A133 (1931) 60.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1935. Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Physikalische Zeitschrift der Sowjetunion 8 (1935) 153.Google Scholar
Herring, C. and Kittel, C. 1951. On the Theory of Spin Waves in Ferromagnetic Media. Physical Review 81 (1951) 869.Google Scholar
Brockhouse, B. N. 1957. Scattering of Neutrons by Spin Waves in Magnetite. Physical Review 106 (1957) 859.Google Scholar
Zaliznyak, I. and Lee, S. 2005. Magnetic Neutron Scattering. In Modern Techniques for Characterizing Magnetic Materials, pp. 3–64 (Springer, 2005).Google Scholar
Wightman, A. S. 1956. Quantum Field Theory in Terms of Vacuum Expectation Values. Physical Review 101 860.Google Scholar
Bloch, F. 1930. Zur Theorie des Ferromagnetismus. Zeitschrift für Physik 61 (1930) 206.Google Scholar
Argyle, B. E., Charap, S. H. and Pugh, E. W. 1963. Deviations from T3/2 Law for Magnetization of Ferrometals: Ni, Fe, and Fe +3% Si. Physical Review 132 (1963) 2051.Google Scholar
Onnes, H. K. 1911. The Resistance of Pure Mercury at Helium Temperatures. Communications from the Laboratory of Physics at the University of Leiden 12 (1911) 120.Google Scholar
Meissner, W. and Ochsenfeld, R. 1933. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21 (1933) 787.Google Scholar
London, F. 1948. On the Problem of the Molecular Theory of Superconductivity. Physical Review 74 (1948) 562.Google Scholar
Deaver, B. and Fairbank, W. 1961. Experimental Evidence for Quantized Flux in Superconducting Cylinders. Physical Review Letters 7 (1961) 43.Google Scholar
Doll, R. and Näbauer, M. 1961. Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring. Physical Review Letters 7 (1961): 51.Google Scholar
Bardeen, J., Cooper, L. N. and Schrieffer, J. R. 1957. Theory of Superconductivity. Physical Review 108 (1957) 1175.Google Scholar
Bednorz, J. G. and Müller, K. A. 1986. Possible High TC Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik B64 (1986) 189.Google Scholar
Weinberg, S. 1986. Superconductivity for Particular Theorists. Progress in Theoretical Physics (Supplement) 86 (1986) 43.Google Scholar
London, F. and London, H. 1935. The Electromagnetic Equations of the Supraconductor. Proceedings of the Royal Society A149 (1935) (866) 71.Google Scholar
Josephson, B. D. 1962. Possible New Effects in Superconductive Tunnelling. Physics Letters 1 (1962) 251.Google Scholar
Anderson, P. W. and Rowell, J. M. 1963. Probable Observation of the Josephson Tunnel Effect. Physical Review Letters 10 (1963) 230.Google Scholar
Shapiro, S. 1963. Josephson Currents in Superconducting Tunneling: the Effects of Microwaves and Other Observations. Physical Review Letters 11 (1963) 80.Google Scholar
Ginzburg, V. L. and Landau, L. D. 1950. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 20 (1950) 1064.Google Scholar
Abrikosov, A. A. 1957. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 32 (1957) 1442.Google Scholar
Gor’kov, L. P. 1959. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 36 (1959) 1364.Google Scholar
Rjabinin, J. N. and Schubnikow, L. W. 1935. Magnetic Properties and Critical Currents of Superconducting Alloys. Physikalische Zeitschrift der Sowjetunion 7 (1935), no.1, pp. 122125. Magnetic Properties and Critical Currents of Supra-conducting Alloys. Nature 135 (1935) 581.Google Scholar
Abrikosov, A. A. 1957. The Magnetic Properties of Superconducting Alloys. Journal of Physics and Chemistry of Solids 2 (1957) 199.Google Scholar
Leutwyler, H. 1996. Phonons as Goldstone Bosons. Helvetica Physica Acta 70 (1997) 275 (hep-ph/9609466).Google Scholar
DeWitt, B. 1984. in Relativity, Groups and Topology II (proceedings of the Les Houches School, ed. C. DeWitt and B. DeWitt) (Elsevier 1984).Google Scholar
Girvin, S. M. and Yang, K. 2019. Modern Condensed Matter Physics. (Cambridge Press, 2019).Google Scholar
Brown, J. D. 1993. Action Functionals for Relativistic Perfect Fluids. Classical and Quantum Gravity 10 (1993) 1579 (gr-qc/9304026).Google Scholar
Endlich, S., Nicolis, A., Rattazzi, R. and Wang, J. 2010. The Quantum Mechanics of Perfect Fluids. Journal of High Energy Physics 1104 (2011) 102 (arXiv:1011.6396 (hep-th)).Google Scholar
Dubovsky, S., Hui, L., Nicolis, A. and Son, D. T. 2011. Effective Field Theory for Hydrodynamics: Thermodynamics, and the Derivative Expansion. Physical Review D85 (2012) 085029 (arXiv:1107.0731 (hep-th)).Google Scholar
Misner, C. W., Thorne, K. S. and Wheeler, J. A. 1973. Gravitation. (Freeman – Princeton Press, 1973).Google Scholar
Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. (John Wiley and Sons, 1972).Google Scholar
Wald, R. M. 1984. General Relativity. (University of Chicago Press, 1984).Google Scholar
Crossley, M., Glorioso, P. and Liu, H. 2015. Effective Field Theory of Dissipative Fluids. Journal of High Energy Physics 1709 (2017) 095 (arXiv:1511.03646 (hep-th)).Google Scholar
Mohr, P. J., Newell, D. B. and Taylor, B. N. 2014. CODATA Recommended Values of the Fundamental Physical Constants: 2014. Reviews of Modern Physics 88 (2016) 035009 (arXiv:1507.07956 (physics.atom-ph)).Google Scholar
Landau, L. D. 1956. The Theory of a Fermi Liquid. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 30 (1956) 1058 (Soviet Physics JETP 3 (1957) 920).Google Scholar
Polchinski, J. 1992. Effective Field Theory and the Fermi Surface. In proceedings of the TASI school Recent Directions in Particle Theory (hep-th/9210046).Google Scholar
Shankar, R. 1993. Renormalization Group Approach to Interacting Fermions. Reviews of Modern Physics 66 (1994) 129 (cond-mat/9307009).Google Scholar
Wichmann, E. H. and Crichton, J. H. 1963. Cluster Decomposition Properties of the S Matrix. Physical Review 132 (1963) 2788.Google Scholar
Weinberg, S. 1997. What is Quantum Field Theory, and What Did We Think It Is? In Conceptual Foundations of Quantum Field Theory, 241–251, Boston 1996 (hep-th/9702027).Google Scholar
Weinberg, S. 2000. The Quantum Theory of Fields, vol I. (Cambridge Press, 2000).Google Scholar
Migdal, A. B. 1958. Interaction between Electrons and Lattice Vibrations in a Normal Metal. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 34 1438 (Soviet Physics JETP 7 (1958) 996).Google Scholar
Tinkham, M. 1975. Introduction to Superconductivity. (McGraw-Hill Press, 1975).Google Scholar
Kittel, C. 2004. Introduction to Solid State Physics, 8th Edition. (Wiley, 2004).Google Scholar
Willett, R., Eisenstein, J. P., Störmer, H. L., Tsui, D. C., Gossard, A. C. and English, J. H. 1987. Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect. Physical Review Letters 59 (1987) 1776.Google Scholar
MacDonald, A.H. 1994. Introduction to the Physics of the Quantum Hall Regime. (cond-mat/9410047).Google Scholar
Das Sarma, S. and Pinczuk, A. 1996. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures. (John Wiley & Sons, 2004).Google Scholar
Girvin, S. M. 1999. The Quantum Hall Effect: Novel Excitations and Broken Symmetries. Lectures delivered at École d’Éte Les Houches, July 1998 (arXiv:cond-mat/9907002 (cond-mat.mes-hall)).Google Scholar
MacDonald, A.H. 2010. Anomalous Hall Effect. Reviews of Modern Physics 82 (2010) 1539.Google Scholar
v. Klitzing, K., Dorda, G. and Pepper, M. 1980. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters 45 (1980) 494.Google Scholar
Tsui, D. C., Störmer, H. L. and Gossard, A. C. 1982. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Physical Review Letters 48 (1982) 1559.Google Scholar
Ando, T., Matsumoto, Y. and Uemura, Y. 1975. Theory of Hall Effect in a Two-Dimensional Electron System. Journals of the Physical Society of Japan 39 (1975) 279.Google Scholar
Tong, D. 2016. Lectures on the Quantum Hall Effect (arXiv:1606.06687 (hep-th)).Google Scholar
Fradkin, E. 2013. Field Theories of Condensed Matter Physics. (Cambridge Press, 2013).Google Scholar
Burgess, C. P. and Dolan, B. P. 2001. Particle Vortex Duality and the Modular Group: Applications to the Quantum Hall Effect and other 2-D Systems. Physical Review B63 (2001) 155309 (hep-th/0010246).Google Scholar
Laughlin, R. B. 1983. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Physical Review Letters 50 (1983) 1395.Google Scholar
Laughlin, R. B. 1981. Quantized Hall Conductivity in Two Dimensions. Physical Review B23 (1981) 5632.Google Scholar
Thouless, D. J., Kohomoto, M., Nightingale, M. P. and den Nijs, M. 1982. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Physical Review Letters 49 (1982) 405.Google Scholar
Floreanini, R. and Jackiw, R. 1987. Self-Dual Fields As Charge-Sensity Solitons. Physical Review Letters 59 (1987) 1873.Google Scholar
Aharonov, Y. and Bohm, D. 1959. Significance of Electromagnetic Potentials in Quantum Theory. Physical Review 115 (1959) 485.Google Scholar
Leinaas, J. M. and Myrheim, J. 1977. On the Theory of Identical Particles. Il Nuovo Cimento B37 (19977) 1.Google Scholar
Wilczek, F. 1982. Quantum Mechanics of Fractional-Spin Particles. Physical Review Letters 49 (1982) 957.Google Scholar
Zhang, S. C., Hansson, T. and Kivelson, S. 1989. Effective-Field-Theory Model for the Fractional Quantum Hall Effect. Physical Review Letters 62 (1989) 82.Google Scholar
Jain, J. K. 1989. Composite-Fermion Approach for the Fractional Quantum Hall Effect. Physical Review Letters 63 (1989) 199.Google Scholar
Lee, D. H. and Fisher, M. P. A. 1989. Anyon Superconductivity and the Fractional Quantum Hall Effect. Physical Review Letters 63 (1989) 903.Google Scholar
Kivelson, S., Lee, D. H. and Zhang, S. C. 1992. Global Phase Diagram in the Quantum Hall Effect. Physical Review B46 (1992) 2223.Google Scholar
Lutken, C. A. and Ross, G. G. 1992. Duality in the Quantum Hall System. Physical Review B45 (1992) 11837.Google Scholar
Witten, E. 2003. SL(2,Z) Sction on Three-Dimensional Conformal Field Theories with Abelian Symmetry. In Shifman, M. (ed.) et al. From Fields to Strings, vol. 2, pp. 1173–1200 (hep-th/0307041).Google Scholar
Seiberg, N., Senthil, T., Wang, C. and Witten, E. 2016. A Duality Web in 2+1 Dimensions and Condensed Matter Physics. Annals of Physics 374 (2016) 395 (arXiv:1606.01989 (hep-th)).Google Scholar
Karch, A., Tong, D. and Turner, C. 2019. A Web of 2d Dualities: Z2 Gauge Fields and Arf Invariants (arXiv:1902.05550 (hep-th)).Google Scholar
Bayntun, A., Burgess, C. P., Dolan, B. P. and Lee, S. S. AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments. New Journal of Physics 13 (2011) 035012 (arXiv:1008.1917 (hep-th)).Google Scholar
Lutken, C. A. and Ross, G. G. Experimental probes of Emergent Symmetries in the Quantum Hall System. Nuclear Physics B850 (2011) 321 (arXiv:1008.5257 (cond-mat.str-el)).Google Scholar
Kreuzer, H. R. 1984. Non-Equilibrium Thermodynamics and Its Statistical Foundations, (Monographs on the Physics and Chemistry of Materials, Oxford Press, 1984.)Google Scholar
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. (Cambridge Press, 1967).Google Scholar
Landau, L. D. and Lifshitz, E. M. 1987. Fluid Mechanics. A Course of Theoretical Physics (2nd revised ed.) Vol 6, (Pergamon Press, 1987).Google Scholar
Herglotz, G. 1911. Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie Annalen der Physik 341 (1911) 493.Google Scholar
Taub, A. H. 1954. General Relativistic Variational Principle for Perfect Fluids. Physical Review 94 (1954) 1468.Google Scholar
Salmon, R. 1988. Hamilton’s Principle and the Vorticity Laws for a Relativistic Perfect Fluid. Geophysical and Astrophysical Fluid Dynamics 43 (1988) 167.Google Scholar
Jackiw, R., Nair, V. P., Pi, S. Y. and Polychronakos, A. P. 2004. Perfect Fluid Theory and Its Extensions. Journal of Physics A 37 (2004) R327 (arXiv:hep-ph/0407101).Google Scholar
Andersson, N. and Comer, G. 2007. Relativistic Fluid Dynamics: Physics for Many Different Scales. Living Reviews of Relativity 10 (2007) 1 (arXiv:gr-qc/0605010).Google Scholar
Nicolis, A. 2011. Low-Energy Effective Field Theory for Finite-Temperature Relativistic Superfluids (arXiv:1108.2513 (hep-th)).Google Scholar
Tolman, R. C. 1934. Relativity, Thermodynamics, and Cosmology. (Oxford: Clarendon Press, 1934. Reissued Dover, New York, 1984).Google Scholar
Arnold, P., Romatschke, P. and van der Schee, W. 2014. Absence of a Local Rest Frame in Far From Equilibrium Quantum Matter. Journal of High Energy Physics 1410 (2014) 110 (arXiv:1408.2518 (hep-th)).Google Scholar
Carmichael, H. 1991. An Open Systems Approach to Quantum Optics. (Springer Verlag, 1991).Google Scholar
Breuer, H.-P. and Petruccione, F. 2002. The Theory of Open Quantum Systems. (Oxford Press, 2002).Google Scholar
Alicki, R. and Lendi, K. 2007. Quantum Dynamical Semigroups and Applications. (Springer, 2007).Google Scholar
Burgess, C. P. and Michaud, D. 1996. Neutrino Propagation in a Fluctuating Sun. Annals of Physics 256 (1997) 1 (hep-ph/9606295).Google Scholar
Liouville, J. 1838. Observations Sur un Mémoire de M. Libri, relatif à la Théorie de la Chaleur Journal de Mathématiques 3 (1838) 349.Google Scholar
Bahcall, J. N. 1989. Neutrino Astrophysics. (Cambridge Press, 1989).Google Scholar
Kayser, B., Gibrat-Debu, F. and Perrier, F. 1989. Physics of Massive Neutrinos. World Sciientific Lecture Notes in Physics 25 (1989) 1. Raffelt, G. G. 1996). Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles. (Chicago Press, 1996).Google Scholar
Fukugita, M. and Yanagida, T. 2003. Physics of Neutrinos and Applications to Astrophysics. (Springer, 2003).Google Scholar
Mohapatra, R. N. and Pal, P. B. 2004. Massive Neutrinos in Physics and Astrophysics. Second edition. World Scientific Lecture Notes in Physics 72 (2004) 1.Google Scholar
Giunti, C. and Kim, C. W. 2007. Fundamentals of Neutrino Physics and Astrophysics. (Oxford Press, 2007).Google Scholar
Zuber, K. 2012. Neutrino Physics. (CRC Press, 2012).Google Scholar
Janka, H. T. 2017. Neutrino Emission from Supernovae (arXiv:1702.08713 (astro-ph.HE)).Google Scholar
Wolfenstein, L. 1978. Neutrino Oscillations in Matter. Physical Review D17 (1978) 2369.Google Scholar
Mikheyev, S. P. and Smirnov, A. Yu. 1985. Resonance Enhancement of Oscillations in Matter and Solar Neutrino Spectroscopy. Soviet Journal of Nuclear Physics 42 (1985) 913.Google Scholar
Burgess, C. P., Maltoni, M., Rashba, T. I., Semikoz, V. B., Tortola, M. A. and Valle, J. W. F. 2003. Cornering Solar Radiative Zone Fluctuations with KamLAND and SNO Salt. Journal of Cosmology and Astroparticle Physics 0401 (2004) 007 (hep-ph/0310366).Google Scholar
Semikoz, V. B., Burgess, C. P., Dzhalilov, N. Z., Rashba, T. I. and Valle, J. W. F. 2004. MHD Origin of Density Fluctuations Deep within the Sun and Their Influence on Neutrino Oscillation Parameters in LMA MSW Scenario. Yadernaya Fizika 67 (2004) 1172; (Physics of Atoms and Nuclei 67 (2004) 1147).Google Scholar
Sahl, Ibn. 1984. On Burning Mirrors and Lenses (Baghdad).Google Scholar
Born, M. and Wolf, E. 1959. Principles of Optics. (Cambridge 1959, latest reprint 2002).Google Scholar
Landau, L. D. and Lifshitz, E. M. 1960. Electrodynamics of Continuous Media. in A Course of Theoretical Physics Vol 8, (Pergamon Press, 1960).Google Scholar
Bragg, W. H. and Bragg, W. L. 1913. The Reflexion of X-rays by Crystals. Proceedings of the Royal Society of London A88 (1913) 428.Google Scholar
Misra, B. and Sudarshan, E. C. G. 1977. The Zeno’s paradox in quantum theory. Journal of Mathematical Physics 18 756.Google Scholar
Nielsen, M. A. and Chuang, I. L. 2001. Quantum Computation and Quantum Information. (Cambridge Press, 2001).Google Scholar
Nakajima, S. 1958. On Quantum Theory of Transport Phenomena. Progress in Theoretical Physics 20 (1958) 948.Google Scholar
Zwanzig, R. 1960. Ensemble Method in the Theory of Irreversibility. Journal of Chemical Physics 33 (1960) 1338.Google Scholar
Davies, E. 1974. Markovian Master Equations. Communications in Mathematical Physics 39 (1974) 91.Google Scholar
Davies, E. 1976. Markovian Master Equations II. Mathematische Annalen 219 (1976) 147.Google Scholar
Dumcke, R. and Spohn, H. 1979. Proper Form of the Generator in the Weak Coupling Limit. Zeitschrift für Physik B34 (1979) 419.Google Scholar
Kaplanek, G. and Burgess, C. P. 2019. Hot Accelerated Qubits: Decoherence, Thermalization, Secular Growth and Reliable Late-time Predictions. Journal of High Energy Physics 03 (2020) 008 (arXiv:1912.12951 (hep-th)).Google Scholar
Kaplanek, G. and Burgess, C. P. 2019. Hot Cosmic Qubits: Late-Time de Sitter Evolution and Critical Slowing Down. Journal of High Energy Physics 02 (2020) 053 (arXiv:1912.12955 (hep-th)).Google Scholar
Kossakowski, A. 1972. On Quantum Statistical Mechanics of Non-Hamiltonian Systems. Reports on Mathematical Physics 3 (1972) 247.Google Scholar
Lindblad, G. 1976. On the Generators of Quantum Dynamical Semigroups. Communications in Mathematical Physics 48 (1976) 119.Google Scholar
Gorini, V., Kossakowski, A. and Sudarshan, E. C. G. 1976. Completely Positive Semigroups of N-Level Systems. Journal of Mathematical Physics 17 (1976) 821.Google Scholar
Belavin, A. A., Zel’dovich, B. Ya., Perelomov, A. M. and Popov, V. S. 1969. Relaxation of Quantum Systems with Equidistant Spectra. Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki 56 264 (Soviet Physics JETP 29 (1969)145).Google Scholar
Boyanovsky, D. and de Vega, H. J. 2003. Dynamical Renormalization Group Approach to Relaxation in Quantum Field Theory. Annals of Physics 307 (2003) 335 (hep-ph/0302055).Google Scholar
Kubo, R. 1957. Statistical-Mechanical Theory of Irreversible Processes I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan 12 (1957) 570.Google Scholar
Martin, P. C., Schwinger, J. 1959. Theory of Many-Particle Systems I. Physical Review 115 (1959) 1342.Google Scholar
Haag, R., Winnink, M. and Hugenholtz, N. M. 1967. On the Equilibrium States in Quantum Statistical Mechanics. Communications in Mathematical Physics 5 (1967) 215.Google Scholar
Einstein, A. 1910. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. (The Theory of the Opalescence of Homogeneous Fluids and Liquid Mixtures near the Critical State.) Annalen der Physik 33 (1910) 1275.Google Scholar
Rayleigh, Lord. 1881. On the Electromagnetic Theory of Light. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12 (1881) 81.Google Scholar
Rayleigh, Lord. 1899. On the Transmission of Light through an Atmosphere Containing Small Particles in Suspension, and on the Origin of the Blue of the Sky. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 (1899) 375.Google Scholar
Fulling, S. A. 1973. Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time. Physical Review D7 (1973) 2850.Google Scholar
Unruh, W. G. 1976. Notes on Black-Hole Evaporation. Physical Review D14 (1976) 870.Google Scholar
DeWitt, B. S. 1979. Quantum Gravity: The New Synthesis. in General Relativity, An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel (Cambrdige Press, 1979).Google Scholar
Sciama, D. W., Candelas, P. and Deutsch, D. 1981. Quantum Field Theory, Horizons and Thermodynamics. Advances in Physics 30 (1981) 327.Google Scholar
Weinberg, S. 1964. Feynman Rules for Any Spin. Physical Review 133 (1964) B1318.Google Scholar
Scadron, M. 1968. Covariant Propagators and Vertex Functions for Any Spin. Physical Review 165 (1968) 1640.Google Scholar
Haag, R., Sohnius, M. and Łopuszański, J. T. 1975. All Possible Generators of Supersymmetries of the S-Matrix. Nuclear Physics B88 257.Google Scholar
Yang, C. N. and Mills, R. 1954. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review 96 (1954) 1.Google Scholar
Arkani-Hamed, N. Cachazo, F. and Kaplan, J. JHEP 1009 (2010) 016 doi:10.1007/JHEP09(2010)016 (arXiv:0808.1446 (hep-th)).Google Scholar
Stueckelberg, E. C. G. and Petermann, A. 1953. La renormalisation des constants dans la théorie de quanta. Helvetica Physica Acta 26 (1953) 499.Google Scholar
Gell-Mann, M. and Low, F. E. 1954. Quantum Electrodynamics at Small Distances. Physical Review 95 (1954) 1300.Google Scholar
Kadanoff, L. P. 1966. Scaling Laws for Ising Models near Tc. Physics 2 (1966) 263.Google Scholar
Wilson, K. G. 1971. Renormalization Group and Critical Phenomena 1. Renormalization Group and the Kadanoff Scaling Picture. Physical Review B4 (1971) 3174. Renormalization Group and Critical Phenomena 2. Phase Space Cell Analysis of Critical Behavior. Physical Review B4 (1971) 3184.Google Scholar
Wilson, K. G. and Fisher, M. E. 1972. Critical Exponents in 3.99 Dimensions. Physical Review Letters 28 (1972) 240.Google Scholar
Reuter, M. and Wetterich, C. 1994. Effective Average Action for Gauge Theories and Exact Evolution Equations. Nuclear Physics B417 (1994) 181.Google Scholar
Salam, A. 1951. Overlapping Divergences and the S-Matrix. Physical Review 82 (1951) 217.Google Scholar
Weinberg, S. 1959. High-Energy Behavior in Quantum Field Theory. Physical Review 118 (1959) 838.Google Scholar
Wess, J. and Zumino, B. 1971. Consequences of Anomalous Ward Identities. Physics Letters 37B (1971) 95.Google Scholar
Bardeen, W. A. and Zumino, B. 1984. Consistent and Covariant Anomalies in Gauge and Gravitational Theories. Nuclear Physics B244 (1984) 421.Google Scholar
Manes, J., Stora, R. and Zumino, B. 1985. Algebraic Study of Chiral Anomalies. Communications in Mathematical Physics 102 (1985) 157.Google Scholar
Smoot, G. F. et al. (COBE Collaboration). 1992. Structure in the COBE Differential Microwave Radiometer First Year Maps. Astrophysical Journal 396 (1992) L1.Google Scholar
Burgess, C. P. 2017. Intro to Effective Field Theories and Inflation. In the proceedings of the Les Houches Summer School, ‘Effective Field Theory in Particle Physics and Cosmology’ (arXiv:1711.10592 (hep-th)).Google Scholar
Achucarro, A. Gong, J. O., Hardeman, S., Palma, G. A. and Patil, S. P. 2010. Mass Hierarchies and Non-Decoupling in Multi-Scalar Field Dynamics. Physical Review D84 (2011) 043502 (arXiv:1005.3848 (hep-th)).Google Scholar
‘t Hooft, G. 1986. How Instantons Solve the U(1) Problem. Physics Reports 142 (1986) 357.Google Scholar
Gasser, J. and Leutwyler, H. 1982. Quark Masses. Physics Reports 87 (1982) 77.Google Scholar
Meissner, U. G. 1993. Recent Developments in Chiral Perturbation Theory. Reports on Progress in Physics 56 (1993) 903 (hep-ph/9302247).Google Scholar
Leutwyler, H. 1994. In the proceedings of Hadron Physics 94 (hep-ph/9406283)Google Scholar
Kaplan, D. 1995. In the proceedings of the 7th Summer School in Nuclear Physics Symmetries, Seattle, WA, 1995 (nucl-th/9506035)Google Scholar
Georgi, H. 1995. Effective Field Theory. Annual Review of Nuclear and Particle Science 43 (1995) 205Google Scholar
Pich, A. 1998. Effective Field Theories. In the proceedings of the Les Houches Summer School in Theoretical Physics: Probing the Standard Model of Particle Interactions (hep-ph/9806303);Google Scholar
Rothstein, I. Z. 2003. TASI Lectures on Effective Field Theories (hep-ph/0308266);Google Scholar
Manohar, A. 2017. Introduction to Effective Field Theories. In the proceedings of the 2017 Les Houches Summer School on Effective Field Theories (arXiv:1804.05863).Google Scholar
Burgess, C., 2013. The Cosmological Constant Problem: Why Its Hard to Get Dark Energy from Micro-physics. In the proceedings of the Les Houches School on Post-Planck Cosmology 2013 (arXiv:1309.4133 (hep-th)).Google Scholar
Luther, A. and Peschel, I. 1974. Single-Particle States, Kohn Anomaly, and Pairing Fluctuations in One Dimension. Physical Review B9 2911.Google Scholar
Coleman, S. 1975. Quantum sine-Gordon Equation as the Massive Thirring model. Physical Review D11 2088.Google Scholar
Mandelstam, S. 1975. Soliton Operators for the Quantized sine-Gordon Equation. Physical Review D11 3026.Google Scholar
Burgess, C. P. and Quevedo, F. 1993. Bosonization as duality. Nuclear Physics B421 373 (arXiv:hep-th/9401105 (hep-th)).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×