Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T03:37:54.222Z Has data issue: false hasContentIssue false

Chapter 38 - Treatment of Dystonia

from Section 3: - Hyperkinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Dystonia is a heterogeneous group of diseases with important variability in phenomenology and underlying etiology and pathophysiology. Treatment must be individualized according to the symptomatology and needs of a specific patient. Several efficacious treatments to improve the symptoms of dystonia exist, but few treatments for metabolic and other disorders causing dystonia. The most important therapeutic options are described and discussed. Better understanding of the genetics and pathophysiology of dystonia, the progress of deep brain stimulation, and the possibility of physical therapy greatly improved multimodal therapeutic management of the dystonia patient. However, we are far from a cure; we can only rarely eliminate symptoms, with a few exceptions. For successful treatment, we need to consider specific motor and non-motor aspects of dystonia, different from other movement disorders. It is particularly important to understand the possibility and limitation of each therapeutic option in order to propose and combine different treatments according to the needs of a specific patient.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojovic, M, Pareés, I, Kassavetis, P, et al. Secondary and primary dystonia: pathophysiological differences. Brain 2013;136(7):20382049.CrossRefGoogle ScholarPubMed
Balint, B, Mencacci, NE, Valente, EM, et al. Dystonia. Nat Rev Dis Primer 2018;4(1):25.CrossRefGoogle ScholarPubMed
Jinnah, HA, Factor, SA. Diagnosis and treatment of dystonia. Neurol Clin 2015;33(1):77100.CrossRefGoogle ScholarPubMed
Albanese, A, Di Giovanni, M, Lalli, S. Dystonia: diagnosis and management. Eur J Neurol 2019;26(1):517.CrossRefGoogle ScholarPubMed
Smit, M, Albanese, A, Benson, M, et al. Dystonia management: what to expect from the future? The perspectives of patients and clinicians within DystoniaNet Europe. Front Neurol 2021;12:646841.CrossRefGoogle ScholarPubMed
Jinnah, HA, Albanese, A, Bhatia, KP, et al. Treatable inherited rare movement disorders. Mov Disord 2018;33(1):2135.CrossRefGoogle ScholarPubMed
Jankovic, J. Botulinum toxin: state of the art. Mov Disord 2017;32(8):11311138.CrossRefGoogle ScholarPubMed
Dong, M, Yeh, F, Tepp, WH, et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):592596.CrossRefGoogle Scholar
Simpson, DM, Hallett, M, Ashman, EJ, et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016;86(19):18181826.CrossRefGoogle Scholar
Comella, C, Hauser, RA, Isaacson, SH, et al. Efficacy and safety of two incobotulinumtoxinA injection intervals in cervical dystonia patients with inadequate benefit from standard injection intervals of botulinum toxin: phase 4, open-label, randomized, noninferiority study. Clin Park Relat Disord 2022;6:100142.Google ScholarPubMed
Molho, ES, Agarwal, N, Regan, K, Higgins, DS, Factor, SA. Effect of cervical dystonia on employment: a retrospective analysis of the ability of treatment to restore premorbid employment status. Mov Disord 2009;24(9):13841387.CrossRefGoogle ScholarPubMed
Zoons, E, Dijkgraaf, MGW, Dijk, JM, van Schaik, IN, Tijssen, MA. Botulinum toxin as treatment for focal dystonia: a systematic review of the pharmaco-therapeutic and pharmaco-economic value. J Neurol 2012;259(12):25192526.CrossRefGoogle ScholarPubMed
Fezza, J, Burns, J, Woodward, J, et al. A cross-sectional structured survey of patients receiving botulinum toxin type A treatment for blepharospasm. J Neurol Sci 2016;367:5662.CrossRefGoogle ScholarPubMed
Tatu, L, Jost, WH. Anatomy and cervical dystonia. J Neural Transm (Vienna) 2017;124(2):237243.CrossRefGoogle ScholarPubMed
Contarino, MF, Van Den Dool, J, Balash, Y, et al. Clinical practice: evidence-based recommendations for the treatment of cervical dystonia with botulinum toxin. Front Neurol 2017 24;8:35.CrossRefGoogle ScholarPubMed
Molloy, FM, Shill, HA, Kaelin-Lang, A, Karp, BI. Accuracy of muscle localization without EMG: implications for treatment of limb dystonia. Neurology 2002;58(5):805807.CrossRefGoogle ScholarPubMed
Kruisdijk, JJM, Koelman, JHTM, de Visser, BWO, de Haan, RJ, Speelman, JD. Botulinum toxin for writer’s cramp: a randomised, placebo‐controlled trial and 1‐year follow‐up. J Neurol Neurosurg Psychiatry 2007;78(3):264270.CrossRefGoogle ScholarPubMed
Benninger, MS, Gardner, G, Grywalski, C. Outcomes of botulinum toxin treatment for patients with spasmodic dysphonia. Arch Otolaryngol Head Neck Surg 2001;127(9):10831085.CrossRefGoogle ScholarPubMed
Jankovic, J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin Pharmacother 2016;17(18):24612470.CrossRefGoogle ScholarPubMed
Liow, NYK, Gimeno, H, Lumsden, DE, et al. Gabapentin can significantly improve dystonia severity and quality of life in children. Eur J Paediatr Neurol 2016;20(1):100107.CrossRefGoogle ScholarPubMed
Motta, F, Antonello, CE. Analysis of complications in 430 consecutive pediatric patients treated with intrathecal baclofen therapy: 14-year experience. J Neurosurg Pediatr 2014;13(3):301306.CrossRefGoogle ScholarPubMed
Hainque, E, Vidailhet, M, Cozic, N, et al. A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus-dystonia. Neurology 2016;86(18):17291735.CrossRefGoogle ScholarPubMed
Termsarasab, P, Frucht, SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord 2017;4:10.CrossRefGoogle Scholar
Moro, E, LeReun, C, Krauss, JK, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol 2017;24(4):552560.CrossRefGoogle ScholarPubMed
Jinnah, HA, Alterman, R, Klein, C, et al. Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. J Neural Transm (Vienna) 2017;124(4):417430.CrossRefGoogle ScholarPubMed
Danielsson, A, Carecchioo, M, Cif, L, et al. Pallidal deep brain stimulation in DYT6 dystonia: clinical outcome and predictive factors for motor improvement. J Clin Med 2019;8(12):2163.CrossRefGoogle ScholarPubMed
Azoulay-Zyss, J, Roze, E, Welter, ML, et al. Bilateral deep brain stimulation of the pallidum for myoclonus-dystonia due to ε-sarcoglycan mutations: a pilot study. Arch Neurol 2011;68(1):9498.CrossRefGoogle ScholarPubMed
Fan, H, Zheng, Z, Yin, Z, Zhang, J, Lu, G. Deep brain stimulation treating dystonia: a systematic review of targets, body distributions and etiology classifications. Front Hum Neurosci 2021;15:757579.CrossRefGoogle ScholarPubMed
Baumgartner, AJ, Thompson, JA, Kern, DS, Ojemann, SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022;45(4):25932613.CrossRefGoogle ScholarPubMed
Ostrem, JL, San Luciano, M, Dodenhoff, KA, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology 2017;88(1):2535.CrossRefGoogle ScholarPubMed
Sobesky, L, Goede, L, Odekerken, VJJ, et al. Subthalamic and pallidal deep brain stimulation: are we modulating the same network? Brain J Neurol 2022;145(1):251262.CrossRefGoogle ScholarPubMed
Loher, TJ, Capelle, HH, Kaelin-Lang, A, et al. Deep brain stimulation for dystonia: outcome at long-term follow-up. J Neurol 2008;255(6):881884.CrossRefGoogle ScholarPubMed
Kaelin-Lang, A, You, H, Burgunder, JM, et al. Bilateral pallidal stimulation improves cervical dystonia for more than a decade. Parkinsonism Relat Disord 2020;81:7881.CrossRefGoogle ScholarPubMed
Macerollo, A, Sajin, V, Bonello, M, et al. Deep brain stimulation in dystonia: state of art and future directions. J Neurosci Methods 2020;340:108750.CrossRefGoogle ScholarPubMed
Kupsch, A, Benecke, R, Müller, J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006;355(19):19781990.CrossRefGoogle ScholarPubMed
Volkmann, J, Mueller, J, Deuschl, G, et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol 2014;13(9):875884.CrossRefGoogle ScholarPubMed
Vidailhet, M, Vercueil, L, Houeto, JL, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005;352(5):459467.CrossRefGoogle ScholarPubMed
Reese, R, Gruber, D, Schoenecker, T, et al. Long-term clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Mov Disord 2011;26(4):691698.CrossRefGoogle ScholarPubMed
Vidailhet, M, Vercueil, L, Houeto, JL, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol 2007;6(3):223229.CrossRefGoogle ScholarPubMed
Pauls, KAM, Krauss, JK, Kämpfer, CE, et al. Causes of failure of pallidal deep brain stimulation in cases with pre-operative diagnosis of isolated dystonia. Parkinsonism Relat Disord 2017;43:3848.CrossRefGoogle ScholarPubMed
Soares, C, Reich, MM, Costa, F, et al. Predicting outcome in a cohort of isolated and combined dystonia within probabilistic brain mapping. Mov Disord Clin Pract 2021;8(8):12341239.CrossRefGoogle Scholar
Monbaliu, E, Himmelmann, K, Lin, JP, et al. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol 2017;16(9):741749.CrossRefGoogle ScholarPubMed
Tisch, S. Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up. Curr Opin Neurol 2022;35(4):510517.CrossRefGoogle ScholarPubMed
Isaias, IU, Volkmann, J, Kupsch, A, et al. Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration. J Neurol 2011;258(8):14691476.CrossRefGoogle ScholarPubMed
Panov, F, Gologorsky, Y, Connors, G, Deep brain stimulation in DYT1 dystonia: a 10-year experience. Neurosurgery 2013;73(1):8693; discussion 93.CrossRefGoogle ScholarPubMed
Tisch, S, Kumar, KR. Pallidal deep brain stimulation for monogenic dystonia: the effect of gene on outcome. Front Neurol 2020;11:630391.CrossRefGoogle ScholarPubMed
Kupsch, A, Tagliati, M, Vidailhet, M, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord 2011;26(Suppl 1):S3753.CrossRefGoogle ScholarPubMed
Steigerwald, F, Kirsch, AD, Kühn, AA, et al. Evaluation of a programming algorithm for deep brain stimulation in dystonia used in a double-blind, sham-controlled multicenter study. Neurol Res Pract 2019;1:25.CrossRefGoogle Scholar
Baizabal Carvallo, JF, Mostile, G, Almaguer, M, et al. Deep brain stimulation hardware complications in patients with movement disorders: risk factors and clinical correlations. Stereotact Funct Neurosurg 2012;90(5):300306.CrossRefGoogle ScholarPubMed
Reese, R, Fasano, A, Knudsen, K, et al. Full parkinsonian triad induced by pallidal high-frequency stimulation in cervical dystonia. Mov Disord Clin Pract 2015;2(1):99101.CrossRefGoogle ScholarPubMed
Schrader, C, Capelle, HH, Kinfe, TM, et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology 2011;77(5):483488.CrossRefGoogle ScholarPubMed
Dinkelbach, L, Mueller, J, Poewe, W, et al. Cognitive outcome of pallidal deep brain stimulation for primary cervical dystonia: one year follow up results of a prospective multicenter trial. Parkinsonism Relat Disord 2015;21(8):976980.CrossRefGoogle ScholarPubMed
Kühn, AA, Volkmann, J. Innovations in deep brain stimulation methodology. Mov Disord 2017;32(1):1119.CrossRefGoogle ScholarPubMed
Pollo, C, Kaelin-Lang, A, Oertel, MF, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 2014;137(Pt 7):20152026.CrossRefGoogle ScholarPubMed
Sirica, D, Hewitt, AL, Tarolli, CG, et al. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021;11(4):315328.CrossRefGoogle ScholarPubMed
Stieglitz, LH, Oertel, MF, Accolla, EA, et al. Consensus statement on high-intensity focused ultrasound for functional neurosurgery in Switzerland. Front Neurol 2021;12:722762.CrossRefGoogle ScholarPubMed
Berman, BD, Junker, J, Shelton, E, et al. Psychiatric associations of adult-onset focal dystonia phenotypes. J Neurol Neurosurg Psychiatry 2017;88(7):595602.CrossRefGoogle ScholarPubMed
Ray, S, Pal, PK, Yadav, R. Non-motor symptoms in cervical dystonia: a review. Ann Indian Acad Neurol 2020;23(4):449457.Google ScholarPubMed
Klingelhoefer, L, Kaiser, M, Sauerbier, A, et al. Emotional well-being and pain could be a greater determinant of quality of life compared to motor severity in cervical dystonia. J Neural Transm (Vienna) 2021;128(3):305314.CrossRefGoogle ScholarPubMed
Heiman, GA, Ottman, R, Saunders-Pullman, RJ, et al. Increased risk for recurrent major depression in DYT1 dystonia mutation carriers. Neurology 2004;63(4):631637.CrossRefGoogle ScholarPubMed
Gündel, H, Wolf, A, Xidara, V, et al. High psychiatric comorbidity in spasmodic torticollis: a controlled study. J Nerv Ment Dis 2003;191(7):465473.CrossRefGoogle ScholarPubMed
Paus, S, Gross, J, Moll-Müller, M, et al. Impaired sleep quality and restless legs syndrome in idiopathic focal dystonia: a controlled study. J Neurol 2011;258(10):18351840.CrossRefGoogle ScholarPubMed
Counsell, C, Sinclair, H, Fowlie, J, et al. A randomized trial of specialized versus standard neck physiotherapy in cervical dystonia. Parkinsonism Relat Disord 2016;23:7279.CrossRefGoogle ScholarPubMed
Boyce, MJ, Canning, CG, Mahant, N, et al. Active exercise for individuals with cervical dystonia: a pilot randomized controlled trial. Clin Rehabil 2013;27(3):226235.CrossRefGoogle ScholarPubMed
Tassorelli, C, Mancini, F, Balloni, L, et al. Botulinum toxin and neuromotor rehabilitation: an integrated approach to idiopathic cervical dystonia. Mov Disord 2006;21(12):22402243.CrossRefGoogle ScholarPubMed
Lozeron, P, Poujois, A, Richard, A, et al. Contribution of TMS and rTMS in the understanding of the pathophysiology and in the treatment of dystonia. Front Neural Circuits 2016;10:90.CrossRefGoogle ScholarPubMed
Erro, R, Tinazzi, M, Morgante, F, Bhatia, KP. Non-invasive brain stimulation for dystonia: therapeutic implications. Eur J Neurol 2017;24(10):1228–e64.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×