Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T16:50:15.325Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 October 2017

Daniel Li
Affiliation:
Université d’Artois, France
Hervé Queffélec
Affiliation:
Université de Lille I
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E.M., Alfsen. Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete 57, Springer (1971).
K., Ball. An elementary introduction to modern convex geometry, in Flavors of Geometry, S., Levy. ed., Mathematical Sciences Research Institute Publications, Cambridge University Press (1997).
S., Banach. Théorie des Opérations Linéaires, (first published 1932), Éditions Jacques Gabay (1993).
P., Barbe & M., Ledoux. Probabilité, Belin (1998).
B., Beauzamy. Introduction to Banach Spaces and Their Geometry, Notas de Matemática 68, North-Holland (1982).
B., Beauzamy & T., Laprest. Modèles Étalés des Espaces de Banach, Travaux en Cours, Hermann (1984).
C., Bennett & R., Sharpley. Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press (1988).
Y., Benyamini & J., Lindenstrauss. Geometric Nonlinear Functional Analysis, Vol. 1, A.M.S. Colloquium Publications 48, American Mathematical Society (2000).
J., Bergh & J., Lfström. Interpolation Spaces: An Introduction, Grundlehren der Mathematischen Wissenschaften 223, Springer (1976).
P., Billingsley. Probability and Measure, 3rd edn, John Wiley & Sons (1995).
V.S., Borkar. Probability Theory: An Advanced Course, Springer (1995).
P.G., Casazza & T.J., Shura. Tsirelson's Space: With an Appendix by J. Baker. O. Slotterbeck.and R. Aron., Lecture Notes in Mathematics 1363, Springer (1989).
J.P.R., Christensen. Topology and Borel Structure, North-Holland Mathematics Studies 10, Elsevier (1974).
M.M., Day. Normed Linear Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer (1958), 3rd edn. (1973).
R., Deville G., Godefroy & V., Zizler. Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman (1993).
J., Diestel. Sequences and Series in Banach Spaces, Graduate Texts in Mathematics 92, Springer (1984).
J., Diestel. H., Jarchow & A., Tonge. Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press (1995).
J., Diestel & J.J., Uhl. Vector Measures, Mathematical Surveys 13, American Mathematical Society (1977).
D., van Dulstb. Characterization of Banach Spaces Not Containing _ 1, CWI Tracts 59, Centrum voor Wiskunde en Informatica (1989).
N., Dunford & J.T., Schwartz. Linear Operators: Part I, General Theory, with the Assistance ofWilliam G. Badeand Robert G. Bartle, Interscience (1958), re-issueWiley Classics Library, John Wiley & Sons (1988).
P., Duren. Theory of Hp-Spaces, Academic Press (1970), 2nd edn., Dover (2000).
R.E., Edwards. Fourier Series, A Modern Introduction, 2 vols, Holt, Rinehart and Winston (1967).
M., Fabian. P., Habala. P., Hjek, V., Montesinos.Santalucía, J., Pelant & V., Zizler. Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics 8, Springer (2001).
H., Fetter & B., Gamboa. The James Forest, London Mathematical Society Lecture Notes Series 236, Cambridge University Press (1997).
M., Fr chet. Les Espaces Abstraits, Gauthiers-Villars, Paris (1928); re-issue Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay (1989).
N., Ghoussoub. G., Godefroy B., Maurey & W., Schachermayer. Some Topological and Geometrical Structures in Banach Spaces ,Memoirs of the American Mathematical Society 378 (1987).Google Scholar
C., Graham & O., McGehee. Essays in Commutative Harmonic Analysis, Grundlehren der Mathematischen Wissenschaften 238, Springer (1979).
S., Guerre.Delabrière. Classical Sequences in Banach Spaces, Monographs and Textbooks in Pure and Applied Mathematics 166, Marcel Dekker (1992).
P., Habala. P., Hjek & V., Zizler. Introduction to Banach Spaces, 2 vols, Matfyz- Press, Charles University in Prague (1996).
P.R., Halmos. A Hilbert Space Problem Book, Springer (1974), 2nd edn. (1982).
G.H., Hardy & E.M., Wright. An Introduction to the Theory of Numbers , 5th edn., Clarendon Press (1979, reprinted 1996).
P., Harmand. D., Werner & W., Werner. M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics 1547, Springer (1993).
V., Havin & B., Jricke. The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete 28, Springer (1994).
B., Host. J.-F., Méla & F., Parreau. Analyse Harmonique des Mesures, Astérisque 135–136, Société Mathématique de France (1986).
J.-P., Kahane 1. Séries de Fourier Absolument Convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete 50, Springer (1970).
J.-P., Kahane 2. Some Random Series of Functions, D., C. Heath and Co. (1968), 2nd edn., Cambridge.University Press (1985).
J.-P., Kahane & R., Salem. Ensembles Parfaits et Séries Trigonométriques, Hermann, 2nd edn. (1994).
B., Kashin & A.A., Saakyan. Orthogonal Series, Translations of Mathematical Monographs, American Mathematical Society (1989).
Y., Katznelson. An Introduction to Harmonic Analysis, Dover Books on Advanced Mathematics, Dover (1976).
J.-L., Krivine. Théorie Axiomatique des Ensembles, Collection SUP: Le Mathématicien, Presses Universitaires de France (1972).
H.E., Lacey. The Isometric Theory of Classical Banach Spaces, Grundlehren der Mathematischen Wissenschaften 208, Springer (1974).
R., Larsen. An Introduction to the Theory of Multipliers, Springer (1971).
R., Lasser. Introduction to Fourier Series, Monographs and Textbooks in Pure and Applied Mathematics 199, Marcel Dekker (1996).
M., Ledoux & M., Talagrand. Probability in Banach Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 23, Springer (1991).
M., Lifshits. Gaussian Random Functions, Kluwer Academic Publishers (1995).
L.A., Lindahl & F., Poulsen. Thin Sets in Harmonic Analysis, Marcel Dekker (1971).
J., Lindenstrauss & L., Tzafriri. Classical Banach Spaces2 vols, Classics in Mathematics, Springer (1997).
M., Love. Probability Theory, 2nd edn., Springer (1977).
L., Loomis. An Introduction to Abstract Harmonic Analysis, Van Nostrand (1953).
J.-M., Lopez & K.A., Ross. Sidon Sets, Lecture Notes in Pure and AppliedMathematics 13, Marcel Dekker (1975).
E., Lukacs. Characteristic Functions, 2nd edn., Griffin (1970).
P., Malliavin. Intégration et Probabilités, Analyse de Fourier et Analyse Spectrale, Masson (1982).
M., Marcus & G., Pisier. Random Fourier Series with Applications to Harmonic Analysis, Annals of Mathematics Studies 101, Princeton University Press (1981).
P., Mattila. Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press (1995).
B., Maurey. Théorèmes de Factorisation pour les Opérateurs Linéaires à Valeurs dans les Espaces Lp, Astérisque 11, Société Mathématique de France (1974).
R.E., Megginson. An Introduction to Banach Space Theory, Graduate Texts in Mathematics 183, Springer (1998).
V.D., Milman & G., Schechtman. Asymptotic Theory of Finite-Dimensional Normed Spaces;With an Appendix by M. Gromov, Lecture Notes in Mathematics 1200, Springer (1986).
T.J., Morrison. Functional Analysis: An Introduction to Banach Space Theory, Pure and Applied Mathematics, Wiley-Interscience (2001).
J., Neveu 1. Bases Mathématiques du Calcul des Probabilités, Masson (1964).
J., Neveu.2. Martingales à Temps Discret, Masson (1972).
J., Neveu.3. Processus Aléatoires Gaussiens, Les Presses de l'Université de Montréal (1968).
A., Pajor. Sous-Espaces ln 1 des Espaces de Banach, Travaux en Cours 16, Hermann, Paris (1985).
K.R., Parthasaraty. Probability Measures on Metric Spaces, Academic Press (1967).
A., Peczy´nski. Banach Spaces of Analytic Functions and Absolutely Summing Operators, CBMS Regional Conference Series in Mathematics 30, American Mathematical Society (1977).
R.R., Phelps. Lectures on Choquet's Theorem, Van Nostrand Mathematical Studies 7, Van Nostrand (1966).
A., Pietsch & J., Wenzel. Orthonormal Systems and Banach Space Geometry, Encyclopedia of Mathematics and its Applications 70, Cambridge University Press (1998).
G., Pisier 1. Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics 60, American Mathematical Society (1986).
G., Pisier.2. The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics 94, Cambridge University Press (1989).
G., Plya & G., Szeg. Problems and Theorems in Analysis II, Springer (1976).
H., Quefflec & C., Zuily. Eléments d'Analyse pour l'Agrégation , Dunod (2013), 4th edn., revised and updated.
D., Revuz. Probabilités, Collection Méthodes, Hermann (1997).
A., Rnyi. Calcul des Probabilités, Dunod (1966).
W., Rudin 1. Fourier Analysis on Groups, Wiley Classics Library, John Wiley & Sons (1990).
W., Rudin.2. Analyse Réelle et Complexe, 3rd edn., Dunod (1998).
W., Rudin.3. Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill (1991).
Y., Samorodnitzky G., Taqqu. Stable Non-Gaussian Random Processes, Chapman- Hall (1994).
Z., Semadeni. Banach Spaces of Continuous Functions, Vol., I. Monografie Matematyczne 55, PWN – Polish Scientific Publishers (1971).
A.N., Shiryaev. Probability,2nd edn., Graduate Texts in Mathematics 95, Springer (1996).
I., Singer. Bases in Banach Spaces I, Grundlehren der Mathematischen Wissenschaften 154, Springer (1970).
D.W., Stroock. Probability Theory: An Analytic View, Cambridge University Press (1994).
V.N., Sudakov. Geometric Problems of the Theory of Infinite-Dimensional Probability Distributions (in Russian), Trudy Matematicheskogo Instituta Imemi V. A Steklova 141 (1976).Google Scholar
M., Talagrand. Pettis Integral and Measure Theory, Memoirs of the American Mathematical Society 307 (1984).
N., Tomczak.Jaegermann. Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman (1989).
P., Tur.n. On a New Method of Analysis and its Applications, Wiley Interscience (1984).
A., Weil. L'Intégration dans les Groupes Topologiques et ses Applications, Gauthiers- Villars (1938).
P., Wojtaszczyk. Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics 25, Cambridge University Press (1991).
V.M., Zolotarev. One-Dimensional Stable Distributions, Translations of Mathematical Monographs 65, American Mathematical Society (1986).
A., Zygmund. Trigonometric Series, 2 vols., Cambridge University Press (1993). Since this book appeared in French, two other books on Banach spaces deserve attention:
F., Albiac & N.J., Kalton. Topics in Banach Space Theory, Graduate Texts in Mathematics 233, Springer (2006).
M., Fabian. P., Habala. P., H jek, V., Montesinos.V., Zizler. Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer \ (2011).
L., Alaoglu 1940 Weak topologies of normed linear spaces, Ann. of Math. 41, 252–267.Google Scholar
D.J., Aldous 1981 Subspaces of L1, via random measures, Trans. Amer. Math. Soc. 267, 445–463.Google Scholar
D.E., Alspach 1983 Small into isomorphisms on Lp spaces, Illinois J. Math. 27, 300–314.Google Scholar
D.E., Alspach & E., Odell 2001 Lp spaces, in Handbook of the Geometry of Banach Spaces I, Elsevier, 123–160.
D., Amir 1965 On isomorphisms of continuous function spaces, Israel J. Math. 3, 205–210.Google Scholar
S.A., Argyros & V., Felouzis 2000 Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13, 243–294.Google Scholar
S.A., Argyros & I., Gasparis 2001 Unconditional structures of weakly null sequences, Trans. Amer. Math. Soc. 353, 2019–2058.Google Scholar
G.I., Arkhipov & K.I., Oskolkov 1987 On a special trigonometric series and its applications, Mat. Sb. 134, 145–155.Google Scholar
N.H., Asmar & S., Montgomery-Smith 1993 On the distribution of Sidon series, Ark. Mat. 31, 13–26.Google Scholar
K., Azuma 1967 Weighted sums of certain dependent variables, Tohoku Math. J. 19, 357–367.Google Scholar
G.F., Bachelis & S.F., Ebenstein 1974 On (p)-sets, Pacific J. Math. 54, 35–38.Google Scholar
K., Ball & F., Nazarov 1994 Zero Khinchin's theorem, unpublished work.
F., Barthe 1998 Optimal Young's inequality and its converse: A simple proof, Geom. Funct. Anal. 8, 234–242.Google Scholar
B., Beauzamy 1973 Le théorème de Dvoretzky, Séminaire Maurey–Schwartz 1972–1973, Exposés XXVI et XXVII, École Polytechnique, Paris.
A., Beck 1962 A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13, 329–334.Google Scholar
W., Beckner 1975 Inequalities in Fourier analysis, Ann. of Math. 102, 159–182.Google Scholar
G., Bennett 1976 Unconditional convergence and almost everywhere convergence, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34, 135–155.Google Scholar
G., Bennett, L.E., Dor, V., Goodman, W.B., Johnson & C.M., Newman 1977 On uncomplemented subspaces of Lp, 1 2, Israel J. Math. 26, 178–187.Google Scholar
Y., Benyamini 1981 Small into-isomorphisms between spaces of continuous functions, Proc. Amer. Math. Soc. 83, 479–485.Google Scholar
C., Bessaga & A., Pełczy´nski 1958 a On bases and unconditional convergence of series in Banach spaces, Studia Math. 17, 151–164.Google Scholar
C., Bessaga & A., Pełczy´nski 1958 b A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17, 165–174.Google Scholar
C., Bessaga & A., Pełczy´nski 1960 Spaces of continuous functions IV, Studia Math. 19, 53–60.Google Scholar
C., Bessaga & A., Pełczy´nski 330 References P. Billard 1965 Séries de Fourier aléatoirement bornées, continues, uniformément convergentes, Ann. Sci. Éc. Norm. Supér 82, 131–179.Google Scholar
., Biró 2000 An upper estimate in Turán's pure power sum problem, Indag. Math. 11, 499–508.Google Scholar
S., Bochner & A.E., Taylor 1938 Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. 39, 913–944.Google Scholar
J., Boclé 1960 Sur la théorie ergodique, Ann. Inst. Fourier 10, 1–45.Google Scholar
B., Bojanov & N., Naidenov 1999 An extension of the Landau–Kolmogorov inequality: Solution of a problem of Erdös, J. Anal. Math. 78, 263–280.Google Scholar
A., Bonami 1970 Etude des coefficients de Fourier des fonctions de Lp(G) , Ann. Inst. Fourier 20, 335–402.Google Scholar
C., Borell 1979 On the integrability of Banach space valued Walsh polynomials, in Séminaire de Probabilités XIII, Lecture Notes in Mathematics 721, Springer, 1–3.
N., Bourbaki 1938 Sur les espaces de Banach, C.R.A.S. Paris 206, 1701–1704.Google Scholar
J., Bourgain 1979 a La propriété de Radon–Nikodym, Cours de 3¯eme cycle, Publications Mathématiques de l'Université Pierre et Marie Curie 36.Google Scholar
J., Bourgain 1979 b An averaging result for l1-sequences and applications to weakly conditionally compact sets in L1X , Israel J. Math. 32, 289–298.Google Scholar
J., Bourgain 1981 A counterexample to a complementation problem, Compos. Math. 43, 133–144.Google Scholar
J., Bourgain 1982 A remark on finite-dimensional Pƛ-spaces, Studia Math. 72 (3), 285–289.Google Scholar
J., Bourgain 1983 a Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21, 163–168.Google Scholar
J., Bourgain 1983 b Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc.Math. France 111, 421–428.Google Scholar
J., Bourgain 1983 c Sur les sommes de sinus, Publications Mathématiques d'Orsay 83-01, Exposé 3.Google Scholar
J., Bourgain 1984 a New Banach space properties of the disk algebra and H∞, Acta Math. 152, 1–48.Google Scholar
J., Bourgain 1984 b On martingale transforms in finite-dimensional lattices with an appendix on the K-convexity constant, Math. Nachr. 119, 41–53.Google Scholar
J., Bourgain 1985 a Sidon sets and Riesz products, Ann. Inst. Fourier 35, 137–148.Google Scholar
J., Bourgain 1985 b Subspaces of L∞ N, arithmetical diameter and Sidon sets, in Probability in Banach Spaces V, Lecture Notes in Mathematics 1153, Springer, 96–127.
J., Bourgain 1986 Sur le minimum d'une somme de cosinus, Acta Arith. 45, 381–389.Google Scholar
J., Bourgain 1987 A remark on entropy of abelian groups and the invariant uniform approximation property, Studia Math. 86, 79–84.Google Scholar
J., Bourgain 1989 Bounded orthogonal sets and the (p)-set problem, Acta Math. 162, 227–246.Google Scholar
J., Bourgain, D., Fremlin & M., Talagrand 1978 Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100, 845–886.Google Scholar
J., Bourgain, J., Lindenstrauss & V., Milman 1989 Approximation of zonoids by zonotopes, Acta Math. 162, 73–141.Google Scholar
J., Bourgain & V., Milman 1985 Dichotomie du cotype pour les espaces invariants, C.R.A.S. Paris 300, 263–266.Google Scholar
J., Bourgain & V., Milman 1987 New volume ratio properties for convex symmetric bodies in Rn, Invent. Math. 88, 319–340.Google Scholar
J., Bourgain & H.P., Rosenthal 1980 Martingales valued in certain subspaces of L1, Israel J. Math. 37, 54–75.Google Scholar
J., Bourgain & S., Szarek 1988 The Banach–Mazur distance to the cube and the Dvoretzky–Rogers factorization, Israel J. Math. 62, 169–180.Google Scholar
H.J., Brascamp & E.H., Lieb 1976 a On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22, 366–389.Google Scholar
H.J., Brascamp & E.H., Lieb 1976 b Best constants in Young's inequality, its converse and its generalization to more than three functions, Adv. Math. 20, 151–173.Google Scholar
J., Bretagnolle, D., Dacunha-Castelle & J.-L., Krivine 1966 Lois stables et espaces Lp , Ann. Inst. H. Poincaré. B. (N.S.) 2, 231–259.Google Scholar
J., Brillhart & L., Carlitz 1970 Note on the Shapiro polynomials, Proc. Amer. Math. Soc. 25, 114–118.Google Scholar
A.V., Bukhvalov & G., Lozanovski˘ı [Lozanovski] 1978 On sets closed in measure, Trans. Moscow Math. Soc. 2, 127–148.Google Scholar
D. L., Burkholder 1981 A geometrical characterization of Banach spaces in which martingale differences are unconditional, Ann. Probab. 9, 997–1011.Google Scholar
D. L., Burkholder 1983 A geometric condition that implies the existence of certain singular integrals of Banach-space valued functions, in Proceedings of the Conference in Harmonic Analysis in Honor of Antoni Zygmund, University of Chicago, 1981, Wadsworth Mathematical Series, Wadsworth, 270–286.
D. L., Burkholder 1984 Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12, 647–702.Google Scholar
D. L., Burkholder 1985 An elementary proof of an inequality of R.E.A.C. Paley, Bull. London Math. Soc. 17, 474–478.Google Scholar
D. L., Burkholder 1988 A proof of Pełczy´nski's conjecture for the Haar system, Studia Math. 91, 79–83.Google Scholar
D. L., Burkholder 332 References D.L., Burkholder & R.F. Gundy 1970 Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124, 249–304.Google Scholar
M., Cambern 1967 On isomorphisms with small bound, Proc. Amer. Math. Soc. 18, 1062–1066.Google Scholar
D. L., Burkholder 1968 On mappings of sequence spaces, Studia Math. 30, 73–77.Google Scholar
L., Carleson 1980 An explicit unconditional basis of H1, Bull. Sci. Math. 104, 405–416.Google Scholar
P., Casazza 1986 Finite-dimensional decompositions in Banach spaces, in Geometry of Normed Linear Spaces: Proceedings of a Conference held June 9–12, 1983 in Honor of Mahlon Marsh Day (Urbana–Champaign, IL) Contemporary Mathematics 52, American Mathematical Society, 1–31.
P., Casazza 1989 The commuting B.A.P. for Banach spaces, in Analysis at Urbana II, E., Berkson, N.T., Peck & J.J., Uhl, eds., London Mathematical Society Lecture Note Series 138, 108–127.
P., Casazza 2001 Approximation properties, in Handbook of The Geometry of Banach Spaces I, Elsevier, 271–316.
P.G., Casazza, W.B., Johnson & L., Tzafriri 1984 On Tsirelson's space, Israel J. Math. 47, 81–98.Google Scholar
P., Casazza & N., Kalton 1990 Notes on approximation properties in separable Banach spaces, in Geometry of Banach Spaces, P.F.X. Müller and W., Schachermayer, eds., London Mathematical Society Lecture Note Series 158, Cambridge University Press, 49–63.
J., Caveny 1966 Bounded Hadamard products of Hp functions, Duke Math. J. 33, 389–394.Google Scholar
S.D., Chatterji 1968 Martingale convergence and the Radon–Nikodym theorem in Banach spaces, Math. Scand. 22, 21–41.Google Scholar
G., Choquet 1962 Remarques à propos de la démonstration de l'unicité de P. A. Meyer, in Séminaire Brelot–Choquet–Deny (Théorie du Potentiel) 6, 2, Exposé 8, Secrétariat Mathématique.Google Scholar
F., Cobos 1983 On the type of interpolation spaces and Sp,q , Math. Nachr. 113, 59–64.Google Scholar
M., Cotlar 1955 A unified theory of Hilbert transforms and ergodic theory, Rev. Mat. Cuyana I, 105–167.Google Scholar
H., Cramér 1935 Prime numbers and probability, Skand. Mat.-Kongr. 8, 107–115.Google Scholar
H., Cramér 1937 On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2, 23–46.Google Scholar
J., Creekmore 1981 Type and cotype in Lorentz Lp,q spaces, Indag. Math. 43, 145–152.Google Scholar
D., Dacunha-Castelle & J.-L., Krivine 1972 Applications des ultraproduits à l’étude des espaces et algèbres de Banach, Studia Math. 41, 315–334.Google Scholar
A.M., Davie 1973 The approximation problem for Banach spaces, Bull. London Math. Soc. 5, 261–266.Google Scholar
A.M., Davie 1975 The Banach approximation problem, J. Approx. Theory 13, 392–394.Google Scholar
W.J., Davis, D.W., Dean & I., Singer 1968 Complemented subspaces and systems in Banach spaces, Israel J. Math. 6, 303–309.Google Scholar
G., Debs 1987 Effective properties in compact sets of Borel functions, Mathematika 34, 64–68.Google Scholar
M., Déchamps-Gondim [Déchamps] 1972 Ensembles de Sidon topologiques, Ann. Inst. Fourier 22, 51–79.Google Scholar
M., Déchamps-Gondim 1984 Sur les compacts associés aux ensembles lacunaires, les ensembles de Sidon et quelques problèmes ouverts, Publications Mathématiques d'Orsay 84-01.
M., Déchamps-Gondim 1987 Densité harmonique et espaces de Banach invariants par translation ne contenant pas c0, Colloq. Math. 51, 67–84.Google Scholar
J., Diestel 1980 A survey of results related to the Dunford–Pettis property, Contemp.Math. 2, 15–60.Google Scholar
S.J., Dilworth, M., Girardi & J., Hagler 2000 Dual Banach spaces which contain an isometric copy of L1, Bull. Pol. Acad. Sci. Math. 48, 1–12.Google Scholar
S.J., Dilworth & J.P., Patterson 2003 An extension of Elton's _n1 theorem to complex Banach spaces, Proc. Amer. Math. Soc. 131, 1489–1500.Google Scholar
L., Dor 1975 a On projections in L1, Ann. of Math. 102, 463–474.Google Scholar
L., Dor 1975 b On sequences spanning a complex l1 space, Proc. Amer. Math. Soc. 47, 515–516.Google Scholar
S., Drury 1970 Sur les ensembles de Sidon, C.R.A.S. Paris 271, 162–163.Google Scholar
R.M., Dudley 1967 The size of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1, 290–330.Google Scholar
R.M., Dudley 1973 Sample functions of the Gaussian process, Ann. Probab. 1, 66–103.Google Scholar
N., Dunford 1939 A mean ergodic theorem, Duke Math. J. 5, 635–646.Google Scholar
N., Dunford & A.P., Morse 1936 Remarks on the preceding paper of James A. Clarkson: “Uniformly convex spaces,” Trans. Amer. Math. Soc. 40, 415–420.Google Scholar
N., Dunford & B.J., Pettis 1940 Linear operations on summable functions, Trans. Amer. Math. Soc. 47, 323–392.Google Scholar
N., Dunford & B.J., Pettis 334 References P. L. Duren 1969 a On the Bloch–Nevanlinna conjecture, Colloq. Math. 20, 295–297.Google Scholar
N., Dunford & B.J., Pettis 1969 b On the multipliers of Hp spaces, Proc. Amer. Math. Soc. 22, 24–27.Google Scholar
N., Dunford & B.J., Pettis 1985 Random series and bounded mean oscillation, Michigan Math. J. 32, 81–86.Google Scholar
A., Dvoretzky 1959 A theorem on convex bodies and applications to Banach spaces, Proc. Nat. Acad. Sci. USA 45, 223–226. erratum, 1554.Google Scholar
N., Dunford & B.J., Pettis 1961 Some results on convex bodies and Banach spaces, in Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Pergamon Press, 123–160.
A., Dvoretzky & C.A., Rogers 1950 Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. USA 36, 192–197.Google Scholar
W.F., Eberlein 1947 Weak compactness in Banach spaces, Proc. Nat. Acad. Sci. USA 33, 51–53.Google Scholar
J., Elton 1983 Sign-embeddings of _n1, Trans. Amer. Math. Soc. 279, 113–124.Google Scholar
P., Enflo 1973 A counterexample to the approximation property in Banach spaces, Acta Math. 130, 309–317.Google Scholar
P., Erdös 1955 Problems and results in additive number theory, in Colloque sur la Théorie des Nombres, held in Bruxelles (December 1955) , Librairie Universitaire 127–137.
P., Erdös & A., Rényi 1960 Additive properties of random sequences of positive integers, Acta Arith. 6, 83–110.Google Scholar
T., Fack 1987 Type and cotype inequalities for noncommutative Lp-spaces, J. Operator Theory 17, 255–279.Google Scholar
H., Fakhoury 1977 Sur les espaces de Banach ne contenant pas _1(N) , Math. Scand. 41, 277–289.Google Scholar
J., Farahat 1974 Espaces de Banach contenant l1, d'après H.P. Rosenthal, in Séminaire Maurey–Schwartz 1973–1974 , École Polytechnique.
J., Faraut & K., Harzallah 1974 Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier 24, 171–217.Google Scholar
V., Farmaki 2002 Ordinal indices and Ramsey dichotomies measuring c0-content and semibounded completeness, Fund. Math. 172, 153–179.Google Scholar
S. Yu., Favorov 1998 A generalized Kahane–Khinchin inequality, Studia Math. 130, 101–107.Google Scholar
V., Ferenczi 1995 Un espace de Banach uniformément convexe et héréditairement indécomposable, C.R.A.S. Paris Sér. I Math. 320, 49–54.Google Scholar
S. Yu., Favorov 1997 a A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102, 199–225.Google Scholar
S. Yu., Favorov 1997 b Operators on subspaces of hereditary indecomposable Banach spaces, Bull. London Math. Soc. 29, 338–344.Google Scholar
X., Fernique 1970 Intégrabilité des vecteurs gaussiens, C.R.A.S. Paris Sér. A 270, 1698–1699.Google Scholar
X., Fernique 1971 Régularité des processus gaussiens, Invent. Math. 12, 304–320.Google Scholar
1975 Regularité des trajectoires des fonctions aléatoires gaussiennes, in École d’Été de Probabilités de Saint-Flour IV-1974, Lecture Notes in Mathematics 480, Springer, 1–96.
T., Figiel 1976 A short proof of Dvoretzky's theorem, Compos. Math. 33, 297–301.Google Scholar
T., Figiel & W.B., Johnson 1973 The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 4, 197–200.Google Scholar
T., Figiel 1974 A uniformly convex Banach space which contains no _p , Compos. Math. 29, 179–190.Google Scholar
T., Figiel, J., Lindenstrauss & V., Milman 1977 The dimension of almost spherical sections of convex bodies, Acta Math. 139, 53–94.Google Scholar
T., Figiel & N., Tomczak-Jaegermann 1979 Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33, 155–171.Google Scholar
T., Figiel & P., Wojtaszczyk 2001 Special bases in function spaces, in Handbook of the Geometry of Banach Spaces I, Elsevier, 561–597.
D.J.H., Garling & Y., Gordon 1971 Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9, 346–361.Google Scholar
B., Gelbaum 1958 Notes on Banach spaces and bases, An. Acad. Brasil. Ciênc. 30, 29–36.Google Scholar
I.M., Gelfand 1938 Abstrakte funktionen und lineare operatoren, Mat. Sb. 4 (46), 235–286.Google Scholar
N., Ghoussoub, B., Maurey & W., Schachermayer 1992 Slicings, selections and their applications, Canad. J. Math. 44, 483–504.Google Scholar
D.P., Giesy & R.C., James 1973 Uniformly non-l(1) and B-convex Banach spaces, Studia Math. 48, 61–69.Google Scholar
E., Giné, M., Marcus & J., Zinn 1985 A version of Chevet's theorem for stable processes, J. Funct. Anal. 63, 47–73.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1994 Zeros of analytic functions and norms of inverse matrices, Israel J. Math. 87, 225–242.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 336 References G. Godefroy 1978 Espaces de Banach : Existence et unicité de certains préduaux, Ann. Inst. Fourier 28, 87–105.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1979 Étude des projections de norme 1 de E sur E: Unicité de certains préduaux. Applications, Ann. Inst. Fourier 29, 53–70.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1981 Points de Namioka, espaces normants: Applications à la théorie isométrique de la dualité, Israel J. Math. 38, 209–220.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1983 Parties admissibles d'un espace de Banach: Applications, Ann. Sci. Éc. Norm. Supér. 16, 109–122.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1984 a Quelques remarques sur l'unicité des préduaux, Quart. J. Math. Oxford 35, 147–152.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1984 b Sous-espaces bien disposés de L1: Applications, Trans. Amer. Math. Soc. 286, 227–249.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1987 Boundaries of a convex set and interpolation sets, Math. Ann. 277, 173–184.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1988 On Riesz subsets of abelian discrete groups, Israel J. Math. 61, 301–331.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1989 a Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. 95, 1–15.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1989 b Existence and uniqueness of isometric preduals: A survey, Contemp. Math. 85, 131–193.Google Scholar
G., Godefroy & N.J., Kalton 1989 The ball topology and its applications, in Banach Space Theory: Proceedings of a Research Workshop held July 5–25, 1987 (Iowa City, IA), Contemporary Mathematics 85, American Mathematical Society, 195-237.
E., Gluskin, M., Meyer & A., Pajor 1997 Approximating sequences and bidual projections, Quart. J. Math. Oxford (2) 48, 179–202.Google Scholar
G., Godefroy, N., Kalton & D., Li 1995 Propriété d'approximation métrique inconditionnelle et sous-espaces de L1 dont la boule est compacte en mesure, C.R.A.S. Paris 320, 1069–1073.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 1996 On subspaces of L1 which embed in _1, J. Reine Angew.Math. 471, 43–75.Google Scholar
E., Gluskin, M., Meyer & A., Pajor 2000 Operators between subspaces and quotients of L1, Indiana Univ. Math. J. 49, 245–286.Google Scholar
G.B., Godefroy, N.J., Kalton & P.D., Saphar 1993 Unconditional ideals in Banach spaces, Studia Math. 104, 13–59.Google Scholar
G., Godefroy & D., Li 1989 Banach spaces which are M-ideals in their bidual have property (u) , Ann. Inst. Fourier 39, 361–371.Google Scholar
1998 Strictly convex functions on compact convex sets and their use, in Functional Analysis: Selected Topics , P.K., Jain, ed., Narosa Publishing House.
G., Godefroy & P.D., Saphar 1989 Three-space problems for the approximation properties, Proc. Amer. Math. Soc. 105, 70–75.Google Scholar
H.H., Goldstine 1938 Weakly complete Banach spaces, Duke Math. J. 4, 125–131..Google Scholar
Y., Gordon 1985 Some inequalities for Gaussian processes and applications, Israel J. Math. 50, 265–289.Google Scholar
Y., Gordon 1992 Majorization of Gaussian processes and geometric applications, Probab. Theory Related Fields 91, 251–267.Google Scholar
W.T., Gowers 1994 a A Banach space not containing c0, l1 or a reflexive subspace, Trans. Amer. Math. Soc. 344, 407–420.Google Scholar
W.T., Gowers 1994 b Analytic sets and games in Banach spaces, Preprint IHES M/94/42.Google Scholar
W.T., Gowers 1995 Recent results in the theory of infinite-dimensional Banach spaces, in Proceedings of the International Congress of Mathematicians, Vols 1 and 2 (held in Zürich, 1994), Birkhäuser, 933–942.
W.T., Gowers 1996 a A solution to the Schroeder–Bernstein problem for Banach spaces, Bull. London Math. Soc. 28, 297–304.Google Scholar
W.T., Gowers 1996 b A new dichotomy for Banach spaces, Geom. Funct. Anal. 6, 1083–1093.Google Scholar
W.T., Gowers 2002 An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. 156, 797–833.Google Scholar
W.T., Gowers & B., Maurey 1993 The unconditional basic sequence problem, J. Amer. Math. Soc. 6, 851–874.Google Scholar
W.T., Gowers & B., Maurey 1997 Banach spaces with small spaces of operators, Math. Ann. 307, 543–568.Google Scholar
C.C., Graham, B., Host & F., Parreau 1981 Sur les supports des transformées de Fourier–Stieltjes, Colloq. Math. 44, 145–146.Google Scholar
L., Gross 1975 Logarithmic Sobolev inequalities, Amer. J. Math. 97, 1061–1083.Google Scholar
A., Grothendieck 1956 Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8, 1–79.Google Scholar
O., Guédon 1997 Gaussian version of a theorem of Milman and Schechtman, Positivity 1, 1–5.Google Scholar
O., Guédon 1998 Sections euclidiennes des corps convexes et inégalités de concentration volumiques, Doctoral thesis, Université de Marne-la-Vallée.
O., Guédon 1999 Kahane–Khinchine type inequalities for negative exponent, Mathematika 46, 165–173.Google Scholar
S., Guerre [Guerre-Delabrière] & J.-T., Lapresté 1981 Quelques propriétés des espaces de Banach stables, Israel J. Math. 39, 247–254.Google Scholar
S., Guerre [Guerre-Delabrière] & M., Lévy 1983 Espaces _p dans les sous-espaces de L1, Trans. Amer. Math. Soc. 279, 611–616.Google Scholar
U., Haagerup 1978 Les meilleures constantes de l'inégalité de Khintchine, C.R.A.S. Paris Sér. A 286, 259–262.Google Scholar
U., Haagerup 1982 The best constants in the Khintchine inequality, Studia Math. 70 (1981), 231–283.Google Scholar
U., Haagerup 338 A new upper bound for the complex Grothendieck constant, Israel J. Math. 60, 199–224.Google Scholar
J., Hagler 1973 Some more Banach spaces which contain l1, Studia Math. 46, 35–42.Google Scholar
U., Haagerup 1977 A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289–308.Google Scholar
J., Hagler & C., Stegall 1973 Banach spaces whose duals contain complemented subspaces isomorphic to C[0, 1]∗, J. Funct. Anal. 13, 233–251.Google Scholar
G., Halász 1973 On a result of Salem and Zygmund concerning random polynomials, Studia Sci. Math. Hungar. 8, 369–377.Google Scholar
A., Harcharras 1999 Fourier analysis, Schur multipliers on Sp and non-commutative (p)-sets, Studia Math. 137, 203–260.Google Scholar
C.D., Hardin, 1981 Isometries on subspaces of Lp , Indiana Univ. Math. J. 30, 449–465.Google Scholar
G.H., Hardy & J.E., Littlewood 1932 Some properties of fractional integrals II, Math. Z. 34, 403–439.Google Scholar
K., Hare 1988 An elementary proof of a result on (p)-sets, Proc. Amer. Math. Soc. 104, 829–834.Google Scholar
V.P., Havin 1973 Weak completeness of the space L1/H1 0, Vestnik Leningrad Univ. 13, 77–81.(in Russian).Google Scholar
R., Haydon 1976 Some more characterizations of Banach spaces containing l1, Math. Proceed. Cambridge Phil. Soc. 80, 269–276.Google Scholar
W.K., Hayman 1964 On the characteristic of functions meromorphic in the unit disk and of their integrals, Acta Math. 112, 181–214.Google Scholar
E., Hewitt & K., Yosida 1952 Finitely additive measures, Trans. Amer. Math. Soc. 72, 46–66.Google Scholar
J., Hoffmann-Jørgensen 1970 The theory of analytic sets, Matematisk Institut, Aarhus Universitet, Varions Publications Series 10.Google Scholar
J., Hoffmann-Jørgensen 1973 Sums of independent Banach space random variables, Aarhus Universitet, Preprint Series 15.Google Scholar
J., Hoffmann-Jørgensen 1974 Sums of independent Banach space random variables, Studia Math. 52, 159–186.Google Scholar
B., Host & F., Parreau 1979 Sur les mesures dont la transformée de Fourier–Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41, 285–289.Google Scholar
I.A., Ibragimov, V.N., Sudakov & B.S., Tsirelson 1976 Norms of Gaussian sample functions, in Proceedings of the Third Japan- USSR Symposium on Probability Theory, Lecture Notes in Mathematics 550, Springer, 20–41.
K., Itô & M., Nisio 1968 On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5, 35–48.Google Scholar
R.C., James 1950 Bases and reflexivity of Banach spaces, Ann. of Math. 52, 518–527.Google Scholar
R.C., James 1951 A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. USA 37, 174–177.Google Scholar
R.C., James 1957 Reflexivity and the supremum of linear functionals, Ann. of Math. 66, 159–169.Google Scholar
R.C., James 1964 a Characterizations of reflexivity, Studia Math. 23, 205–216.Google Scholar
R.C., James 1964 b Uniformly non square Banach spaces, Ann. of Math. 80, 542–550.Google Scholar
R.C., James 1972 Reflexivity and the sup of linear functionals, Israel J. Math. 13, 289–300.Google Scholar
R.C., James 1974 A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80, 738–743.Google Scholar
L., Janicka 1979 Some measure-theoretic characterizations of Banach spaces not containing _1, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27, 561–565.Google Scholar
F., John 1948 Extremum problems with inequalities as subsidiary conditions, in Studies and Essays: Presented to R. Courant on His 60th Birthday, January 8, 1948 , Interscience 187–204.
W.B., Johnson 1970 Finite-dimensional Schauder decompositions in πƛ and dual πƛ-spaces, Illinois J. Math. 14, 642–647.Google Scholar
W.B., Johnson 1972 A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13, 301–310.Google Scholar
W.B., Johnson 1980 Banach spaces all of whose subspaces have the approximation property, in Special Topics of Applied Mathematics: Proceedings of the Seminar Held at the GMD, Bonn 8–10 October, 1979, North-Holland, 15–26.
W.B., Johnson & E., Odell 1974 Subspaces of Lp which embed into _p , Compos. Math. 28, 37–49.Google Scholar
W.B., Johnson & H.P., Rosenthal 1972 On w∗-basic sequences and their applications to the study of Banach spaces, Studia Math. 43, 77–92.Google Scholar
W.B., Johnson, H.P., Rosenthal & M., Zippin 1971 On bases, finite-dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9, 488–506.Google Scholar
W.B., Johnson & G., Schechtman 2001 Finite-dimensional subspaces of Lp, in Handbook of the Geometry of Banach Spaces I, Elsevier, 837–870.
W.B., Johnson & M., Zippin 1974 Subspaces and quotient spaces of ( _ Gn)_p and ( _ Gn)c0, Israel J. Math. 17, 50–55.Google Scholar
M., Junge 2002 Doob's inequality for non-commutative martingales, J. Reine Angew. Math. 549, 149–190.Google Scholar
M., Junge 340 References M.I. Kadeˇc 1958 On linear dimension of the spaces Lp , Uspekhi Mat. Nauk 13, 95–98.Google Scholar
M.I., Kadeˇc & A., Pełczy´nski 1962 Bases, lacunary sequences and complemented subspaces in the spaces Lp , Studia Math. 21, 161–176.Google Scholar
M.I., Kadeˇc & M.G., Snobar 1971 Some functionals over a compact Minkowski space, Math. Notes 10, 694–696.Google Scholar
V.M., Kadets, R.V., Shvidkoy, G. G., Sirotkin & D., Werner 2000 Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352, 855–873.Google Scholar
J.-P., Kahane 1956 Sur certaines classes de séries de Fourier absolument convergentes, J. Math. Pures Appl. 35, 249–259.Google Scholar
J.-P., Kahane 1958 Sur un théorème de Wiener–Lévy, C.R.A.S. Paris 246, 1949–1951.Google Scholar
J.-P., Kahane 1980 Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12, 321–342.Google Scholar
J.-P., Kahane 1986 Une inégalité du type de Slepian et Gordon sur les processus gaussiens, Israel J. Math. 55, 109–110.Google Scholar
J.-P., Kahane, Y., Katznelson & K., de Leeuw 1977 Sur les coefficients de Fourier des fonctions continues, C.R.A.S. Paris Sér. A 285, 1001–1003.Google Scholar
N., Kalton 1995 The basic sequence problem, Studia Math. 116, 167–187.Google Scholar
N., Kalton & A., Pełczy´nski 1997 Kernels of surjections from L1-spaces with an application to Sidon sets, Math. Ann. 309, 135–158.Google Scholar
Y., Katznelson 1958 Sur les fonctions opérant sur l'algèbre des séries de Fourier absolument convergentes, C.R.A.S. Paris Sér. A 247, 404–406.Google Scholar
Y., Katznelson 1960 A characterization of the algebra of all continuous functions on a compact Hausdorff space, Bull. Amer. Math. Soc. 66, 313–315.Google Scholar
Y., Katznelson 1973 Suites aléatoires d'entiers, in L'Analyse Harmonique dans le Domaine Complexe: Actes de la Table Ronde Internationale du Centre National de la Recherche Scientifique tenue à Montpelier du 11 au 15 Septembre 1972, Lecture Notes in Mathematics 336, Springer, 148–152.
Y., Katznelson & P., Malliavin 1966 Vérification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction, C.R.A.S. Paris 262, 490–492.Google Scholar
S., Kisliakov 1978 On spaces with “small” annihilators, Sem. Inst. Steklov (LOMI) 73, 91–101.Google Scholar
S., Kisliakov 1991 Absolutely summing operators on the disk algebra, Algebra i Analiz 3, 1–79; translated in St. Petersburg Math. J. 3 (1992), 705–774.Google Scholar
H., Knaust & E., Odell 1989 On c0 sequences in Banach spaces, Israel J. Math. 67, 153–169.Google Scholar
A.L., Koldobsky 1992 The Schoenberg problem on positive-definite functions, St. Petersburg Math. J. 3, 563–570.Google Scholar
A.L., Koldobsky & Y., Lonke 1999 A short proof of Schoenberg's conjecture on positive definite functions, Bull. London Math. Soc. 31, 693–699.Google Scholar
J., Komlós 1967 A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hung. 18, 217–229.Google Scholar
R., Komorowski & N., Tomczak-Jaegermann 1995 Banach spaces without unconditional structure, Israel J. Math. 89, 205–226.Google Scholar
R., Komorowski & N., Tomczak-Jaegermann 1998 Erratum, Israel J. Math. 105, 85–92.Google Scholar
H., König 1990 On the complex Grothendieck constant in the n-dimensional case, in Geometry of Banach Spaces: Proceedings of the Conference held in Strobl, Austria, 1989, London Mathematical Society Lecture Notes Series 158, Cambridge University Press, 181–198.
S.V., Konyagin 1997 Estimates of maxima of sine sums, East J. Approx. 3, 301–308.Google Scholar
M., Krein & D., Milman 1940 On extreme points of regular convex sets, Studia Math. 9, 133-138.Google Scholar
J.-L., Krivine 1975 Sur les espaces isomorphes à lp , C.R.A.S. Paris Sér. A 280, 713–715.Google Scholar
J.-L., Krivine 1976 Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104, 1–29.Google Scholar
J.-L., Krivine 1977 Sur la constante de Grothendieck, C.R.A.S. Paris Sér. A 284, 445–446.Google Scholar
J.-L., Krivine 1979 Constantes de Grothendieck et fonctions de type positif sur les sphères, Adv. Math. 31, 16–30.Google Scholar
J.-L., Krivine S., Kwapie´n 1970 a On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38, 193–201.Google Scholar
J.-L., Krivine 1970 b A linear topological characterization of inner product spaces, StudiaMath. 38, 277–278.Google Scholar
J.-L., Krivine 1972 Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44, 583–595.Google Scholar
J.-L., Krivine 1974 On Banach spaces containing c0, Studia Math. 52, 187–188.Google Scholar
J.-L., Krivine 1976 A theorem on the Rademacher series with vector valued coefficients, in Probability in Banach spaces: Proceedings of the First International Conference on Probability in Banach Space, 20–26 July 1975, Oberwolfach, Lecture Notes in Mathematics 526, Springer, 157–158.
S., Kwapie´n & A., Pełczy´nski 1970 The main triangle projection in matrix spaces and its applications, Studia Math. 34, 43–68.Google Scholar
S., Kwapie´n & A., Pełczy´nski 1980 Absolutely summing operators and translation invariant spaces of functions on compact abelian groups, Math. Nachr. 94, 303–340.Google Scholar
S., Kwapie´n & A., Pełczy´nski 342 References R. Latała 1997 Sudakov minoration principle and supremum of some processes, Geom. Funct. Anal. 7, 936–953.Google Scholar
R., Latała & K., Oleszkiewicz 1994 On the best constant in the Khinchin–Kahane inequality, StudiaMath. 109, 101–104.Google Scholar
P., Lefèvre 1998 On some properties of the class of stationary sets, Colloq. Math. 76, 1–18.Google Scholar
P., Lefèvre 1999 a Measures and lacunary sets, Studia Math. 133, 145–161.Google Scholar
P., Lefèvre 1999 b Topological dichotomy and unconditional convergence, Serdica Math. J. 25, 297–310.Google Scholar
P., Lefèvre, D., Li, H., Queffélec & L., Rodríguez-Piazza 2002 Lacunary sets and function spaces with finite cotype, J. Funct. Anal. 188, 272–291.Google Scholar
P., Lefèvre & L., Rodríguez-Piazza 2003 p-Rider sets are q-Sidon sets, Proc. Amer. Math. Soc. 131, 1829–1838.Google Scholar
L., Leindler 1972 On a certain converse of Hölder's inequality II, Acta Sci. Math. 33, 217–223.Google Scholar
D., Lewis 1978 Finite dimensional subspaces of Lp , Studia Math. 63, 207–212.Google Scholar
D., Lewis 1979 Ellipsoids defined by Banach ideal norms, Mathematika 26, 18–29.Google Scholar
D., Li 1987 Espaces L-facteurs de leurs biduaux bonne disposition, meilleure approximation et propriété de Radon–Nikodym, Quart. J. Math. Oxford (2) 38, 229–243.Google Scholar
D., Lewis 1988 Lifting properties for some quotients of L1-spaces and other spaces L-summand in their bidual, Math. Z. 199, 321–329.Google Scholar
D., Lewis 1991 Propriété d'approximation par des opérateurs qui commutent, d'après Casazza et Kalton, in Séminaire d'Initiation à l'Analyse, 1990-1991 , Exposé 4, Publications Mathématiques de l'université Pierre et Marie Curie 104.
D., Lewis 1996 Complex unconditional metric approximation property for C (T) spaces, Studia Math. 121, 231–247.Google Scholar
D., Lewis 1998 A remark about (p)-sets and Rosenthal sets, Proc. Amer. Math. Soc. 126, 3329–3333.Google Scholar
D., Li, H., Queffélec & L., Rodríguez-Piazza 2002 Some new thin sets of integers in harmonic analysis, J. Anal. Math. 86, 105–138.Google Scholar
J., Lindenstrauss 1966 a A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15, 971–972.Google Scholar
J., Lindenstrauss 1966 b Notes on Klee's paper “Polyhedral sections of convex bodies,” Israel J. Math. 4, 235–242.Google Scholar
J., Lindenstrauss 1967 On complemented subspaces of m , Israel J. Math. 5, 153–156.Google Scholar
J., Lindenstrauss 1971 On James’ paper “separable conjugate spaces,” Israel J. Math. 9, 263–269.Google Scholar
J., Lindenstrauss & A., Pełczy´nski 1968 Absolutely summing operators in Lp spaces and their applications, Studia Math. 29, 275–326.Google Scholar
J., Lindenstrauss 1971 Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8, 225–249.Google Scholar
J., Lindenstrauss & H.P., Rosenthal 1969 The Lp spaces, Israel J. Math. 7, 325–349.Google Scholar
J., Lindenstrauss & C., Stegall 1975 Examples of separable spaces which do not contain l1 and whose duals are non-separable, Studia Math. 54, 81–105.Google Scholar
J., Lindenstrauss & L., Tzafriri 1971 On the complemented subspaces problem, Israel J. Math. 9, 263–269.Google Scholar
J., Lindenstrauss & M., Zippin 1969 Banach spaces with a unique unconditional basis, J. Funct. Anal. 3, 115–125.Google Scholar
J.-L., Lions & J., Peetre 1964 Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Études Sci. 19, 5–68.Google Scholar
R.H., Lohman 1976 A note on Banach spaces containing _1, Canad. Math. Bull. 19, 365–367.Google Scholar
G., Lorentz & N., Tomczak-Jaegermann 1984 Projections of minimal norm, The University of Texas Functional Analysis Seminar 1983–1984 , Longhorn Notes, University of Texas at Austin, 167–176.Google Scholar
W., Lusky 1978 Some consequences of Rudin's paper “Lp-Isometries and equimeasurability,” Indiana Univ. Math. J. 27, 859–866.Google Scholar
F., Lust (F., Lust-Piquard) 1975 Produits tensoriels injectifs d'espaces faiblement séquentiellement complets, Colloq. Math. 33, 289–290.Google Scholar
F., Lust-Piquard 1976 Ensembles de Rosenthal et ensembles de Riesz, C.R.A.S. Paris Sér. A 282, 833-835.Google Scholar
F., Lust-Piquard 1978 Propriétés géométriques des sous-espaces invariants par translation de L1(G) et C(G), Séminaire sur la Géométrie des Espaces de Banach 1977–1978, Exposé 26, École Polytechnique, Palaiseau.
F., Lust-Piquard 1979 L'espace des fonctions presque-périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Colloq. Math. 41, 273–284.Google Scholar
F., Lust-Piquard 1989 Bohr local properties of C (T) , Colloq. Math. 58, 29-38.Google Scholar
F., Lust-Piquard 1997 On the coefficient problem: A version of the Kahane–Katznelson–de Leeuw theorem for spaces of matrices, J. Funct. Anal. 149, 352–376.Google Scholar
P., Malliavin & M.-P., Malliavin-Brameret 1967 Caractérisation arithmétique d'une classe d'ensembles de Helson, C.R.A.S. Paris Sér. A 264, 192–193.Google Scholar
P., Malliavin & M.-P., Malliavin-Brameret 344 References J., Marcinkiewicz & A. Zygmund 1938 Quelques théorèmes sur les fonctions indépendantes, Studia Math. 7, 104–120.Google Scholar
M.B., Marcus & G., Pisier 1984 Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Math. 152, 245–301.Google Scholar
M.B., Marcus & L., Shepp 1972 Sample behavior of Gaussian processes, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, University of California, Berkeley, CA, 1970–1971, Vol. II: Probability Theory, University of California Press, 423–441.
B., Maurey 1972 a Théorèmes de factorisation pour les applications linéaires à valeurs dans un espace Lp , C.R.A.S. Paris Sér. A 274, 1825–1828.Google Scholar
B., Maurey 1972 b Espaces de type (p, q), théorèmes de factorisation et de plongement, C.R.A.S. Paris Sér. A 274, 1939–1941.
B., Maurey 1972 c Espaces de cotype (p, q) et théorèmes de relèvement, C.R.A.S. Paris Sér. A 275, 785–788.
B., Maurey 1973 a Espaces de cotype p, 0 _ 2, Séminaire Maurey–Schwartz 1972–1973, Exposé VII, École Polytechnique, Paris.
B., Maurey 1973 b Théorèmes de Nikishin: Théorèmes de factorisation pour les applications linéaires à valeurs dans un espace L0(_, μ), Séminaire Maurey–Schwartz 1972–1973, Exposés X et XI, École Polytechnique, Paris.
B., Maurey 1973 c Théorèmes de Nikishin: Théorèmes de factorisation pour les applications linéaires à valeurs dans un espace L (μ) (suite et fin), Séminaire Maurey–Schwartz 1972–1973, Exposé XII, École Polytechnique, Paris.
B., Maurey 1973 d Théorèmes de factorisation pour les opérateurs à valeurs dans un espace, Lp(μ), 0 _ +∞, Séminaire Maurey–Schwartz 1972–1973, Exposé XV, École Polytechnique, Paris.
B., Maurey 1975 a Système de Haar, Séminaire Maurey–Schwartz 1974–1975, Exposés I et II, École Polytechnique, Paris.
B., Maurey 1975 b Projections dans L1, d'après L. Dor, Séminaire Maurey–Schwartz 1974–1975, Exposé 21, École Polytechnique, Paris.
B., Maurey 1980 a Isomorphismes entre espaces H1, Acta Math. 145, 79–120.Google Scholar
B., Maurey 1980 b Tout sous-espace de L1 contient un _p (d'après D. Aldous), Séminaire d'Analyse Fonctionnelle 1979–1980, Exposés 1 et 2, École Polytechnique, Palaiseau.
B., Maurey 1983 Types and _1-subspaces, The University of Texas Functional Analysis Seminar 1982–1983 , Longhorn Notes, University of Texas at Austin, 123–137.Google Scholar
B., Maurey 1990 Lemme de Slepian, Exposés des 27 avril et 4 mai 1990 à l'Université Pierre et Marie Curie (Paris VI), unpublished seminar.
B., Maurey 1991 Some deviation inequalities, Geom. Funct. Anal. 1, 188–197.Google Scholar
B., Maurey 1994 Quelques progrès dans la compréhension de la dimension infinie, Journée Annuelle , Société Mathématique de France, 1–29.Google Scholar
B., Maurey 1995 a A remark about distortion, in Geometric Aspects of Functional Analysis: Israel Seminar (1992–1994), Operator Theory: Advances and Applications 77, Birkhäuser, 131–142.
B., Maurey 1995 b Symmetric distortion in _2, Geometric Aspects of Functional Analysis: Seminar Israel (1992–1994) , Operator Theory: Advances and Applications 77, Birkhäuser, 143–147.Google Scholar
B., Maurey 1998 A note on Gowers’ dichotomy theorem, Convex Geometric Analysis 34, MSRI Publications, 149–157.
B., Maurey 2003 a Type, cotype and K-convexity, in Handbook of the Geometry of Banach Spaces II, Elsevier, 1299–1332.
B., Maurey 2003 b Banach spaces with few operators, in Handbook of the Geometry of Banach Spaces II, Elsevier, 1247–1297.
B., Maurey & A., Nahoum 1973 Applications radonifiantes dans l'espace des séries convergentes, C.R.A.S. Paris Sér., A-B 276, A751–A754.
B., Maurey & G., Pisier 1973 Caractérisation d'une classe d'espaces de Banach par des propriétés de séries aléatoires vectorielles, C.R.A.S. Paris Sér. A 277, 687–690.Google Scholar
B., Maurey & G., Pisier 1976 Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58, 45-90.Google Scholar
Y., Meyer 1968 a Spectres des mesures et mesures absolument continues, Studia Math. 30, 87–99.Google Scholar
Y., Meyer 1968 b Endomorphismes des idéaux fermés de L1(G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. Éc. Norm. Supér . 1, 499–580.Google Scholar
V.D., Milman 1971 a The geometric theory of Banach spaces, Part II, RussianMath. Surveys 26, 79–163.Google Scholar
V.D., Milman 1971 b A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies, Funct. Anal. Appl. 5, 288–295.Google Scholar
V.D., Milman 1982 Some remarks about embeddings of _k 1 in finite dimensional spaces, Israel J. Math. 43, 129–138.Google Scholar
V.D., Milman 1992 Dvoretzky's theorem: Thirty years later, Geom. Funct. Anal. 2, 455–479.Google Scholar
V.D., Milman & G., Schechtman 1995 An “isomorphic” version of Dvoretzky's theorem, C.R.A.S. Paris Sér. I Math. 321, 541–544.Google Scholar
V.D., Milman & N., Tomczak-Jaegermann 1993 Asymptotic _p spaces and bounded distortions, Contemporary Mathematics 44, 173–195.Google Scholar
V.D., Milman & H., Wolfson 1978 Minkowski spaces with extremal distances from the Euclidean space, Israel J. Math. 29, 113–131.Google Scholar
A.A., Miljutin [Milyutin] 1966 Isomorphisms of spaces of continuous functions on compacts of the power continuum, in Teoria Funcktsii, Funktsionalnyi Analiz i ego Prilozheniya. 2, 150–156.(in Russian).
A.A., Miljutin 346 References S.J., Montgomery-Smith 1990 The distribution of Rademacher sums, Proc. Amer. Math. Soc. 109, 517–522.Google Scholar
M.C., Mooney 1972 A theorem on bounded analytic functions, Pacific J. Math. 43, 457–463.Google Scholar
K., Musial 1979 The weak Radon–Nikodym property in Banach spaces, Studia Math. 64, 151–173.Google Scholar
F.L., Nazarov 1996 Summability of large powers of logarithm of classic lacunary series and its simplest consequences, unpublished work..
F.L., Nazarov 1998 The Bang solution of the coefficient problem, Algebra i Analiz 9 (1997), 272–287 (in Russian); translation in St. Petersburg Math. J. 9, 407–419.Google Scholar
F.L., Nazarov & A. N., Podkorytov 2000 Ball, Haagerup, and distribution functions, in Complex Analysis, Operators, and Related Topics: The S.A. VinogradovMemorial Volume, Operator Theory: Advances and Applications 113, Birkhäuser, 247–267.
S., Neuwirth 1998 Metric unconditionality and Fourier analysis, Studia Math. 131, 19–62.Google Scholar
S., Neuwirth 1999 Two random constructions inside lacunary sets, Ann. Inst. Fourier 49, 1853–1867.Google Scholar
E.M., Nikishin 1970 Resonance theorems and superlinear operators, Uspekhi Mat. Nauk 25, 129–191.(in Rissian).Google Scholar
E., Odell 2002 Stability in Banach spaces, Extracta Math. 17, 385–425.Google Scholar
E., Odell & H.P., Rosenthal 1975 A double-dual characterization of separable Banach spaces containing l1, Israel J. Math. 20, 375–384.Google Scholar
E., Odell & T., Schlumprecht 1994 The distortion problem, Acta Math. 173, 259–281.Google Scholar
A.M., Olevski˘ı 1967 Fourier series and Lebesgue functions, Uspekhi Mat. Nauk 22, 236–239.(in Russian).Google Scholar
W., Orlicz 1929 Beiträge zu theorie der orthogonalenwicklungen, II, Studia Math. 1, 241–255.Google Scholar
W., Orlicz 1933 a Über unbedingte konvergenz in funktionenräumen. I, Studia Math. 4, 33–37.Google Scholar
W., Orlicz 1933 b Über unbedingte konvergenz in funktionenräumen. II, Studia Math. 4, 41–47.Google Scholar
P., Ørno 1976 A note on unconditionally converging series in Lp , Proc. Amer. Math. Soc. 59, 252–254.Google Scholar
A., Pajor 1983 Plongement de _k 1 dans les espaces de Banach complexes, C.R.A.S. Paris 296, 741–743.Google Scholar
R.E.A.C., Paley 1932 A remarkable series of orthogonal functions I, Proc. London Math. Soc. 34, 241–264.Google Scholar
R.E.A.C., Paley 1933 On the lacunary coefficients of power series, Ann. of Math. 34, 615–616.Google Scholar
R.E.A.C., Paley & A., Zygmund 1932 A note on analytic functions in the unit circle, Proc. Cambridge Philos. Soc. 28, 266–272.Google Scholar
S.F., Papadopoulos 1998 Minima of trigonometric polynomials, Bull. London Math. Soc. 30, 291–294.Google Scholar
T., Pedersen 2000 Some properties of the Pisier algebra, Math. Proc. Cambridge Philos. Soc. 128, 343–354.Google Scholar
A.M., Pelczar 2001 Remarks on Gowers’ dichotomy, in Recent Progress in Functional Analysis: Proceedings of the International Functional Analysis Meeting on the Occasion of the 70th Birthday of Professor Manual Valdivia, Valencia, Spain, July 3–7, 2000, North-Holland Mathematics Studies 189, Elsevier, 201–213.
A., Pełczy´nski 1958 A connection between weakly unconditional convergence and weakly completeness of Banach spaces, Bull. Acad. Polon. Sci. Sér. Math. 6, 251–253.Google Scholar
A., Pełczy´nski 1960 Projections in certain Banach spaces, Studia Math. 19, 209–228.Google Scholar
A., Pełczy´nski 1961 On the impossibility of embedding of the space L in certain Banach spaces, Colloq. Math. 8, 199–203.Google Scholar
A., Pełczy´nski 1962 Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Math. 10, 641–648.Google Scholar
A., Pełczy´nski 1968 On Banach spaces containing L1(μ) , Studia Math. 30, 231–246.Google Scholar
A., Pełczy´nski 1971 Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40, 239–243.Google Scholar
A., Pełczy´nski 1988 Commensurate sequences of characters, Proc. Amer. Math. Soc. 104, 525–531.Google Scholar
A., Pełczy´nski & C., Bessaga 1979 Some aspects of the present theory of Banach spaces, in S. Banach, Oeuvres, Vol. II: Travaux sur l'Analyse Fonctionnelle , C. Bessaga, S.
Mazur, W. Orlicz, A., Pełczy´nski, S., Rolewicz & W., Zelazko, eds., with an article by A., Pełczy´nski & C., Bessaga, PWN –Éditions Scientifiques de Pologne, Warsaw (1979). Also see S. Banach, Theory of Linear Operations, translated from French by F. Jellett, with commentaries by A. Pełczy´nski and C. Bessaga, North-Holland Mathematical Library 38, North-Holland (1987).
A., Pełczy´nski & W., Szlenk 1965 An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10, 961–966.Google Scholar
A., Pełczy´nski & P., Wojtaszczyk 1971 Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40, 91–108.Google Scholar
B.J., Pettis 1938 a On integration in vector spaces, Trans. Amer. Math. Soc. 44, 277–304.Google Scholar
B.J., Pettis 1938 b Linear functionals and completely additive set functions, Duke Math. J. 4, 552–565.Google Scholar
H., Pfitzner 1993 L-summands in their biduals have property (V∗ ) , StudiaMath. 104, 91–98.Google Scholar
B.J., Pettis 1994 Weak compactness in C∗-algebras is determined commutatively, Math. Ann. 298, 349–371.Google Scholar
R.S., Phillips 1940 On linear transformations, Trans. Amer. Math. Soc. 48, 516–541.Google Scholar
A., Pietsch 1967 Absolut p-summierende abbildungen in normierten räumen, Studia Math. 28, 333–353.Google Scholar
G., Pisier 1973 a Type des espaces normés, C.R.A.S. Paris Sér. A 276, 1673–1676.Google Scholar
G., Pisier 1973 b Sur les espaces de Banach qui ne contiennent pas uniformément de _1n , C.R.A.S. Paris Sér. A 277, 991–994.Google Scholar
G., Pisier 1973 c Bases, suites lacunaires dans les espaces Lp d'après Kadeˇc et Pełczy´nski, Séminaire Maurey–Schwartz 1972–1973, Exposés XVIII et XIX, École Polytechnique, Paris.
G., Pisier 1973 d Sur les espaces qui ne contiennent pas de l∞ n uniformément, Séminaire Maurey–Schwartz, 1972–1973, Annexe, École Polytechnique, Paris.
G., Pisier 1974 a “Type” des espaces normés, Séminaire Maurey–Schwartz 1973–1974, Exposé III, École Polytechnique, Paris.
G., Pisier 1974 b Sur les espaces qui ne contiennent pas de _1n uniformément, Séminaire Maurey–Schwartz 1973–1974, Exposé VII, École Polytechnique, Paris.
G., Pisier 1974 c Une propriété du type p-stable, Séminaire Maurey–Schwartz 1973–1974, Exposé No. VIII (errata, page E.1), École Polytechnique, Paris.
G., Pisier 1978 a Ensembles de Sidon et espaces de cotype 2, Séminaire sur la Géométrie des Espaces de Banach 1977–1978, Exposé 14, École Polytechnique, Paris.
G., Pisier 1978 b Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Séminaire sur la Géométrie des Espaces de Banach 1977–1978, Éxposes 17–18, École Polytechnique, Paris.
G., Pisier 1978 c Grothendieck's theorem for non-commutative C∗-algebras with an appendix on Grothendieck's constants, J. Funct. Anal. 29, 397–415.Google Scholar
G., Pisier 1978 d Une nouvelle classe d'espaces vérifiant le théorème de Grothendieck, Ann. Inst. Fourier 28, 69–90.Google Scholar
G., Pisier 1978 e Les inégalités de Khintchine–Kahane, d'après C. Borell, Séminaire sur la Géométrie des Espaces de Banach 1977–1978, Exposé 7, École Polytechnique, Palaiseau.
G., Pisier 1978 f Une propriété de stabilité de la classe des espaces ne contenant pas l1, C.R.A.S. Paris r., A-B 286, A747–A749.Google Scholar
G., Pisier 1979 A remarkable homogeneous Banach algebra, Israel J. Math. 34, 38–44.Google Scholar
G., Pisier 1980 a Un théorème de factorisation pour les opérateurs linéaires entre espaces de Banach, Ann. Sci. Éc. Norm. Supér. 13, 23–44.Google Scholar
G., Pisier 1980 b Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique, Séminaire d'Analyse Fonctionnelle 1979–1980 Exposés 13–14, École Polytechnique, Palaiseau.
G., Pisier 1981 a De nouvelles caractérisations des ensembles de Sidon, in Mathematical Analysis and Applications, Part B, Advances in Mathematics Supplementary Studies 7B, Academic Press, 685–726.
G., Pisier 1981 b Semi-groupes holomorphes et espaces de Banach K-convexes, Séminaire d'Analyse Fonctionnelle 1980–1981 Exposé II, École Polytechnique, Palaiseau.
G., Pisier 1981 c Remarques sur un résultat non publié de B. Maurey, Séminaire d'Analyse Fonctionnelle 1980–1981, Exposé V, École Polytechnique, Paris.
G., Pisier 1982 Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115, 375–392.Google Scholar
G., Pisier 1983 a Arithmetical characterizations of Sidon sets, Bull. Amer. Math. Soc. 8, 87–89.Google Scholar
G., Pisier 1983 b Conditions d'entropie et caractérisation arithmétiques des ensembles de Sidon, in Topics in Modern Harmonic Analysis: Proceedings of a Seminar Held in Torino and Milano, May–June 1982, Vol., II, Instituto Nazionale di Alta Matematica, 911–944..
G., Pisier 1983 c Some applications of the metric entropy condition to harmonic analysis, in Banach Spaces, Harmonic Analysis, and Probability Theory: Proceedings of the Special Year in Analysis, Held at the University of Connecticut 1980–1981, Lecture Notes in Mathematics 995, Springer, 123–154.
G., Pisier 1984 Remarques sur les classes de Vapnik et Cˇ ervonenkis, Ann. Inst. H. Poincaré B. Probab. Stat. 20, 287–298.Google Scholar
G., Pisier 1986 a Factorization of operators through Lp∞ and Lp1 and non-commutative generalizations, Math. Ann. 276, 105–136.Google Scholar
G., Pisier 1986 b Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis: Lectures Given at the 1st 1985 Session of the Centro Internazionale Matematico Estiro (CIME) held in Varenna (Como), Italy, May 31–June 8, 1985, Lecture Notes in Mathematics 1206, Springer, 167–241.
G., Pisier 1988 The dual J∗ of the James space has cotype 2 and the Gordon–Lewis property, Math. Proc. Cambridge Philos. Soc. 103, 323–331.Google Scholar
G., Pisier 1996 Dvoretzky's theorem for operator spaces, Houston J. Math. 22, 399–416.Google Scholar
G., Pisier & Q., Xu 1997 Non-commutative martingale inequalities, Comm. Math. Phys. 189, 667–698.Google Scholar
H.R., Pitt 1936 A note on bilinear forms, J. London Math. Soc. (1) 11, 174–180.Google Scholar
A. I., Plotkin 1974 Continuation of Lp isometries, J. Soviet Math. 2, 143–165.Google Scholar
A. I., Plotkin 350 References A. Prékopa 1973 On logarithmically concave measures and functions, Acta Sci. Math. 34, 335–343.Google Scholar
C., Preston 1971 Banach spaces arising from some integral inequalities, Indiana Univ. Math. J. 20, 997–1015.Google Scholar
P., Prignot 1987 Dichotomie du cotype pour les espaces invariants, Publications Mathématiques d'Orsay 87–02, 1–50.Google Scholar
H., Queffélec 1993 Sur un théorème de Gluskin–Meyer–Pajor, C.R.A.S. Paris Sér. I Math. 317, 155–158.Google Scholar
H., Queffélec 1995 Norm of the inverse of a matrix: Solution to a problem of Schäffer, in Harmonic Analysis from the Pichorides Viewpoint: Recueil d'Articles Réunis à l'Occasion du Colloque tenu à Anogia (Crète, 24–28 Juillet 1995) en l'Honneur de Stylianos Pichorides, Publications Mathématiques d'Orsay 96-01, 69–87.
H., Queffélec & B., Saffari 1996 On Bernstein's inequality and Kahane's ultraflat polynomials, J. Fourier Anal. Appl. 2, 519–582.Google Scholar
Y., Raynaud 1981 a Espaces de Banach superstables, C.R.A.S. Paris Sér. I Math. 292, 671–673.Google Scholar
Y., Raynaud 1981 b Deux nouveaux exemples d'espaces de Banach stables, C.R.A.S. Paris Sér. I Math. 292, 715–717.Google Scholar
Y., Raynaud 1983 Espaces de Banach superstables, distances stables et homéomorphismes uniformes, Israel J. Math. 44, 33–52.Google Scholar
C.J. Read Different forms of the approximation property, unpublished work.
É., Ricard 2000 L'espace H1 n'a pas de base complètement inconditionnelle, C.R.A.S. Paris Sér. I Math. 331, 625–628.Google Scholar
D., Rider 1975 Randomly continuous functions and Sidon sets, Duke Math. J. 42, 759–764.Google Scholar
M., Riesz 1926 Sur les maxima de formes bilinéaires et sur les fonctionnelles linéaires, Acta Math. 49, 465–497.Google Scholar
M., Riesz 1927 Sur les fonctions conjuguées, Math. Z. 27, 218–244.Google Scholar
H., Robbins 1955 A remark on Stirling's formula, Amer. Math. Monthly 62, 26–29.Google Scholar
L., Rodríguez–Piazza 1987 Caractérisation des ensembles p-Sidon p.s., C.R.A.S. Paris Sér. I Math. 305, 237–240.Google Scholar
L., Rodríguez–Piazza 1991 Rango y propiedades de medidas vectoriales: Conjuntos p-Sidon p.s., Thesis, Universidad de Sevilla.
M., Rogalski 1968 Opérateurs de Lion, projecteurs boréliens, et simplexes analytiques, J. Funct. Anal. 2, 458–488.Google Scholar
H.P., Rosenthal 1967 On trigonometric series associated with weak∗ closed subspaces of continuous functions, J. Math. Mech. 17, 485–490.Google Scholar
H.P., Rosenthal 1970 On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8, 273–303.Google Scholar
H.P., Rosenthal 1972 On factors of C([0, 1]) with non-separable dual, Israel J. Math. 13, 361–378.Google Scholar
H.P., Rosenthal 1973 On subspaces of Lp , Ann. of Math. 97, 344–373.Google Scholar
H.P., Rosenthal 1974 a Pointwise compact subsets of the first Baire class, Amer. J. Math. 99, 362–378.Google Scholar
H.P., Rosenthal 1974 b A characterization of Banach spaces containing _1, Proc. Nat. Acad. Sci. USA 71, 2411–2413.Google Scholar
H.P., Rosenthal 1979 Sous-espaces de L1, Cours de 3ème cycle, Université Paris VI, unpublished manuscript.
H.P., Rosenthal 1984 Double dual types and the Maurey characterization of Banach spaces containing _1, The University of Texas Functional Analysis Seminar 1983–1984 , Longhorn Notes, University of Texas at Austin, 1–37.Google Scholar
H.P., Rosenthal 1994 A characterization of Banach spaces containing c0, J. Amer. Math. Soc. 7, 707–748.Google Scholar
W., Rudin 1959 Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10, 855–859.Google Scholar
W., Rudin 1960 Trigonometric series with gaps, J. Math. Mech. 9, 203–227.Google Scholar
W., Rudin 1976 Lp-isometries and equimeasurability, Indiana Univ. Math. J. 25, 215–228.Google Scholar
R., Salem & A., Zygmund 1954 Some properties of trigonometric series whose terms have random signs, Acta Math. 91, 245–301.Google Scholar
N., Sauer 1972 On the density of families of sets, J. Combin. Theory Ser. A 13, 145–147.Google Scholar
J., Schauder 1927 Zur theorie stetiger abbildungen in funktionalraümen, Math. Z. 26, 46–65.Google Scholar
J., Schauder 1928 Eine eigenschaft des haarschen orthogonalsystems, Math. Z. 28, 317–320.Google Scholar
G., Schechtman 1979 Almost isometric Lp subspaces of Lp(0, 1) , J. London Math. Soc. (2) 20, 516–528.Google Scholar
J., Schauder 1981 Random embeddings of Euclidean spaces in sequence spaces, Israel J. Math. 40, 187–192.Google Scholar
J., Schauder 1987 More on embedding subspaces of Lp in ln r , Compos. Math. 61, 159–170.Google Scholar
T., Schlumprecht 1991 An arbitrarily distortable Banach space, Israel J. Math. 76, 81–95.Google Scholar
S., Shelah 1972 A combinatorial problem, Pacific J. Math. 41, 247–261.Google Scholar
S., Shelah 352 References S. Sidon 1927 Verallgemeinerung eines satzes über die absolute Konvergenz von Fourier reihen mit lücken, Math. Ann. 97, 675–676.Google Scholar
S., Simons 1972 a A convergence theorem with boundary, Pacific J. Math. 40, 703–708.Google Scholar
S., Shelah 1972 b Maximinimax, minimax, and antiminimax theorems and a result of R.C.James, Pacific J. Math. 40, 709–718.Google Scholar
W.T., Sledd 1981 Random series which are BMO or Bloch, Michigan Math. J. 28, 259–266.Google Scholar
D., Slepian 1962 The one-sided barrier problem for Gaussian noise, Bull. System Tech. J. 41, 463–501.Google Scholar
V.L., Šmulian 1940 Über linear topologische räume, Mat. Sb. N.S. 7, 425–448.Google Scholar
A., Sobczyk 1941 Projection of the space m on its subspace c0, Bull. Amer. Math. Soc. 47, 938–947.Google Scholar
S.B., Steˇckin 1956 On absolute convergence of Fourier series, Izv. Akad. Nauk SSSR, Ser. Matem. 20, 385–412.Google Scholar
C., Stegall 1975 The Radon–Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206, 213–223.Google Scholar
C., Stegall 1980 A proof of the principle of local reflexivity, Proc. Amer. Math. Soc. 78, 154–156.Google Scholar
H., Steinhaus 1919 Additive und stetige funktionaloperationen, Math. Z. 5, 186–221.Google Scholar
V.N., Sudakov 1969 Gaussian measures, Cauchy measures and ϵ-entropy, Soviet Math. Dokl. 10, 310–313.Google Scholar
V.N., Sudakov 1971 Gaussian random processes, and measures of solid angles in Hilbert space, Dokl. Akad. Nauk SSSR 197, 43–45 (in Russian); translation in Soviet Math. Dokl. 12, 412–415.Google Scholar
V.N., Sudakov 1973 A remark on the criterion of continuity of Gaussian sample function, in Proceedings of the Second Japan-USSR Symposium on Probability Theory, Lecture Notes in Mathematics 330, Springer, 444–454.
A., Szankowski 1974 On Dvoretzky's Theorem on almost spherical sections of convex bodies, Israel J. Math. 17, 325–338.Google Scholar
A., Szankowski 1976 A Banach lattice without the approximation property, Israel J. Math. 24, 329–337.Google Scholar
A., Szankowski 1978 Subspaces without the approximation property, Israel J. Math. 30, 123–129.Google Scholar
S., Szarek 1976 On the best constants in the Khinchin inequality, Studia Math. 58, 197–208.Google Scholar
S., Szarek 1983 The finite dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151, 153–179.Google Scholar
S., Szarek 1987 A Banach space without a basis which has the bounded approximation property, Acta Math. 159, 81–98.Google Scholar
W., Szlenk 1965 Sur les suites faiblement convergentes dans l'espace L , Studia Math. 25, 337–341.Google Scholar
S., Szarek 1968 The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30, 53–61.Google Scholar
M., Talagrand 1984 a Weak Cauchy sequences in L1(E) , Amer. J. Math. 106, 703–724.Google Scholar
M., Talagrand 1984 b A new type of affine Borel function, Math. Scand. 54, 183–188.Google Scholar
M., Talagrand 1987 Regularity of Gaussian processes, Acta Math. 159, 99–149.Google Scholar
M., Talagrand 1990 a Embedding subspaces of L1 into lN 1, Proc. Amer. Math. Soc. 108, 363–369.Google Scholar
M., Talagrand 1990 b The three-space problem for L1, J. Amer. Math. Soc. 3, 9–29.Google Scholar
M., Talagrand 1992 a Cotype of operators from C(K) , Invent. Math. 107, 1–40.Google Scholar
M., Talagrand 1992 b Type, infratype and the Elton–Pajor theorem, Invent. Math. 107, 41–59.Google Scholar
M., Talagrand 1992 c Cotype and (q, 1)-summing norm in a Banach space, Invent. Math. 110, 545–556.Google Scholar
M., Talagrand 1992 d A simple proof of the majorizing measure theorem, Geom. Funct. Anal. 2, 118–125.Google Scholar
M., Talagrand 1994 Orlicz property and cotype in symmetric sequence spaces, Israel J. Math. 87, 181–192.Google Scholar
M., Talagrand 1995 Sections of smooth convex bodies via majorizing measures, Acta Math. 175, 273–300.Google Scholar
M., Talagrand 2001 Majorizing measures without measures, Ann. Probab. 29, 411–417.Google Scholar
G.O., Thorin 1939 An extension of a convexity theorem due to M. Riesz, Fysiogr. Sllsk. Lund Frh. 8, 166–170.Google Scholar
B., Tomaszewski 1982 Two remarks on the Khintchine–Kahane inequality, Colloq. Math. 46, 283–288.Google Scholar
B., Tomaszewski 1987 A simple and elementary proof of the Khintchine inequality with the best constant, Bull. Sci. Math. (2) 111, 103–109.Google Scholar
N., Tomczak-Jaegermann 1974 The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp (1 _ p ∞) , Studia Math. 50, 163–182.Google Scholar
B.S., Tsirelson 1974 Not every Banach space contains _p or c0, Funct. Anal. Appl. 8, 139–141.Google Scholar
P., Turpin 1973 Un critère de compacité dans les espaces vectoriels topologiques, Studia Math. 46, 141–148.Google Scholar
L., Tzafriri 1969 Reflexivity of cyclic Banach spaces, Proc. Amer. Math. Soc. 22, 61–68.Google Scholar
L., Tzafriri 1972 Reflexivity in Banach lattices and their subspaces, J. Funct. Anal. 10, 1–18. J.J., Uhl,.Google Scholar
L., Tzafriri 1969 The range of a vector-valued measure, Proc. Amer. Math. Soc. 23, 158–163.Google Scholar
L., Tzafriri 354 References D. Ullrich 1988 a An extension of the Kahane–Khinchine inequality, Bull. Amer. Math. Soc. (N.S.) 18, 52–54.Google Scholar
L., Tzafriri 1988 b An extension of the Kahane–Khinchine inequality in a Banach space, Israel J. Math. 62, 56–62.Google Scholar
L., Tzafriri 1988 c Khinchin's inequality and the zeroes of Bloch functions, Duke Math. J. 57, 519–535.Google Scholar
V.N., Vapnik & A.Y. Cˇ, ervonenkis 1971 On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16, 264–280.Google Scholar
N., Varopoulos 1976 Une remarque sur les ensembles de Helson, Duke Math. J. 43, 387–390.Google Scholar
W.A., Veech 1971 Short proof of Sobczyk's theorem, Proc. Amer. Math. Soc. 28, 627–628.Google Scholar
B., Virot 1981 Extensions vectorielles d'opérateurs linéaires bornés sur Lp , Publications Mathématiques d'Orsay 81-08, Exposé 7.Google Scholar
F., Weissler 1980 Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal. 37, 218–234.Google Scholar
D., Werner 2001 Recent progress on the Daugavet property, Irish Math. Soc. Bull. 46, 77–97.Google Scholar
R.J., Whitley 1967 An elementary proof of the Eberlein–Šmulian theorem, Math. Ann. 172, 116–118.Google Scholar
G., Willis 1992 The compact approximation property does not imply the approximation property, Studia Math. 103, 99–108.Google Scholar
P., Wojtaszczyk 1982 The Franklin system is an unconditional basis in H1, Ark. Mat. 20, 293–300.Google Scholar
P., Wojtaszczyk 1999 Wavelets as unconditional bases in Lp(R) , J. Fourier Anal. Appl. 5, 73–85.Google Scholar
V.V., Yurinski˘i 1976 Exponential inequalities for sums of random vectors, J. Multivariate Anal. 6, 473–499.Google Scholar
M., Zafran 1978 The dichotomy problem for homogeneous Banach algebras, Ann. of Math. (2) 108, 97–105.Google Scholar
M., Zafran 1979 On the symbolic calculus in homogeneous Banach algebras, Israel J. Math. 32, 183–192.Google Scholar
M., Zippin 1966 On perfectly homogeneous bases in Banach spaces, Israel J. Math. 4, 265–272.Google Scholar
M., Zippin 1977 The separable extension problem, Israel J. Math. 26, 372–387.Google Scholar
M., Zippin 1988 Banach spaces with separable duals, Trans. Amer. Math. Soc. 310, 371–379.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×