Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T03:16:06.620Z Has data issue: false hasContentIssue false

Chapter 31 - Progressive Supranuclear Palsy

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

PSP was identified in 1963 by Richardson, Steele and Olszewski, as an “unusual syndrome” characterized by axial rigidity, bradykinesia, postural instability with falls, cognitive deficits, and supranuclear vertical gaze palsy, with uniform tau pathology predominating in the neurons of the pallido-nigro-luysian axis. The classical view is that tau protein and neuropil thread accumulation appears mainly in the subthalamic nucleus, red nucleus, substantia nigra, pontine tegmentum, striatum, oculomotor nucleus, medulla, and dentate nucleus, but there is growing evidence that cortical tau pathology is also common. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis, but clinical PSP subtypes confirmed differential distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies both in total tau load and cell-type specific vulnerability patterns of brain regions, suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies with accumulation of brainstem neurofibrillary tangles. Here, the novel clinicopathologic classification of PSP syndromes with specifically underlying neuropathology is discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy: a heterogeneous degeneration involving brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964;10:333359.CrossRefGoogle ScholarPubMed
Savica, R, Grossardt, BR, Bower, JH, Ahlskog, JE, Rocca, WA. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol 2013;70:859866.CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, et al. The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 2001;124:14381449.CrossRefGoogle ScholarPubMed
Donker Kaat, L, Boon, AJ, Azmani, A, et al. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology 2009;73:98105.CrossRefGoogle ScholarPubMed
Höglinger, GU, Melhem, NM, Dickson, DW, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011;43:699705.CrossRefGoogle ScholarPubMed
Borroni, B, Agosti, C, Magnani, E, Di Luca, M, Padovani, A. Genetic bases of progressive supranuclear palsy: the MAPT tau disease. Curr Med Chem 2011;18:26552660.CrossRefGoogle ScholarPubMed
Myers, AJ, Pittman, AM, Zhao, AS, et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 2007;25:561570.CrossRefGoogle ScholarPubMed
Fujioka, S, Algom, AA, Murray, ME, et al. Similarities between familial and sporadic autopsy-proven progressive supranuclear palsy. Neurology 2013;80:20762078.CrossRefGoogle ScholarPubMed
Sanchez-Contreras, MY, Kouri, N, Cook, CN, et al. Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol Neurodegener 2018;13:37.CrossRefGoogle ScholarPubMed
Vidal, JS, Vidailhet, M, Derkinderen, P, et al. Risk factors for progressive supranuclear palsy: a case–control study in France. J Neurol Neurosurg Psychiatry 2009;80:12711274.CrossRefGoogle ScholarPubMed
Melquist, S, Craig, DW, Huentelman, MJ, et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. Am J Hum Genet 2007;80:769778.CrossRefGoogle ScholarPubMed
Stamelou, M, de Silva, R, Arias-Carrión, O, et al. Rational therapeutic approaches to progressive supranuclear palsy. Brain 2010;133:15781590.CrossRefGoogle ScholarPubMed
Escobar-Khondiker, M, Höllerhage, M, Muriel, MP, et al. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 2007;27:78277837.CrossRefGoogle ScholarPubMed
Höllerhage, M, Matusch, A, Champy, P, et al. Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol 2009;220:133142.CrossRefGoogle ScholarPubMed
Fernández-Botrán, R, Ahmed, Z, Crespo, FA, et al. Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord 2011;17:683688.CrossRefGoogle ScholarPubMed
Park, HK, Ilango, SD, Litvan, I. Environmental risk factors for progressive supranuclear palsy. J Mov Disord 2021;14:103113.CrossRefGoogle ScholarPubMed
Goedert, M, Wischik, CM, Crowther, RA, Walker, JE, Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 1988;85:40514055.CrossRefGoogle Scholar
Lee, VM, Goedert, M, Trojanowski, JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001;24:11211159.CrossRefGoogle ScholarPubMed
Dickson, DW, Ahmed, Z, Algom, AA, Tsuboi, Y, Josephs, KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 2010;23:394400.CrossRefGoogle ScholarPubMed
Goedert, M. Tau protein and neurodegeneration. Semin Cell Dev Biol 2004;15:4549.CrossRefGoogle ScholarPubMed
Hauw, JJ, Dickson, DW. Tauopathies. In: Dickson, D, ed. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Basel: ISN Neuropath Press; 2003: 82154.Google Scholar
Yamazaki, M, Makifuchi, T, Chen, KM, et al. Progressive supranuclear palsy on Guam. Acta Neuropathol 2001; 102: 510514.CrossRefGoogle ScholarPubMed
Williams, DR, Lees, AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009;8:270279.CrossRefGoogle ScholarPubMed
Coughlin, DG, Litvan, I. Progressive supranuclear palsy: advances in diagnosis and management. Parkinsonism Relat Disord 2020;73:105116.CrossRefGoogle ScholarPubMed
Hauw, JJ, Daniel, SE, Dickson, D, et al. Preliminary NINDS neuropathologic criteria for Steele–Richardson–Olszewski syndrome (progressive supranuclear palsy). Neurology 1994;44:20152019.CrossRefGoogle ScholarPubMed
Litvan, I, Hauw, JJ, Bartko, JJ, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 1996;55:97105.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, J, Strand, C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy–parkinsonism from Richardson’s syndrome. Brain 2007;130:15661576.CrossRefGoogle ScholarPubMed
Jellinger, KA. Different tau pathology pattern in two clinical phenotypes of progressive supranuclear palsy. Neurodegenerative Dis 2008;5:339346.CrossRefGoogle ScholarPubMed
Dickson, DW, Ahmed, Z, Algom, AA, Tsuboi, Y, Josephs, KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 2010;23:394400.CrossRefGoogle ScholarPubMed
Kovacs, GG, Lukic, MJ, Irwin, DJ, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 2020;140:99119.CrossRefGoogle ScholarPubMed
Gardner, RC, Boxer, AL, Trujillo, A, et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann Neurol 2013;73:603616.CrossRefGoogle ScholarPubMed
Williams, DR, de Silva, R, Paviour, DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP–parkinsonism. Brain 2005;128:12471258.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, K, Revesz, T, Lees, AJ. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord 2007;22:22352241.CrossRefGoogle ScholarPubMed
Duff, K, Gerstenecker, A, Litvan, I; investigators and coordinators of the ENGENE-PSP Study Group. Functional impairment in progressive supranuclear palsy. Neurology 2013;80:380384.CrossRefGoogle ScholarPubMed
Hauw, JJ, Verny, M, Delaère, P, et al. Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy. Basic differences with Alzheimer’s disease and aging. Neurosci Lett 1990;119:182186.CrossRefGoogle Scholar
Matsusaka, H, Ikeda, K, Akiyama, H, et al. Astrocytic pathology in progressive supranuclear palsy: significance for neuropathological diagnosis. Acta Neuropathol 1998;96:248252.CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, Lees, AJ, Burn, DJ. Clinical features and natural history of progressive supranuclear palsy: a clinical cohort study. Neurology 2003;60:910916.CrossRefGoogle ScholarPubMed
Goetz, CG, Leurgans, S, Lang, AE, Litvan, I. Progression of gait, speech and swallowing deficits in progressive supranuclear palsy. Neurology 2003;60:917922.CrossRefGoogle ScholarPubMed
Golbe, LI. Progressive supranuclear palsy. In: Jankovic, J, Tolosa, E, eds. Parkinson’s Disease and Movement Disorders, 2nd ed. Baltimore: Williams and Wilkins; 1993: 145161.Google Scholar
Williams, DR, Lees, AJ. What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy–parkinsonism (PSP-P)? Mov Disord 2010;25:357362.CrossRefGoogle ScholarPubMed
Jellinger, KA. Different tau pathology pattern in two clinical phenotypes of progressive supranuclear palsy. Neurodegener Dis 2008;5:339346.CrossRefGoogle ScholarPubMed
Imai, H, Narabayashi, H. Akinesia – concerning 2 cases of pure akinesia. Adv Neurol Sci (Tokyo) 1974;18:787794.Google Scholar
Ahmed, Z, Josephs, KA, Gonzalez, J, DelleDonne, A, Dickson, DW. Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 2008;131:460472.CrossRefGoogle ScholarPubMed
Mizusawa, H, Mochizuki, A, Ohkoshi, N, et al. Progressive supranuclear palsy presenting with pure akinesia. Adv Neurol 1993;60:618621.Google ScholarPubMed
Rivaud-Pechoux, S, Vidailhet, M, Gallouedec, G, et al. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology 2000;54:10291032.CrossRefGoogle ScholarPubMed
Boeve, BF, Maraganore, DM, Parisi, JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 1999;53:795800.CrossRefGoogle ScholarPubMed
Tsuboi, Y, Josephs, KA, Boeve, BF, et al. Increased tau burden in the cortices of progressive supranuclear palsy presenting with corticobasal syndrome. Mov Disord 2005;20:982988.CrossRefGoogle ScholarPubMed
Hu, WT, Parisi, JE, Knopman, DS, et al. Clinical features and survival of 3R and 4R tauopathies presenting as behavioral variant frontotemporal dementia. Alzheimer Dis Assoc Disord 2007;21:S3943.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Gustafson, L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:15461554.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129:13851398.CrossRefGoogle ScholarPubMed
Litvan, I, Agid, Y, Jankovic, J, et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome). Neurology 1996;46:922930.CrossRefGoogle ScholarPubMed
Respondek, G, Roeber, S, Kretzschmar, H, et al. Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov Disord 2013;28:504509.CrossRefGoogle ScholarPubMed
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32:853864.CrossRefGoogle ScholarPubMed
Ali, F, Botha, H, Whitwell, JL, Josephs, KA. Utility of the Movement Disorders Society criteria for progressive supranuclear palsy in clinical practice. Mov Disord Clin Pract 2019;6:436439.CrossRefGoogle ScholarPubMed
Grötsch, MT, Respondek, G, Colosimo, C, et al. A modified progressive supranuclear palsy rating scale. Mov Disord 2021;36(5):12031215.CrossRefGoogle ScholarPubMed
Massey, LA, Micallef, C, Paviour, DC, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 2012; 27: 1754-62.CrossRefGoogle ScholarPubMed
Morelli, M, Arabia, G, Novellino, F, et al. MRI measurements predict PSP in unclassifiable parkinsonisms: a cohort study. Neurology 2011;77:10421047.CrossRefGoogle ScholarPubMed
Morelli, M, Arabia, G, Salsone, M, et al. Accuracy of magnetic resonance parkinsonism index for differentiation of progressive supranuclear palsy from probable or possible Parkinson disease. Mov Disord 2011;26:527533.CrossRefGoogle ScholarPubMed
Massey, LA, Jäger, HR, Paviour, DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80:18561861.CrossRefGoogle ScholarPubMed
Brendel, M, Barthel, H, van Eimeren, T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 2020;77:14081419.CrossRefGoogle ScholarPubMed
Li, L, Liu, FT, Li, M, et al. Clinical utility of 18F-APN-1607 tau PET imaging in patients with progressive supranuclear palsy. Mov Disord 2021;36;23142323.CrossRefGoogle ScholarPubMed
Saijo, E, Metrick, MA 2nd, Koga, S, et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol 2020;139:6377.CrossRefGoogle ScholarPubMed
Jabbari, E, Koga, S, Valentino, RR, et al. Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurol 2021;20:107116.CrossRefGoogle ScholarPubMed
Miki, Y, Tsushima, E, Foti, SC. Identification of multiple system atrophy mimicking Parkinson’s disease or progressive supranuclear palsy. Brain 2021;144(4):11381151.CrossRefGoogle ScholarPubMed
Stamelou, M, Quinn, NP, Bhatia, KP. “Atypical” atypical parkinsonism: New genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy – a diagnostic guide. Mov Disord 2013;28:11841199.CrossRefGoogle ScholarPubMed
Nieforth, KA, Golbe, LI. Retrospective study of drug response in 87 patients with progressive supranuclear palsy. Clin Neuropharmacol 1993;16:338346.CrossRefGoogle ScholarPubMed
Engel, PA. Treatment of progressive supranuclear palsy with amitriptyline: therapeutic and toxic effects. J Am Geriatr Soc 1996;44:10721074.CrossRefGoogle ScholarPubMed
Baumann, CR, Lees, AJ. Progressive supranuclear palsy. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 399409.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×