Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T03:12:50.524Z Has data issue: false hasContentIssue false

Chapter 35 - Illicit Drug–Induced Parkinsonism

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

This chapter summarizes current knowledge concerning illicit drugs and specific toxins, such as some street drugs, organic solvents, pesticides and herbal extracts like Cycas circinalis, known to induce signs and symptoms of motor parkinsonism. Special attention is given to differential diagnosis and therapeutical strategies. Marketed drugs such as antipsychotics, anti-emetics, calcium channel blockers, selective serotonin reuptake inhibitors, antiepileptics, antidepressants, antiarrhythmics, immunosuppressants, statins, and trimeazidine, also identified to cause drug-induced parkinsonism, are also dealt with in this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hong, JY, Sunwoo, MK, Oh, JS, et al. Persistent drug-induced parkinsonism in patients with normal dopamine transporter imaging. PLoS One 2016;11(6):e0157410.CrossRefGoogle ScholarPubMed
Oh, YS, Kwon, DY, Kim, JS, et al. Transcranial sonographic findings may predict prognosis of gastroprokinetic drug-induced parkinsonism. Parkinsonism & Related Disorders 2018;46:3640.CrossRefGoogle ScholarPubMed
Ebentheuer, J, Canelo, M, Trautmann, E, et al. Substantia nigra echogenicity in progressive supranuclear palsy. Mov Disord 2010;25:773777.CrossRefGoogle ScholarPubMed
Bouwmans, AE, Vlaar, AM, Mess, WH, et al. Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease: prospective cohort study in 196 patients. BMJ Open 2013;3(4):e002613.CrossRefGoogle ScholarPubMed
Zárate, S, Stevnsner, T, Gredilla, R. Role of estrogen and other sex hormones in brain aging. Neuroprotection and DNA repair. Front Aging Neurosci 2017;9:430.CrossRefGoogle ScholarPubMed
Hong, JY, Sunwoo, MK, Yoon, JH, et al. Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease. PLoS One 2020;15(8):e0237472.CrossRefGoogle ScholarPubMed
Solmi, M, Pigato, G, Kane, JM, et al. Clinical risk factors for the development of tardive dyskinesia. J Neurol Sci 2018;389:2127.CrossRefGoogle ScholarPubMed
Turrone, P, Seeman, MV, Silvestri, S. Estrogen receptor activation and tardive dyskinesia. Can J Psychiatry 2000;45(3):288290.CrossRefGoogle ScholarPubMed
Powers, R, Lei, S, Anandhan, A, et al. Metabolic investigations of the molecular mechanisms associated with Parkinson’s disease. Metabolites 2017;7(2):22.CrossRefGoogle ScholarPubMed
Davis, GC, Williams, AC, Markey, SP, et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979;1:249254.CrossRefGoogle ScholarPubMed
Ziering, A, Lee, J. Piperidine derivatives. V. 1,3-dialkyl-4-aryl-4-acyloxypiperidines. J Org Chem 1947;12(6):911914.CrossRefGoogle Scholar
Bradbury, AJ, Costall, B, Domeney, AM, et al. 1-Methyl-4-phenylpyridine is neurotoxic to the nigrostriatal dopamine pathway. Nature 1986;319(6048):5657.CrossRefGoogle Scholar
Purisai, MG, McCormack, AL, Langston, WJ, et al. α-Synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 2005;20:898906.CrossRefGoogle ScholarPubMed
Millot, M, Saga, Y, Duperrier, S, et al. Prior MDMA administration aggravates MPTP-induced Parkinsonism in macaque monkeys. Neurobiol Dis 2020;134:104643.CrossRefGoogle ScholarPubMed
Kuniyoshi, SM, Jankovic, J. MDMA and parkinsonism. N Engl J Med 2003;349(1):9697.CrossRefGoogle ScholarPubMed
Krasnova, IN, Cadet, JL. Methamphetamine toxicity and messengers of death. Brain Res Rev 2009;60(2):379407.CrossRefGoogle ScholarPubMed
McCann, UD, Kuwabara, H, Kumar, A, et al. Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Gait Posture 2012;36:144148.Google Scholar
Thrash, B, Thiruchelvan, K, Ahuja, M, et al. Methamphetamine-induced neurotoxicity: the road to Parkinson’s disease. Pharmacol Rep 2009;61:966977.CrossRefGoogle ScholarPubMed
Chung, YA, Peterson, BS, Yoon, SJ, et al. In vivo evidence for long-term CNS toxicity, associated with chronic binge use of methamphetamine. Drug Alcohol Depend 2010;111(1–2):155-160.CrossRefGoogle ScholarPubMed
Lappin, J, Darke, S, Farrell, M. Methamphetamine use and future risk for Parkinson’s Disease: evidence and clinical implications. Drug Alcohol Depend 2018;187:134140.CrossRefGoogle ScholarPubMed
Mash, DC, Ouyang, Q, Pablo, J, et al. Cocaine abusers have an overexpression of alpha-synuclein in dopamine neurons. J Neurosci 2003;23(7):25642571.CrossRefGoogle ScholarPubMed
Karley, YL, Eric, R, Ryan, W, et al. Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res 2009;168(3):173180.Google Scholar
Callaghan, RC, Cunningham, JK, Sykes, J, et al. Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 2012;120(1–3):3540.CrossRefGoogle ScholarPubMed
Couper, J. On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmacy Vital Stat Gen Sci 1837;1:4142.Google Scholar
Guilarte, TR. Manganese and Parkinson’s disease: a critical review and new findings. Cien Saude Colet 2011;16(11):45494566. Erratum in Cien Saude Colet 2012;17(3):809.CrossRefGoogle ScholarPubMed
Martinez-Finley, EJ, Gavin, CE, Aschner, M, et al. Manganese neurotoxicity and the role of reactive oxygen species. Free Rad Biol Med 2013;62:6575.CrossRefGoogle ScholarPubMed
Ma, RE, Ward, EJ, Yeh, CL, et al. Thalamic GABA levels and occupational manganese neurotoxicity: association with exposure levels and brain MRI. Neurotoxicology 2018;64:3042.CrossRefGoogle ScholarPubMed
Koziorowski, D, Szlufik, S, Mandat, T, et al. Improvement in ephedrone Parkinsonism after global pallidus pars interna deep brain stimulation implantation. Mov Disord Clin Pract 2016;3(2):191193.CrossRefGoogle ScholarPubMed
Bjorklund, G, Stejskal, V, Urbina, M, et al. Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem 2018;25(19):21982214.CrossRefGoogle ScholarPubMed
Goldman, SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 2014;54(1):141164.CrossRefGoogle ScholarPubMed
Wang, A, Costello, S, Cockburn, M, et al. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol 2011;26(7):547555.CrossRefGoogle ScholarPubMed
McKnight, S, Hack, N. Toxin-induced parkinsonism. Neurol Clin 2020;38(4):853865.CrossRefGoogle ScholarPubMed
Peng, J, Stevenson, FF, Oo, ML, et al. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Rad Biol Med 2009;46:312320.CrossRefGoogle ScholarPubMed
Terron, A, Bal-Price, A, Paini, A, et al. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018;92:4182.CrossRefGoogle ScholarPubMed
Kitazawa, M, Anantharam, V, Kanthasamy, AG. Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cdelta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration. Neuroscience 2003;119:945964.CrossRefGoogle ScholarPubMed
Torres-Altoro, MI, Mathur, BN, Drerup, JM, et al. Organophosphates dysregulate dopamine signaling, glutamatergic neurotransmission, and induce neuronal injury markers in striatum. J Neurochem 2011;119(2):303313.CrossRefGoogle ScholarPubMed
Casida, JE, Gammon, DW, Glickman, AH, et al. Mechanisms of selective action of pyrethroid insecticides. Annu Rev Pharmacol Toxicol 1983;23:413438.CrossRefGoogle ScholarPubMed
Costa, LG. The neurotoxicity of organochlorine and pyrethroid pesticides. Handb Clin Neurol Occupat Neurol 2015;131:135148.CrossRefGoogle ScholarPubMed
Eriguchi, M, Iida, K, Ikeda, S, et al. Parkinsonism relating to intoxication with glyphosate: a case report. Intern Med 2019;58(13):19351938.CrossRefGoogle Scholar
Zhang, D, Lee, B, Nutter, A, et al. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. J Neurochem 2015;133(6):898908.CrossRefGoogle ScholarPubMed
Di Filippo, M, Tambasco, N, Muzi, G, et al. Parkinsonism and cognitive impairment following chronic exposure to potassium cyanide. Mov Disord 2008;23(3):468470.CrossRefGoogle ScholarPubMed
Pintér, D, Kovács, M, Harmat, M, et al. Trimetazidine and parkinsonism: a prospective study. Parkinsonism Relat Disord 2019;62:117121.CrossRefGoogle ScholarPubMed
Hirano, A, Kurland, LT, Krooth, RS, et al. Parkinsonism–dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain 1961;84:642661.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×