Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T03:43:25.220Z Has data issue: false hasContentIssue false

Section 3: - Hyperkinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albanese, A, Bhatia, K, Bressman, SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28:863873.CrossRefGoogle ScholarPubMed
Steeves, TD, Day, L, Dykeman, J, Jette, N, Pringsheim, T. The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord 2012;27:17891796.CrossRefGoogle ScholarPubMed
Defazio, G, Abbruzzese, G, Livrea, P, Berardelli, A. Epidemiology of primary dystonia. Lancet Neurol 2004;3:673678.CrossRefGoogle ScholarPubMed
Lohmann, K, Klein, C. Update on the genetics of dystonia. Curr Neurol Neurosci Rep 2017;17:26.CrossRefGoogle ScholarPubMed
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord 2016;31;436457.CrossRefGoogle ScholarPubMed
Segawa, M, Nomura, Y. Genetics and pathophysiology of primary dystonia with special emphasis on DYT1 and DYT5. Semin Neurol 2014;34:306311.Google ScholarPubMed
Gonzalez-Alegre, P. Advances in molecular and cell biology of dystonia: focus on torsin A. Neurobiol Dis 2019;127:233241.CrossRefGoogle Scholar
Domingo, A, Yadav, R, Ozelius, LJ. Isolated dystonia: clinical and genetic updates. J Neural Transm 2021;128:405416.CrossRefGoogle ScholarPubMed
Lange, LM, Junker, J, Loens, S, et al. Genotype–phenotype relations for isolated dystonia genes: MDSGene systematic review. Mov Disord 2021;36:10861103.CrossRefGoogle ScholarPubMed
Meijer, IA, Pearson, TS. The twists of pediatric dystonia: phenomenology, classification and genetics. Semin Pediatr Neurol 2018;25:6574.CrossRefGoogle ScholarPubMed
Panda, PK, Sharawat, IK. Col6A3 mutation associated early-onset isolated dystonia [DYT]-27: report of a new case and review of published literature. Brain Dev 2020;42:329335.CrossRefGoogle ScholarPubMed
Sarmiento, IKK, Mencacci, NE. Genetic dystonia: update on classification and new genetic discoveries. Curr Neurol Neurosci Rep 2021;21:8.CrossRefGoogle Scholar
Gonzalez-Latapi, P, Marotta, N, Mencacci, NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021;128:483498.CrossRefGoogle ScholarPubMed
Quarterone, A, Hallett, M. Emerging concepts in the physiological basis of dystonia. Front Neurol 2018;9:12.Google Scholar
Quartarone, A, Ruge, D. How many types of dystonia? Pathophysiological considerations. Front Neurol 2018;9:12.CrossRefGoogle ScholarPubMed
McCambridge, AB, Bradman, LV. Cortical neurophsyiology of primary isolated dystonia and nondystonic adults: a meta-analysis. Eur J Neurosci 2021;53:13001323.CrossRefGoogle Scholar
Valls-Sole, J, Defazio, G. Blepharospasm: update on epidemiology, clinical aspects and pathophysiology. Front Neurol 2016;7:45.CrossRefGoogle ScholarPubMed
Jinnah, HA, Sun, YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019;129:159168.CrossRefGoogle ScholarPubMed
Gonzalez-Alegre, P. Advances in molecular and cell biology of dystonia: focus on torsin A. Neurobiol Dis 2019;127:233241.CrossRefGoogle Scholar
LeDoux, MS, Dauer, WT, Warner, TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2013;28:968981.CrossRefGoogle ScholarPubMed
Albanese, A. How many dystonias? Clinical evidence. Front Neurol 2017;8:18.CrossRefGoogle ScholarPubMed
Mainka, T, Erro, R, Rothwell, J, et al. Remission in dystonia – systematic review of the literature and meta-analysis. Parkinsonism Relat Disord 2019;66:915.CrossRefGoogle ScholarPubMed
Shakh, AG, Beylergil, SB, Scorr, L, et al. Dystonia and tremor. A cross-sectional study of the Dystonia Coalition cohort. Neurology 2021;96:e563e574.Google Scholar
Avenali, M, De Icco, R, Tinazzi, M, et al. Pain in focal dystonias – a focused review to address an important component of the disease. Parkinsonism Relat Disord 2018;54:1724.CrossRefGoogle ScholarPubMed
Ma, H, Qu, J, Ye, L, Shu, Y, Qu, Q. Blepharospasm, oromandibular dystonia and Meige syndrome: clinical and genetic update. Front Neurol 2021;12:630221.CrossRefGoogle ScholarPubMed
Defazio, G, Hallett, M, Jinnah, HA, Conte, A, Berardelli, A. Blepharospasm 40 years later. Mov Disord 2017;32:498509.CrossRefGoogle ScholarPubMed
Pandey, S, Sharma, S. Meige’s syndrome: history, epidemiology, clinical features, pathogenesis and treatment. J Neurol Sci 2017;372:162170.CrossRefGoogle ScholarPubMed
Yen, MT. Developments in the treatment of benign essential blepharospasm. Curr Opin Ophthalmol 2018;29:440444.CrossRefGoogle ScholarPubMed
Duarte, GS, Rodrigues, FB, Marques, RE, et al. Botulinum toxin type A therapy for blepharospasm. Cochrane Database Syst Rev 2020;11:CD004900.Google ScholarPubMed
Dadgardoust, PD, Rosales, RL, Asuncion, RM, Dressler, D. Botulinum neurotoxin therapy efficacy and safety for oromandibular dystonia: a meta-analysis. J Neural Transm (Vienna) 2019;126:141148.CrossRefGoogle ScholarPubMed
Colisimo, C, Suppa, A, Fabbrini, G, Bologna, M, Berardelli, A. Craniocervical dystonia: clinical and pathophysiological features. Eur J Neurol 2010;17(Suppl):1521.CrossRefGoogle Scholar
De Meyer, M, Vereecke, L, Bottenberg, P, et al. Oral appliances in the treatment of oromandibular dystonia: a systematic review. Acta Neurolog Belg 2020;120:831836.CrossRefGoogle ScholarPubMed
Simonyan, K, Barkmeier-Kraemer, J, Blitzer, A, et al. Laryngeal dystonia: multidisciplinary update on terminology, pathophysiology, and research priorities. Neurology 2021;96:9891001.CrossRefGoogle ScholarPubMed
Duarte, GS, Castelao, M, Rodriguez, FB, et al. Botulinum toxin type A versus botulinum type B for cervical dystonia. Cochrane Database Syst Rev 2016;10:CD004314.Google ScholarPubMed
Raju, S, Ravi, A, Prashanth, LK. Cervical dystonia mimics: a case series and review of the literature. Tremor Other Hyperkinet Mov 2019;9.CrossRefGoogle Scholar
Castagna, A, Albanese, A. Management of cervical dystonia with botulinum toxin injections and EMG/ultrasound guidance. Neurol Clin Pract 2018;6:6473.Google Scholar
Brodoehl, S, Wagner, F, Prell, T, et al. Cause or effect: altered brain and network activity in cervical dystonia is partially normalized by botulinum toxin treatment. Neuroimage Clin 2019;22:101792.CrossRefGoogle ScholarPubMed
Hu, W, Rundle-Gonzalez, V, Kulkarni, SJ, et al. A randomized study of botulinum toxin versus botulinum toxin plus physical therpy for treatment of cervical dystonia. Parkinsonism Relat Disord 2019;63:195198.CrossRefGoogle Scholar
Van den Dool, J, Visser, B, Koelman, JH, Englebert, RH, Tijssen, MA. Long-term specialized physical therapy in cervical dystonia: outcomes of a randomized controlled trial. Arch Phy Med Rehab 2019;100:14171425.CrossRefGoogle ScholarPubMed
Hua, X, Zhang, B, Zheng, Z, et al. Predictive factors of outcome in cervical dystonia following deep brain stimulation: an individual patient data meta-analysis. J Neurol 2020;267:17801792.CrossRefGoogle ScholarPubMed
Tsuboi, T, Wong, JK, Almeida, L, et al. A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 2020;267:12781290.CrossRefGoogle ScholarPubMed
Shaikh, AG, Zee, DS, Crawford, JD, Jinnah, HA. Cervical dystonia: a neural integrator disorder. Brain 2016;139:25102599.CrossRefGoogle ScholarPubMed
Pandey, S, Sharma, S. Meige’s syndrome: history, epidemiology, clinical features, pathogenesis and treatment. J Neurol Sci 2017;372:162170.CrossRefGoogle ScholarPubMed
Aires, A, Gomes, T, Linhares, P, et al. The impact of deep brain stimulation on health quality of life and disease-specific disability in Meige syndrome [MS]. Clin Neurol Neurosurg 2018;171:5357.CrossRefGoogle ScholarPubMed
Wang, X, Zhang, Z, Mao, Z, Yu, X. Deep brain stimulation for Meige syndrome: a meta-analysis with individual patient data. J Neurol 2019;266:26462656.CrossRefGoogle ScholarPubMed
Stahl, CM, Frucht, SJ. Focal task specific dystonia: a review and update. J Neurol 2017;264:15361541.CrossRefGoogle Scholar
Goldman, J. Writer’s cramp. Toxicon 2015;107:98104.CrossRefGoogle ScholarPubMed
Martinez-Ramirez, D, Paz-Gomez, V, Rodriguez, RL. Response to zolpidem in oromandibular dystonia: a case report. Parkinsonism Relat Disord 2015;21:154155.CrossRefGoogle ScholarPubMed
Spiegel, LL, Ostrem, JL, Bledsoe, IO. FDA approvals and consensus guidelines for botulinum toxins in the treatment of dystonia. Toxins 2020;12:332.CrossRefGoogle ScholarPubMed
Macerollo, A, Sajin, V, Bonello, M, et al. Deep brain stimulation in dystonia: state of art and future directions. J Neurosci Meth 2020;340:108750.CrossRefGoogle ScholarPubMed
Tsuboi, T, Cauraugh, JH, Wong, JK, Okun, MS, Ramirez-Zamora, A. Quality of life outcomes after globus pallidus internus deep brain stimulation in idiopathic or inherited isolated dystonia: a meta-analysis. J Neurol Neurosurg Psychiat 2020;91:938944.CrossRefGoogle ScholarPubMed
Frei, K, Trung, D. The classification of dystonia. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 425435.Google Scholar

References

Albanese, A, Bhatia, K, Bressman, SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28(7):863873.CrossRefGoogle ScholarPubMed
Wijemanne, S, Jankovic, J. Dopa-responsive dystonia – clinical and genetic heterogeneity. Nat Rev Neurol 2015;11(7):414424.CrossRefGoogle ScholarPubMed
Maas, RPPWM, Wassenberg, T, Lin, JP, et al. l-Dopa in dystonia: a modern perspective. Neurology 2017;88(19):18651871.CrossRefGoogle ScholarPubMed
Weiss, KH, Askari, FK, Czlonkowska, A, et al. Bis-choline tetrathiomolybdate in patients with Wilson’s disease: an open-label, multicentre, phase 2 study. Lancet Gastroenterol Hepatol 2017;2(12):869876.CrossRefGoogle ScholarPubMed
Alfadhel, M, Almuntashri, M, Jadah, RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin–thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 2013;8:83.CrossRefGoogle ScholarPubMed
Tabarki, B, Alfadhel, M, AlShahwan, S, et al. Treatment of biotin-responsive basal ganglia disease: open comparative study between the combination of biotin plus thiamine versus thiamine alone. Eur J Paediatr Neurol 2015;19(5):547552.CrossRefGoogle ScholarPubMed
Patterson, MC, Clayton, P, Gissen, P, et al. Recommendations for the detection and diagnosis of Niemann–Pick disease type C: an update. Neurol Clin Pract 2017;7(6):499511.CrossRefGoogle ScholarPubMed
Patterson, MC, Mengel, E, Vanier, MT et al. Treatment outcomes following continuous miglustat therapy in patients with Niemann–Pick disease Type C: a final report of the NPC Registry. Orphanet J Rare Dis 2020;15(1):104.CrossRefGoogle ScholarPubMed
Brashear, A, Dobyns, WB, de Carvalho Aguiar, P, et al. The phenotypic spectrum of rapid-onset dystonia–parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 2007;130(3):828835.CrossRefGoogle ScholarPubMed
Bachoud-Lévi, AC, Ferreira, J, Massart, R, et al. International guidelines for the treatment of Huntington’s disease. Front Neurol 2019;10:710.CrossRefGoogle ScholarPubMed
Saft, C, von Hein, SM, Lücke, T, et al. Cannabinoids for treatment of dystonia in Huntington’s disease. J Huntingtons Dis 2018;7(2):167173.CrossRefGoogle ScholarPubMed
Chang, X, Zhang, J, Jiang, Y, et al. Natural history and genotype–phenotype correlation of pantothenate kinase-associated neurodegeneration. CNS Neurosci Ther 2020;26(7):754761.CrossRefGoogle ScholarPubMed
Iankova, V, Karin, I, Klopstock, T, Schneider, SA. Emerging disease-modifying therapies in neurodegeneration with brain iron accumulation (NBIA) disorders. Front Neurol 2021;12:629414.CrossRefGoogle ScholarPubMed
Markovic, V, Dragasevic-Miskovic, NT, Stankovic, et al. Dystonia in patients with spinocerebellar ataxia type 2. Mov Disord Clin Pract 2015;3(3):292295.CrossRefGoogle ScholarPubMed
Catai, LMP, Camargo, CHF, Moro, A, et al. Dystonia in patients with spinocerebellar ataxia 3–Machado–Joseph disease: an underestimated diagnosis? Open Neurol J 2018;12:4149.CrossRefGoogle ScholarPubMed
Lee, LV, Rivera, C, Teleg, RA, et al. The unique phenomenology of sex-linked dystonia parkinsonism (XDP, DYT3, “Lubag”). Int J Neurosci 2011;121(S1):311.CrossRefGoogle ScholarPubMed
Jinnah, HA, Visser, JE, Harris, JC, et al. Delineation of the motor disorder of Lesch–Nyhan disease. Brain 2006;129(5):12011217.CrossRefGoogle ScholarPubMed
Mehanna, R, Jankovic, J. Movement disorders in cerebrovascular disease [published correction appears in Lancet Neurol 2013;12(8):733].Google Scholar
Jain, K. Drug-Induced Neurological Disorders, 4th ed. Berlin: Springer; 2013.Google Scholar
Lewis, K, O’Day, CS. Dystonic reactions. [Updated 2021 Jun 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.Google Scholar
Macerollo, A, Deuschl, G. Deep brain stimulation for tardive syndromes: systematic review and meta-analysis. J Neurol Sci 2018;389:5560.CrossRefGoogle ScholarPubMed
Cardoso, F. HIV-related movement disorders: epidemiology, pathogenesis and management. CNS Drugs 2002;16(10):663668.CrossRefGoogle Scholar
Balint, B, Vincent, A, Meinck, HM, et al. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain 2018; 141(1):1336.CrossRefGoogle ScholarPubMed
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody–encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90(6):724726.CrossRefGoogle ScholarPubMed
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135(11):34533468.CrossRefGoogle ScholarPubMed
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88(11):10121020.CrossRefGoogle ScholarPubMed
Irani, SR, Michell, AW, Lang, B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69(5):892900.CrossRefGoogle ScholarPubMed
Thompson, J, Bi, M, Murchison, AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018;141(2):348356.CrossRefGoogle ScholarPubMed
Cerovac, N, Petrović, I, Klein, C, Kostić, VS. Delayed-onset dystonia due to perinatal asphyxia: a prospective study. Mov Disord 2007;22(16):24262429.CrossRefGoogle Scholar
O’Suilleabhain, P, Dewey, RB Jr. Movement disorders after head injury: diagnosis and management. J Head Trauma Rehabil 2004;19(4):305313.CrossRefGoogle ScholarPubMed
Carolei, A, Marini, C, Palladini, G. Manganism. Neurology 1995;45(11):21142115.CrossRefGoogle ScholarPubMed
Choi, IS, Cheon, HY. Delayed movement disorders after carbon monoxide poisoning. Eur Neurol 1999;42(3):141144.CrossRefGoogle ScholarPubMed
Huang, CC, Chu, NS, Lu, CS, et al. Long-term progression in chronic manganism: ten years of follow-up. Neurology 1998;50(3):698700.CrossRefGoogle ScholarPubMed
Tavasoli, A, Arjmandi Rafsanjani, K, Hemmati, S, et al. A case of dystonia with polycythemia and hypermanganesemia caused by SLC30A10 mutation: a treatable inborn error of manganese metabolism. BMC Pediatr 2019;19(1):229.CrossRefGoogle ScholarPubMed
Shetty, AS, Bhatia, KP, Lang, AE. Dystonia and Parkinson’s disease: what is the relationship? Neurobiol Dis 2019;132:104462.CrossRefGoogle ScholarPubMed
Boesch, SM, Wenning, GK, Ransmayr, G, Poewe, W. Dystonia in multiple system atrophy. J Neurol Neurosurg Psychiatry 2002;72(3):300303.CrossRefGoogle ScholarPubMed
Respondek, G, Stamelou, M, Kurz, C, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 2014;29(14):17581766.CrossRefGoogle ScholarPubMed
Stamelou, M, Alonso-Canovas, A, Bhatia, KP. Dystonia in corticobasal degeneration: a review of the literature on 404 pathologically proven cases. Mov Disord 2012;27(6):696702.CrossRefGoogle ScholarPubMed
Ganos, C, Edwards, MJ, Bhatia, KP. The phenomenology of functional (psychogenic) dystonia. Mov Disord Clin Pract 2014;1(1):3644.CrossRefGoogle ScholarPubMed
Papandreou, A, Danti, FR, Spaull, R, et al. The expanding spectrum of movement disorders in genetic epilepsies. Dev Med Child Neurol 2020;62(2):178191.CrossRefGoogle ScholarPubMed
Duarte, GS, Castelão, M, Rodrigues, FB, et al. Botulinum toxin type A versus botulinum toxin type B for cervical dystonia. Cochrane Database Syst Rev 2016;10 CD004314.Google ScholarPubMed
Rodrigues, FB, Duarte, GS, Marques, RE, et al. Botulinum toxin type A therapy for cervical dystonia. Cochrane Database Syst Rev 2020;11:CD003633.Google ScholarPubMed
Jankovic, J, Truong, D, Patel, AT, et al. Injectable daxibotulinumtoxinA in cervical dystonia: a phase 2 dose-escalation multicenter study. Mov Disord Clin Pract 2018;5(3):273282.CrossRefGoogle ScholarPubMed
Burke, RE, Fahn, S, Marsden, CD. Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology 1986;36(2):160164.CrossRefGoogle ScholarPubMed
Albright, AL, Barry, MJ, Shafton, DH, Ferson, SS. Intrathecal baclofen for generalized dystonia. Dev Med Child Neurol 2001;43(10):652657.CrossRefGoogle ScholarPubMed
Tassorelli, C, Mancini, F, Balloni, L, et al. Botulinum toxin and neuromotor rehabilitation: an integrated approach to idiopathic cervical dystonia. Mov Disord 2006;21(12):22402243.CrossRefGoogle ScholarPubMed
Erro, R, Tinazzi, M, Morgante, F, Bhatia, K. Non-invasive brain stimulation for dystonia: therapeutic implications. Eur J Neurol 2017;24(10):1228–e64.CrossRefGoogle ScholarPubMed
Moro, E, LeReun, C, Krauss, JK, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol 2017;24(4):552560.CrossRefGoogle ScholarPubMed
Rodrigues, FB, Duarte, GS, Prescott, D, et al. Deep brain stimulation for dystonia. Cochrane Database Syst Rev 2019;1:CD012405.Google ScholarPubMed
Centen, LM, Oterdoom, D, Tijssen, M et al. Bilateral pallidotomy for dystonia: a systematic review. Mov Disord 2021,36(3): 547557.CrossRefGoogle ScholarPubMed
Horisawa, S, Ochiai, T, Goto, S, et al. Safety and long-term efficacy of ventro-oral thalamotomy for focal hand dystonia: a retrospective study of 171 patients. Neurology 2019;92(4):e371e377.CrossRefGoogle ScholarPubMed
Hopfner, F, Schneider, SA. Dystonia in neurological diseases. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 437451.Google Scholar

References

Kojovic, M, Pareés, I, Kassavetis, P, et al. Secondary and primary dystonia: pathophysiological differences. Brain 2013;136(7):20382049.CrossRefGoogle ScholarPubMed
Balint, B, Mencacci, NE, Valente, EM, et al. Dystonia. Nat Rev Dis Primer 2018;4(1):25.CrossRefGoogle ScholarPubMed
Jinnah, HA, Factor, SA. Diagnosis and treatment of dystonia. Neurol Clin 2015;33(1):77100.CrossRefGoogle ScholarPubMed
Albanese, A, Di Giovanni, M, Lalli, S. Dystonia: diagnosis and management. Eur J Neurol 2019;26(1):517.CrossRefGoogle ScholarPubMed
Smit, M, Albanese, A, Benson, M, et al. Dystonia management: what to expect from the future? The perspectives of patients and clinicians within DystoniaNet Europe. Front Neurol 2021;12:646841.CrossRefGoogle ScholarPubMed
Jinnah, HA, Albanese, A, Bhatia, KP, et al. Treatable inherited rare movement disorders. Mov Disord 2018;33(1):2135.CrossRefGoogle ScholarPubMed
Jankovic, J. Botulinum toxin: state of the art. Mov Disord 2017;32(8):11311138.CrossRefGoogle ScholarPubMed
Dong, M, Yeh, F, Tepp, WH, et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):592596.CrossRefGoogle Scholar
Simpson, DM, Hallett, M, Ashman, EJ, et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016;86(19):18181826.CrossRefGoogle Scholar
Comella, C, Hauser, RA, Isaacson, SH, et al. Efficacy and safety of two incobotulinumtoxinA injection intervals in cervical dystonia patients with inadequate benefit from standard injection intervals of botulinum toxin: phase 4, open-label, randomized, noninferiority study. Clin Park Relat Disord 2022;6:100142.Google ScholarPubMed
Molho, ES, Agarwal, N, Regan, K, Higgins, DS, Factor, SA. Effect of cervical dystonia on employment: a retrospective analysis of the ability of treatment to restore premorbid employment status. Mov Disord 2009;24(9):13841387.CrossRefGoogle ScholarPubMed
Zoons, E, Dijkgraaf, MGW, Dijk, JM, van Schaik, IN, Tijssen, MA. Botulinum toxin as treatment for focal dystonia: a systematic review of the pharmaco-therapeutic and pharmaco-economic value. J Neurol 2012;259(12):25192526.CrossRefGoogle ScholarPubMed
Fezza, J, Burns, J, Woodward, J, et al. A cross-sectional structured survey of patients receiving botulinum toxin type A treatment for blepharospasm. J Neurol Sci 2016;367:5662.CrossRefGoogle ScholarPubMed
Tatu, L, Jost, WH. Anatomy and cervical dystonia. J Neural Transm (Vienna) 2017;124(2):237243.CrossRefGoogle ScholarPubMed
Contarino, MF, Van Den Dool, J, Balash, Y, et al. Clinical practice: evidence-based recommendations for the treatment of cervical dystonia with botulinum toxin. Front Neurol 2017 24;8:35.CrossRefGoogle ScholarPubMed
Molloy, FM, Shill, HA, Kaelin-Lang, A, Karp, BI. Accuracy of muscle localization without EMG: implications for treatment of limb dystonia. Neurology 2002;58(5):805807.CrossRefGoogle ScholarPubMed
Kruisdijk, JJM, Koelman, JHTM, de Visser, BWO, de Haan, RJ, Speelman, JD. Botulinum toxin for writer’s cramp: a randomised, placebo‐controlled trial and 1‐year follow‐up. J Neurol Neurosurg Psychiatry 2007;78(3):264270.CrossRefGoogle ScholarPubMed
Benninger, MS, Gardner, G, Grywalski, C. Outcomes of botulinum toxin treatment for patients with spasmodic dysphonia. Arch Otolaryngol Head Neck Surg 2001;127(9):10831085.CrossRefGoogle ScholarPubMed
Jankovic, J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin Pharmacother 2016;17(18):24612470.CrossRefGoogle ScholarPubMed
Liow, NYK, Gimeno, H, Lumsden, DE, et al. Gabapentin can significantly improve dystonia severity and quality of life in children. Eur J Paediatr Neurol 2016;20(1):100107.CrossRefGoogle ScholarPubMed
Motta, F, Antonello, CE. Analysis of complications in 430 consecutive pediatric patients treated with intrathecal baclofen therapy: 14-year experience. J Neurosurg Pediatr 2014;13(3):301306.CrossRefGoogle ScholarPubMed
Hainque, E, Vidailhet, M, Cozic, N, et al. A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus-dystonia. Neurology 2016;86(18):17291735.CrossRefGoogle ScholarPubMed
Termsarasab, P, Frucht, SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord 2017;4:10.CrossRefGoogle Scholar
Moro, E, LeReun, C, Krauss, JK, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol 2017;24(4):552560.CrossRefGoogle ScholarPubMed
Jinnah, HA, Alterman, R, Klein, C, et al. Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. J Neural Transm (Vienna) 2017;124(4):417430.CrossRefGoogle ScholarPubMed
Danielsson, A, Carecchioo, M, Cif, L, et al. Pallidal deep brain stimulation in DYT6 dystonia: clinical outcome and predictive factors for motor improvement. J Clin Med 2019;8(12):2163.CrossRefGoogle ScholarPubMed
Azoulay-Zyss, J, Roze, E, Welter, ML, et al. Bilateral deep brain stimulation of the pallidum for myoclonus-dystonia due to ε-sarcoglycan mutations: a pilot study. Arch Neurol 2011;68(1):9498.CrossRefGoogle ScholarPubMed
Fan, H, Zheng, Z, Yin, Z, Zhang, J, Lu, G. Deep brain stimulation treating dystonia: a systematic review of targets, body distributions and etiology classifications. Front Hum Neurosci 2021;15:757579.CrossRefGoogle ScholarPubMed
Baumgartner, AJ, Thompson, JA, Kern, DS, Ojemann, SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022;45(4):25932613.CrossRefGoogle ScholarPubMed
Ostrem, JL, San Luciano, M, Dodenhoff, KA, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology 2017;88(1):2535.CrossRefGoogle ScholarPubMed
Sobesky, L, Goede, L, Odekerken, VJJ, et al. Subthalamic and pallidal deep brain stimulation: are we modulating the same network? Brain J Neurol 2022;145(1):251262.CrossRefGoogle ScholarPubMed
Loher, TJ, Capelle, HH, Kaelin-Lang, A, et al. Deep brain stimulation for dystonia: outcome at long-term follow-up. J Neurol 2008;255(6):881884.CrossRefGoogle ScholarPubMed
Kaelin-Lang, A, You, H, Burgunder, JM, et al. Bilateral pallidal stimulation improves cervical dystonia for more than a decade. Parkinsonism Relat Disord 2020;81:7881.CrossRefGoogle ScholarPubMed
Macerollo, A, Sajin, V, Bonello, M, et al. Deep brain stimulation in dystonia: state of art and future directions. J Neurosci Methods 2020;340:108750.CrossRefGoogle ScholarPubMed
Kupsch, A, Benecke, R, Müller, J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006;355(19):19781990.CrossRefGoogle ScholarPubMed
Volkmann, J, Mueller, J, Deuschl, G, et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol 2014;13(9):875884.CrossRefGoogle ScholarPubMed
Vidailhet, M, Vercueil, L, Houeto, JL, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005;352(5):459467.CrossRefGoogle ScholarPubMed
Reese, R, Gruber, D, Schoenecker, T, et al. Long-term clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Mov Disord 2011;26(4):691698.CrossRefGoogle ScholarPubMed
Vidailhet, M, Vercueil, L, Houeto, JL, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol 2007;6(3):223229.CrossRefGoogle ScholarPubMed
Pauls, KAM, Krauss, JK, Kämpfer, CE, et al. Causes of failure of pallidal deep brain stimulation in cases with pre-operative diagnosis of isolated dystonia. Parkinsonism Relat Disord 2017;43:3848.CrossRefGoogle ScholarPubMed
Soares, C, Reich, MM, Costa, F, et al. Predicting outcome in a cohort of isolated and combined dystonia within probabilistic brain mapping. Mov Disord Clin Pract 2021;8(8):12341239.CrossRefGoogle Scholar
Monbaliu, E, Himmelmann, K, Lin, JP, et al. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol 2017;16(9):741749.CrossRefGoogle ScholarPubMed
Tisch, S. Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up. Curr Opin Neurol 2022;35(4):510517.CrossRefGoogle ScholarPubMed
Isaias, IU, Volkmann, J, Kupsch, A, et al. Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration. J Neurol 2011;258(8):14691476.CrossRefGoogle ScholarPubMed
Panov, F, Gologorsky, Y, Connors, G, Deep brain stimulation in DYT1 dystonia: a 10-year experience. Neurosurgery 2013;73(1):8693; discussion 93.CrossRefGoogle ScholarPubMed
Tisch, S, Kumar, KR. Pallidal deep brain stimulation for monogenic dystonia: the effect of gene on outcome. Front Neurol 2020;11:630391.CrossRefGoogle ScholarPubMed
Kupsch, A, Tagliati, M, Vidailhet, M, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord 2011;26(Suppl 1):S3753.CrossRefGoogle ScholarPubMed
Steigerwald, F, Kirsch, AD, Kühn, AA, et al. Evaluation of a programming algorithm for deep brain stimulation in dystonia used in a double-blind, sham-controlled multicenter study. Neurol Res Pract 2019;1:25.CrossRefGoogle Scholar
Baizabal Carvallo, JF, Mostile, G, Almaguer, M, et al. Deep brain stimulation hardware complications in patients with movement disorders: risk factors and clinical correlations. Stereotact Funct Neurosurg 2012;90(5):300306.CrossRefGoogle ScholarPubMed
Reese, R, Fasano, A, Knudsen, K, et al. Full parkinsonian triad induced by pallidal high-frequency stimulation in cervical dystonia. Mov Disord Clin Pract 2015;2(1):99101.CrossRefGoogle ScholarPubMed
Schrader, C, Capelle, HH, Kinfe, TM, et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology 2011;77(5):483488.CrossRefGoogle ScholarPubMed
Dinkelbach, L, Mueller, J, Poewe, W, et al. Cognitive outcome of pallidal deep brain stimulation for primary cervical dystonia: one year follow up results of a prospective multicenter trial. Parkinsonism Relat Disord 2015;21(8):976980.CrossRefGoogle ScholarPubMed
Kühn, AA, Volkmann, J. Innovations in deep brain stimulation methodology. Mov Disord 2017;32(1):1119.CrossRefGoogle ScholarPubMed
Pollo, C, Kaelin-Lang, A, Oertel, MF, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 2014;137(Pt 7):20152026.CrossRefGoogle ScholarPubMed
Sirica, D, Hewitt, AL, Tarolli, CG, et al. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021;11(4):315328.CrossRefGoogle ScholarPubMed
Stieglitz, LH, Oertel, MF, Accolla, EA, et al. Consensus statement on high-intensity focused ultrasound for functional neurosurgery in Switzerland. Front Neurol 2021;12:722762.CrossRefGoogle ScholarPubMed
Berman, BD, Junker, J, Shelton, E, et al. Psychiatric associations of adult-onset focal dystonia phenotypes. J Neurol Neurosurg Psychiatry 2017;88(7):595602.CrossRefGoogle ScholarPubMed
Ray, S, Pal, PK, Yadav, R. Non-motor symptoms in cervical dystonia: a review. Ann Indian Acad Neurol 2020;23(4):449457.Google ScholarPubMed
Klingelhoefer, L, Kaiser, M, Sauerbier, A, et al. Emotional well-being and pain could be a greater determinant of quality of life compared to motor severity in cervical dystonia. J Neural Transm (Vienna) 2021;128(3):305314.CrossRefGoogle ScholarPubMed
Heiman, GA, Ottman, R, Saunders-Pullman, RJ, et al. Increased risk for recurrent major depression in DYT1 dystonia mutation carriers. Neurology 2004;63(4):631637.CrossRefGoogle ScholarPubMed
Gündel, H, Wolf, A, Xidara, V, et al. High psychiatric comorbidity in spasmodic torticollis: a controlled study. J Nerv Ment Dis 2003;191(7):465473.CrossRefGoogle ScholarPubMed
Paus, S, Gross, J, Moll-Müller, M, et al. Impaired sleep quality and restless legs syndrome in idiopathic focal dystonia: a controlled study. J Neurol 2011;258(10):18351840.CrossRefGoogle ScholarPubMed
Counsell, C, Sinclair, H, Fowlie, J, et al. A randomized trial of specialized versus standard neck physiotherapy in cervical dystonia. Parkinsonism Relat Disord 2016;23:7279.CrossRefGoogle ScholarPubMed
Boyce, MJ, Canning, CG, Mahant, N, et al. Active exercise for individuals with cervical dystonia: a pilot randomized controlled trial. Clin Rehabil 2013;27(3):226235.CrossRefGoogle ScholarPubMed
Tassorelli, C, Mancini, F, Balloni, L, et al. Botulinum toxin and neuromotor rehabilitation: an integrated approach to idiopathic cervical dystonia. Mov Disord 2006;21(12):22402243.CrossRefGoogle ScholarPubMed
Lozeron, P, Poujois, A, Richard, A, et al. Contribution of TMS and rTMS in the understanding of the pathophysiology and in the treatment of dystonia. Front Neural Circuits 2016;10:90.CrossRefGoogle ScholarPubMed
Erro, R, Tinazzi, M, Morgante, F, Bhatia, KP. Non-invasive brain stimulation for dystonia: therapeutic implications. Eur J Neurol 2017;24(10):1228–e64.CrossRefGoogle ScholarPubMed

References

Louis, ED, Ferreira, JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord 2010;25:534541.CrossRefGoogle Scholar
Hopfner, F, Höglinger, GU, Kuhlenbäumer, G, et al. β-adrenoreceptors and the risk of Parkinson’s disease. Lancet Neurol 2020;19:247254.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018;33:7587.CrossRefGoogle ScholarPubMed
Albanese, A, Giovanni, MD, Lalli, S. Dystonia: diagnosis and management. Eur J Neurol 2019;26:517.CrossRefGoogle ScholarPubMed
Hopfner, F, Helmich, RC. The etiology of essential tremor: genes versus environment. Parkinsonism Relat Disord 2018;46:S92S96.CrossRefGoogle ScholarPubMed
Louis, ED. Essential tremors: a family of neurodegenerative disorders? Arch Neurol 2009;66:12021208.CrossRefGoogle ScholarPubMed
Hopfner, F, Deuschl, G. Is essential tremor a single entity? Eur J Neurol 2018;25:7182.CrossRefGoogle ScholarPubMed
Frucht, SJ, Riboldi, GM. Alcohol-responsive hyperkinetic movement disorders – a mechanistic hypothesis. Tremor Hyperkinetic Mov (NY) 2020;10:47.CrossRefGoogle ScholarPubMed
Kosmowska, B, Wardas, J. The pathophysiology and treatment of essential tremor: the role of adenosine and dopamine receptors in animal models. Biomolecules 2021;11:1813.CrossRefGoogle ScholarPubMed
Dallapiazza, RF, Lee, DJ, Vloo, PD, et al. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 2019;90:474482.CrossRefGoogle ScholarPubMed
Deuschl, G, Becktepe, JS, Dirkx, M, et al. The clinical and electrophysiological investigation of tremor. Clin Neurophysiol 2022;136:93129.CrossRefGoogle ScholarPubMed
Artusi, CA, Farooqi, A, Romagnolo, A, et al. Deep brain stimulation in uncommon tremor disorders: indications, targets, and programming. J Neurol 2018;265:24732493.CrossRefGoogle ScholarPubMed
Cury, RG, Fraix, V, Castrioto, A, et al. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 2017;89:14161423.CrossRefGoogle ScholarPubMed
Helmich, RC, Toni, I, Deuschl, G, Bloem, BR. The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep 2013;13:378.CrossRefGoogle ScholarPubMed
Kirke, DN, Battistella, G, Kumar, V, et al. Neural correlates of dystonic tremor: a multimodal study of voice tremor in spasmodic dysphonia. Brain Imaging Behav 2017;11:166175.CrossRefGoogle ScholarPubMed
Hedera, P, Phibbs, FT, Dolhun, R, et al. Surgical targets for dystonic tremor: considerations between the globus pallidus and ventral intermediate thalamic nucleus. Parkinsonism Relat Disord 2013;19:684686.CrossRefGoogle ScholarPubMed
Whitney, D, Bhatti, D, Torres-Russotto, D. Orthostatic tremor: pathophysiology guiding treatment. Curr Treat Options Neurol 2018;20:35.CrossRefGoogle ScholarPubMed
Panyakaew, P, Jinnah, HA, Shaikh, AG. Clinical features, pathophysiology, treatment, and controversies of tremor in dystonia. J Neurol Sci 2022;435:120199.CrossRefGoogle ScholarPubMed
van de Wardt, J, van der Stouwe, AMM, Dirkx, M, et al. Systematic clinical approach for diagnosing upper limb tremor. J Neurol Neurosurg Psychiatry 2020;91:822830.CrossRefGoogle ScholarPubMed
Hopfner, F, Ahlf, A, Lorenz, D, et al. Early- and late-onset essential tremor patients represent clinically distinct subgroups. Mov Disord 2016;31:15601566.CrossRefGoogle ScholarPubMed
Lee, A, Sarva, H. Approach to tremor disorders. Semin Neurol 2021;41:731743.Google ScholarPubMed
Hopfner, F, Erhart, T, Knudsen, K, et al. Testing for alcohol sensitivity of tremor amplitude in a large cohort with essential tremor. Parkinsonism Relat Disord 2015;21:848851.CrossRefGoogle Scholar
Papengut, F, Raethjen, J, Binder, A, Deuschl, G. Rest tremor suppression may separate essential from parkinsonian rest tremor. Parkinsonism Relat Disord 2013; 19:693697.CrossRefGoogle ScholarPubMed
Helmich, RC. The cerebral basis of parkinsonian tremor: a network perspective. Mov Disord 2018;33:219231.CrossRefGoogle ScholarPubMed
Elble, R, Bain, P, Forjaz, MJ, et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Mov Disord 2013;28:17931800.CrossRefGoogle ScholarPubMed
Louis, ED, Bares, M, Benito-Leon, J, et al. Essential tremor-plus: a controversial new concept. Lancet Neurol 2020;19:266270.CrossRefGoogle ScholarPubMed
Panyakaew, P, Cho, HJ, Lee, SW, Wu, T, Hallett, M. The pathophysiology of dystonic tremors and comparison with essential tremor. J Neurosci 2020;40:93179326.CrossRefGoogle ScholarPubMed
Balachandar, A, Fasano, A. Characterizing orthostatic tremor using a smartphone application. Tremor Hyperkinetic Mov NY 2017;7:488.CrossRefGoogle ScholarPubMed
Deuschl, G, Bain, P, Brin, M. Consensus statement of the Movement Disorder Society on tremor. Mov Disord 1998;13:223.CrossRefGoogle ScholarPubMed
Fearon, C, Espay, AJ, Lang, AE, et al. Soft signs in movement disorders: friends or foes? J Neurol Neurosurg Psychiatry 2019;90:961962.CrossRefGoogle ScholarPubMed
Rajalingam, R, Breen, DP, Lang, AE, Fasano, A. Essential tremor plus is more common than essential tremor: insights from the reclassification of a cohort of patients with lower limb tremor. Parkinsonism Relat Disord 2018;56:109110.CrossRefGoogle ScholarPubMed
Louis, ED. Twelve clinical pearls to help distinguish essential tremor from other tremors. Expert Rev Neurother 2014;14:10571065.CrossRefGoogle ScholarPubMed
Louis, ED. Essential tremor: a nuanced approach to the clinical features. Pract Neurol 2019;19:389398.CrossRefGoogle ScholarPubMed
Deuschl, G, Petersen, I, Lorenz, D, Christensen, K. Tremor in the elderly: essential and aging-related tremor. Mov Disord 2015;30:13271334.CrossRefGoogle ScholarPubMed
Köllensperger, M, Geser, F, Seppi, K, et al. Red flags for multiple system atrophy. Mov Disord 2008;23:10931099.CrossRefGoogle ScholarPubMed
Morgan, JC, Sethi, KD. Drug-induced tremors. Lancet Neurol 2005;4:866876.CrossRefGoogle ScholarPubMed
Kern, DS, Lang, AE. Successful treatment of functional palatal tremor: insights into pathogenesis and management. Mov Disord 2015;30:875876.CrossRefGoogle Scholar
Becktepe, JS, Goevert, F, Deuschl, G. Seltene Tremorsyndrome. Nervenarzt 2018;89:386393.CrossRefGoogle Scholar
Helmich, RC, Hallett, M, Deuschl, G, Toni, I, Bloem, BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012;135:32063226.CrossRefGoogle ScholarPubMed
Kulkarni, O, LaFaver, K, Tarsy, D. The “floating door sign” in Parkinson’s disease. Parkinsonism Relat Disord 2013;19:825826.CrossRefGoogle Scholar
Agnew, A, Frucht, SJ, Louis, ED. Supine head tremor: a clinical comparison of essential tremor and spasmodic torticollis patients. J Neurol Neurosurg Psychiatry 2012;83:179181.CrossRefGoogle ScholarPubMed
Lenka, A, Louis, ED. Revisiting the clinical phenomenology of “cerebellar tremor”: beyond the intention tremor. Cerebellum 2019;18:565574.CrossRefGoogle ScholarPubMed
Louis, ED, Kerridge, CA, Chatterjee, D, et al. Contextualizing the pathology in the essential tremor cerebellar cortex: a patholog-omics approach. Acta Neuropathol 2019;138:859876.CrossRefGoogle ScholarPubMed
Rao, A.K., Louis, E.D., Ataxic Gait in Essential Tremor: A Disease-Associated Feature?, Tremor Hyperkinetic Mov. 9 (2019).Google ScholarPubMed
Máñez-Miró, JU, Martínez-Fernández, R, del Alamo, M, et al. Focused ultrasound thalamotomy for multiple sclerosis–associated tremor. Mult Scler 2020;26:855858.CrossRefGoogle ScholarPubMed
Merchant, SH, Kuo, S-H, Qiping, Y, et al. Objective predictors of ‘early tolerance’ to ventral intermediate nucleus of thalamus deep brain stimulation in essential tremor patients. Clin Neurophysiol 2018;129:16281633.CrossRefGoogle Scholar
Raina, GB, Cersosimo, MG, Folgar, SS, et al. Holmes tremor. Clinical description, lesion localization, and treatment in a series of 29 cases. Neurology 2016;86:931938.CrossRefGoogle Scholar
Baizabal‐Carvallo, JF, Cardoso, F, Jankovic, J. Myorhythmia: phenomenology, etiology, and treatment. Mov Disord 2015;30:171179.CrossRefGoogle ScholarPubMed
Růžička, E, Jech, R, Zárubová, K, Roth, J, Urgošík, D. VIM thalamic stimulation for tremor in a patient with IgM paraproteinaemic demyelinating neuropathy. Mov Disord 2003;18:11921195.CrossRefGoogle Scholar
Schwingenschuh, P, Espay, AJ. Functional tremor. J Neurol Sci 2022;435:120208.CrossRefGoogle ScholarPubMed
Rajput, A. Tremor on neurological disease. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 679500.Google Scholar

References

Helmich, RC, Hallett, M, Deuschl, G, Toni, I, Bloem, BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012;135:32063226.CrossRefGoogle ScholarPubMed
Helmich, RC, Toni, I, Deuschl, G, Bloem, BR. The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep 2013;13:378.CrossRefGoogle ScholarPubMed
Helmich, RC. The cerebral basis of Parkinsonian tremor: a network perspective. Mov Disord 2018;33:219231.CrossRefGoogle ScholarPubMed
Matsumoto-Makidono, Y, Nakayama, H, Yamasaki, M, et al. Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 2016;16:9941004.CrossRefGoogle ScholarPubMed
Brown, AM, White, JJ, van der Heijden, ME, et al. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. eLife 2020;9:e51928.CrossRefGoogle ScholarPubMed
Yoshida, T, Katoh, A, Ohtsuki, G, Mishina, M, Hirano, T. Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor delta2 subunit. J Neurosci 2004;24:24402448.CrossRefGoogle Scholar
Dykstra, S, Engbers, JDT, Bartoletti, TM, Turner, RW. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli. J Physiol (Lond) 2016;594:9851003.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2017;33:7587.CrossRefGoogle ScholarPubMed
Nicoletti, V, Cecchi, P, Frosini, D, et al. Morphometric and functional MRI changes in essential tremor with and without resting tremor. J Neurol 2015;262:719728.CrossRefGoogle ScholarPubMed
Muthuraman, M, Deuschl, G, Anwar, AR, et al. Essential and aging-related tremor: differences of central control. Mov Disord 2015;30:16731680.CrossRefGoogle ScholarPubMed
Hopfner, F, Ahlf, A, Lorenz, D, et al. Early- and late-onset essential tremor patients represent clinically distinct subgroups. Mov Disord 2016;31:15601566.CrossRefGoogle ScholarPubMed
Jain, S, Lo, SE, Louis, ED. Common misdiagnosis of a common neurological disorder: how are we misdiagnosing essential tremor? Arch Neurol 2006;63:11001104.CrossRefGoogle ScholarPubMed
Louis, ED. Essential tremors: a family of neurodegenerative disorders? Arch Neurol 2009;66:12021208.CrossRefGoogle ScholarPubMed
Louis, ED. Environmental epidemiology of essential tremor. Neuroepidemiology 2008;31:139149.CrossRefGoogle ScholarPubMed
Pan, M-K, Ni, C-L, Wu, Y-C, Li, Y-S, Kuo, S-H. Animal models of tremor: relevance to human tremor disorders. Tremor Other Hyperkinet Mov (N Y) 2018;8:587.CrossRefGoogle ScholarPubMed
Louis, ED, Babij, R, Cortés, E, Vonsattel, J-PG, Faust, PL. The inferior olivary nucleus: a postmortem study of essential tremor cases versus controls. Mov Disord 2013;28:779786.CrossRefGoogle ScholarPubMed
Haubenberger, D, Hallett, M. Essential tremor. N Engl J Med 2018;378:18021810.CrossRefGoogle ScholarPubMed
Boecker, H, Weindl, A, Brooks, DJ, et al. GABAergic dysfunction in essential tremor: an 11C-flumazenil PET study. J Nucl Med 2010;51:10301035.CrossRefGoogle ScholarPubMed
Nietz, A, Krook-Magnuson, C, Gutierrez, H, et al. Selective loss of the GABAAα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020;124:11831197.CrossRefGoogle ScholarPubMed
Paris-Robidas, S, Brochu, E, Sintes, M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain 2012;135:105116.CrossRefGoogle ScholarPubMed
Zhang, X, Santaniello, S. Role of cerebellar GABAergic dysfunctions in the origins of essential tremor. Proc Natl Acad Sci U S A 2019;116:1359213601.CrossRefGoogle ScholarPubMed
Louis, ED, Hernandez, N, Dyke, JP, Ma, RE, Dydak, U. In vivo dentate nucleus gamma-aminobutyric acid concentration in essential tremor vs. controls. Cerebellum 2018;17:165172.CrossRefGoogle ScholarPubMed
Louis, ED, Kerridge, CA, Chatterjee, D, et al. Contextualizing the pathology in the essential tremor cerebellar cortex: a patholog-omics approach. Acta Neuropathol 2019;138:859876.CrossRefGoogle ScholarPubMed
Pan, M-K, Li, Y-S, Wong, S-B, et al. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med 2020;12(526):eaay1769.CrossRefGoogle ScholarPubMed
Wong, S-B, Wang, Y-M, Lin, C-C, et al. Cerebellar oscillations in familial and sporadic essential tremor. Cerebellum 2022;21:425431.CrossRefGoogle ScholarPubMed
Louis, ED. Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol 2010;9:613622.CrossRefGoogle Scholar
Rajput, AH, Adler, CH, Shill, HA, Rajput, A. Essential tremor is not a neurodegenerative disease. Neurodegener Dis Manag 2012;2:259268.CrossRefGoogle Scholar
Louis, ED, Faust, PL, Vonsattel, JPG, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain 2007;130:32973307.CrossRefGoogle ScholarPubMed
Shill, HA, Adler, CH, Sabbagh, MN, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology 2008;70:14521455.CrossRefGoogle ScholarPubMed
Lee, D, Gan, S-R, Faust, PL, Louis, ED, Kuo, S-H. Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord 2018;51:2429.CrossRefGoogle ScholarPubMed
Gionco, JT, Hartstone, WG, Martuscello, RT, et al. Essential tremor versus “ET-plus”: a detailed postmortem study of cerebellar pathology. Cerebellum 2021;20:904912.CrossRefGoogle ScholarPubMed
Louis, ED, Faust, PL. Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020;16:6983.CrossRefGoogle ScholarPubMed
Wilms, H, Sievers, J, Deuschl, G. Animal models of tremor. Mov Disord 1999;14:557571.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Buijink, AWG, Prent, N, Puts, NA, et al. GABA, glutamate, and NAA levels in the deep cerebellar nuclei of essential tremor patients. Front Neurol 2021;12:664735.CrossRefGoogle ScholarPubMed
Khedr, EM, Fawal El, B, Abdelwarith, A, et al. TMS excitability study in essential tremor: absence of gabaergic changes assessed by silent period recordings. Neurophysiol Clin 2019;49:309315.CrossRefGoogle ScholarPubMed
Schnitzler, A, Münks, C, Butz, M, Timmermann, L, Gross, J. Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord 2009;24:16291635.CrossRefGoogle ScholarPubMed
Raethjen, J, Govindan, RB, Kopper, F, Muthuraman, M, Deuschl, G. Cortical involvement in the generation of essential tremor. J Neurophysiol 2007;97:32193228.CrossRefGoogle ScholarPubMed
Pedrosa, DJ, Reck, C, Florin, E, et al. Essential tremor and tremor in Parkinson’s disease are associated with distinct ‘tremor clusters’ in the ventral thalamus. Exp Neurol 2012;237:435443.CrossRefGoogle ScholarPubMed
Muthuraman, M, Heute, U, Arning, K, et al. Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? NeuroImage 2012;60:13311339.CrossRefGoogle ScholarPubMed
Muthuraman, M, Raethjen, J, Koirala, N, et al. Cerebello-cortical network fingerprints differ between essential, Parkinson’s and mimicked tremors. Brain 2018;73:6912.Google Scholar
Jenkins, IH, Bain, PG, Colebatch, JG, et al. A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol 1993;34:8290.CrossRefGoogle ScholarPubMed
Broersma, M, van der Stouwe, AMM, Buijink, AWG, et al. Bilateral cerebellar activation in unilaterally challenged essential tremor. Neuroimage Clin 2016;11:19.CrossRefGoogle ScholarPubMed
Buijink, AWG, van der Stouwe, AMM, Broersma, M, et al. Motor network disruption in essential tremor: a functional and effective connectivity study. Brain 2015;138:29342947.CrossRefGoogle ScholarPubMed
Neely, KA, Kurani, AS, Shukla, P, et al. Functional brain activity relates to 0–3 and 3–8 Hz Force oscillations in essential tremor. Cerebral Cortex 2015;25:41914202.CrossRefGoogle ScholarPubMed
Buijink, AWG, Broersma, M, van der Stouwe, AMM, et al. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Parkinsonism Relat Disord 2015;21:383388.CrossRefGoogle ScholarPubMed
Dupuis, MJ-M, Evrard, FL, Jacquerye, PG, Picard, GR, Lermen, OG. Disappearance of essential tremor after stroke. Mov Disord 2010;25:28842887.CrossRefGoogle Scholar
Joutsa, J, Shih, LC, Horn, A, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol 2018;84:153157.CrossRefGoogle ScholarPubMed
Papengut, F, Raethjen, J, Binder, A, Deuschl, G. Rest tremor suppression may separate essential from parkinsonian rest tremor. Parkinsonism Relat Disord 2013;19:693697.CrossRefGoogle ScholarPubMed
Schwingenschuh, P, Ruge, D, Edwards, MJ, et al. Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov Disord 2010;25:560569.CrossRefGoogle ScholarPubMed
Dirkx, MF, Zach, H, Bloem, BR, Hallett, M, Helmich, RC. The nature of postural tremor in Parkinson disease. Neurology 2018;90:e1095–1103.CrossRefGoogle ScholarPubMed
Zach, H, Dirkx, MF, Roth, D, et al. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease. Neurology 2020;95:e1461–1470.CrossRefGoogle ScholarPubMed
Jellinger, KA. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 2012;27:830.CrossRefGoogle ScholarPubMed
Hirsch, EC, Mouatt, A, Faucheux, B, et al. Dopamine, tremor, and Parkinson’s disease. Lancet 1992;340:125126.CrossRefGoogle ScholarPubMed
Bergman, H, Raz, A, Feingold, A, et al. Physiology of MPTP tremor. Mov Disord 1998;13(Suppl 3):2934.CrossRefGoogle ScholarPubMed
Deutch, AY, Elsworth, JD, Goldstein, M, et al. Preferential vulnerability of A8 dopamine neurons in the primate to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 1986;68:5156.CrossRefGoogle Scholar
German, DC, Dubach, M, Askari, S, Speciale, SG, Bowden, DM. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost? Neuroscience 1988;24:161174.CrossRefGoogle ScholarPubMed
Dirkx, MF, Ouden den, HEM, Aarts, E, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain 2017;140:721734.Google ScholarPubMed
Helmich, RC, Janssen, MJR, Oyen, WJG, Bloem, BR, Toni, I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol 2011;69:269281.CrossRefGoogle ScholarPubMed
Lee, J-Y, Lao-Kaim, NP, Pasquini, J, et al. Pallidal dopaminergic denervation and rest tremor in early Parkinson’s disease: PPMI cohort analysis. Parkinsonism Relat Disord 2018;51:101104.CrossRefGoogle ScholarPubMed
Pasquini, J, Ceravolo, R, Qamhawi, Z, et al. Progression of tremor in early stages of Parkinson’s disease: a clinical and neuroimaging study. Brain 2018;15:692611.Google Scholar
Dirkx, MF, Zach, H, van Nuland, AJ, et al. Cognitive load amplifies Parkinson’s tremor through excitatory network influences onto the thalamus. Brain 2020;143:14981511.CrossRefGoogle ScholarPubMed
Katzenschlager, R, Sampaio, C, Costa, J, Lees, A. Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev 2003;2002(2):CD003735.Google ScholarPubMed
di Biase, L, Brittain, J-S, Shah, SA, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain 2017;140:19771986.CrossRefGoogle ScholarPubMed
Lenz, FA, Tasker, RR, Kwan, HC, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J Neurosci 1988;8:754764.CrossRefGoogle ScholarPubMed
Hurtado, JM, Gray, CM, Tamas, LB, Sigvardt, KA. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci U S A 1999;96:16741679.CrossRefGoogle ScholarPubMed
Levy, R, Hutchison, WD, Lozano, AM, Dostrovsky, JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 2000;20:77667775.CrossRefGoogle ScholarPubMed
Lenz, FA, Kwan, HC, Martin, RL, et al. Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 1994;117(Pt 3):531543.CrossRefGoogle ScholarPubMed
Hirschmann, J, Schoffelen, JM, Schnitzler, A, van Gerven, MAJ. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin Neurophysiol 2017;128:20292036.CrossRefGoogle ScholarPubMed
Hirschmann, J, Hartmann, CJ, Butz, M, et al. A direct relationship between oscillatory subthalamic nucleus–cortex coupling and rest tremor in Parkinson’s disease. Brain 2013;136:36593670.CrossRefGoogle ScholarPubMed
Cagnan, H, Little, S, Foltynie, T, et al. The nature of tremor circuits in parkinsonian and essential tremor. Brain 2014;137:32233234.CrossRefGoogle ScholarPubMed
Timmermann, L, Gross, J, Dirks, M, et al. The cerebral oscillatory network of parkinsonian resting tremor. Brain 2003;126:199212.CrossRefGoogle ScholarPubMed
Fukuda, M. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. NeuroImage 2004;21:608615.CrossRefGoogle ScholarPubMed
Antonini, A, Moeller, JR, Nakamura, T, et al. The metabolic anatomy of tremor in Parkinson’s disease. Neurology 1998;51:803810.CrossRefGoogle ScholarPubMed
Mure, H, Hirano, S, Tang, CC, et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. NeuroImage 2011;54:12441253.CrossRefGoogle ScholarPubMed
Dirkx, MF, Ouden den, H, Aarts, E, et al. The cerebral network of Parkinson’s tremor: an effective connectivity fMRI study. J Neurosci 2016;36:53625372.CrossRefGoogle ScholarPubMed
Dirkx, MF, Zach, H, Van Nuland, A, et al. Cerebral differences between dopamine-resistant and dopamine-responsive Parkinson’s tremor. Brain 2019;16:197114.Google Scholar
Krack, P, Pollak, P, Limousin, P, Benazzouz, A, Benabid, AL. Stimulation of subthalamic nucleus alleviates tremor in Parkinson’s disease. Lancet 1997;350:1675.CrossRefGoogle ScholarPubMed
Lozano, AM, Dostrovsky, J, Chen, R, Ashby, P. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 2002;1:225231.CrossRefGoogle ScholarPubMed
Milosevic, L, Kalia, SK, Hodaie, M, et al. Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 2018;15:10521014.Google Scholar
Cagnan, H, Pedrosa, D, Little, S, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain 2016;140:132145.CrossRefGoogle ScholarPubMed
Beudel, M, Brown, P. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord 2016;22:S123126.CrossRefGoogle ScholarPubMed
Martínez-Fernández, R, Rodríguez-Rojas, R, Del Álamo, M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol 2018;17:5463.CrossRefGoogle ScholarPubMed
Brittain, J-S, Probert-Smith, P, Aziz, TZ, Brown, P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 2013;23:15.CrossRefGoogle ScholarPubMed
Helmich, RC, Van den Berg, KRE, Panyakaew, P, et al. Cerebello-cortical control of tremor rhythm and amplitude in Parkinson’s disease. Mov Disord 2021;36:17271729.CrossRefGoogle ScholarPubMed
Ni, Z, Pinto, AD, Lang, AE, Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol 2010;68:816824.CrossRefGoogle ScholarPubMed
Brittain, JS, Cagnan, H, Mehta, AR, et al. Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J Neurosci 2015;35:795806.CrossRefGoogle ScholarPubMed
Hirschmann, J, Abbasi, O, Storzer, L, et al. Longitudinal recordings reveal transient increase of alpha/low-beta power in the subthalamic nucleus associated with the onset of parkinsonian rest tremor. Front Neurol 2019;10:V33–38.CrossRefGoogle ScholarPubMed
Lauro, PM, Lee, S, Akbar, U, Asaad, WF. Subthalamic–cortical network reorganization during Parkinson’s tremor. J Neurosci 2021;41:98449858.CrossRefGoogle ScholarPubMed
Deuschl, G, Wilms, H, Krack, P, Würker, M, Heiss, WD. Function of the cerebellum in Parkinsonian rest tremor and Holmes’ tremor. Ann Neurol 1999;46:126128.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Joutsa, J, Shih, LC, Fox, MD. Mapping holmes tremor circuit using the human brain connectome. Ann Neurol 2019;27:327329.Google Scholar
Nieuwhof, F, de Bie, RMA, Praamstra, P, van den Munckhof, P, Helmich, RC. The cerebral tremor circuit in a patient with Holmes tremor. Ann Clin Transl Neurol 2020;7:14531458.CrossRefGoogle Scholar
Gallea, C, Popa, T, Garcia-Lorenzo, D, et al. Orthostatic tremor: a cerebellar pathology? Brain 2016;139:21822197.CrossRefGoogle ScholarPubMed
Benito-León, J, Romero, JP, Louis, ED, et al. Diffusion tensor imaging in orthostatic tremor: a tract‐based spatial statistics study. Ann Clin Transl Neurol 2019;6:22122222.CrossRefGoogle ScholarPubMed
Schöberl, F, Feil, K, Xiong, G, et al. Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance. Brain 2016;140:8397.CrossRefGoogle Scholar
Shaikh, AG, Beylergil, SB, Scorr, L, et al. Dystonia and tremor: a cross-sectional study of the dystonia coalition cohort. Neurology 2021;96:e563e574.CrossRefGoogle ScholarPubMed
Shaikh, AG, Zee, DS, Jinnah, HA. Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both? Mov Disord 2015;30:834842.CrossRefGoogle ScholarPubMed
Sedov, A, Usova, S, Semenova, U, et al. Pallidal activity in cervical dystonia with and without head tremor. Cerebellum 2020;19:409418.CrossRefGoogle ScholarPubMed
Antelmi, E, Di Stasio, F, Rocchi, L, et al. Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor. Parkinsonism Relat Disord 2016;31:2327.CrossRefGoogle ScholarPubMed
Panyakaew, P, Cho, HJ, Lee, SW, Wu, T, Hallett, M. The pathophysiology of dystonic tremors and comparison with essential tremor. J Neurosci 2020;40:93179326.CrossRefGoogle ScholarPubMed
DeSimone, JC, Archer, DB, Vaillancourt, DE, Wagle Shukla, A. Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain 2019;28:863816.Google Scholar
Nieuwhof, F, Toni, I, Dirkx, MF, et al. Cerebello-thalamic activity drives an abnormal motor network into dystonic tremor. Neuroimage Clin 2022;33:102919.CrossRefGoogle ScholarPubMed
Nieuwhof, F, Toni, I, Buijink, AWG, et al. Phase-locked transcranial electrical brain stimulation for tremor suppression in dystonic tremor syndromes. Clin Neurophysiol 2022;140:239250.CrossRefGoogle ScholarPubMed
Tsuboi, T, Wong, JK, Eisinger, RS, et al. Comparative connectivity correlates of dystonic and essential tremor deep brain stimulation. Brain 2021;144:17741786.CrossRefGoogle ScholarPubMed
Zeuner, KE, Deuschl, G. An update on tremors. Curr Opin Neurol 2012;25:475482.CrossRefGoogle ScholarPubMed
Shaikh, AG, Hong, S, Liao, K, et al. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain 2010;133:923940.CrossRefGoogle Scholar

References

Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018;33(1):7587.CrossRefGoogle ScholarPubMed
Hopfner, F, Deuschl, G. Managing essential tremor. Neurotherapeutics 2020;17(4):16031621.CrossRefGoogle ScholarPubMed
van de Wardt, J, van der Stouwe, AMM, Dirkx, M, et al. Systematic clinical approach for diagnosing upper limb tremor. J Neurol Neurosurg Psychiatry 2020;91(8):822830.CrossRefGoogle ScholarPubMed
Schneider, SA, Deuschl, G. Medical and surgical treatment of tremors. Neurol Clin 2015;33(1):5775.CrossRefGoogle ScholarPubMed
Martino, D, Espay, AJ, Fasano, A, Morgante, F, eds. Rhythmical involuntary movements (tremor and tremor-like conditions). In: Disorders of Movement. New York: Springer; 2016: 207263.CrossRefGoogle Scholar
O’Connor, RJ, Kini, MU. Non-pharmacological and non-surgical interventions for tremor: a systematic review. Parkinsonism Relat Disord 2011;17(7):509515.CrossRefGoogle ScholarPubMed
Pal, PK. Guidelines for management of essential tremor. Ann Indian Acad Neurol 2011;14(Suppl 1):S2528.CrossRefGoogle ScholarPubMed
Winkler, GF, Young, RR. The control of essential tremor by propranolol. Trans Am Neurol Assoc 1971;96:6668.Google ScholarPubMed
O’Brien, MD, Upton, AR, Toseland, PA. Benign familial tremor treated with primidone. Br Med J (Clin Res Ed) 1981;282(6259):178180.CrossRefGoogle ScholarPubMed
Ondo, WG. Current and emerging treatments of essential tremor. Neurol Clin 2020;38(2):309323.CrossRefGoogle ScholarPubMed
Mittal, SO, Lenka, A, Jankovic, J. Botulinum toxin for the treatment of tremor. Parkinsonism Relat Disord 2019;63:3141.CrossRefGoogle ScholarPubMed
Mittal, SO, Machado, D, Richardson, D, Dubey, D, Jabbari, B. Botulinum toxin in essential hand tremor – a randomized double-blind placebo-controlled study with customized injection approach. Parkinsonism Relat Disord 2018;56:6569.CrossRefGoogle ScholarPubMed
Elble, RJ, Shih, L, Cozzens, JW. Surgical treatments for essential tremor. Expert Rev Neurother 2018;18(4):303321.CrossRefGoogle ScholarPubMed
Ferreira, JJ, Mestre, TA, Lyons, KE, et al. MDS evidence-based review of treatments for essential tremor. Mov Disord 2019;34(7):950958.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Elble, RJ, Louis, ED, et al. Evidence-based guideline update: treatment of essential tremor: report of the quality standards subcommittee of the American Academy of Neurology. Neurology 2011;77(19):17521755.CrossRefGoogle Scholar
Sharma, S, Pandey, S. Treatment of essential tremor: current status. Postgrad Med J 2020;96(1132):8493.CrossRefGoogle ScholarPubMed
Dietrichson, P, Espen, E. Primidone and propranolol in essential tremor: a study based on quantitative tremor recording and plasma anticonvulsant levels. Acta Neurol Scand 1987;75(5):332340.CrossRefGoogle ScholarPubMed
Koller, WC. Dose–response relationship of propranolol in the treatment of essential tremor. Arch Neurol 1986;43(1):4243.CrossRefGoogle ScholarPubMed
Bushara, KO, Goldstein, SR, Grimes, GJ, Jr., Burstein, AH, Hallett, M. Pilot trial of 1-octanol in essential tremor. Neurology 2004;62(1):122124.CrossRefGoogle ScholarPubMed
Papapetropoulos, S, Lee, MS, Boyer, S, Newbold, EJ. A phase 2, randomized, double-blind, placebo-controlled trial of CX-8998, a selective modulator of the T-type calcium channel in inadequately treated moderate to severe essential tremor: T-CALM study design and methodology for efficacy endpoint and digital biomarker selection. Front Neurol 2019;10:597.CrossRefGoogle ScholarPubMed
Jankovic, J, Schwartz, K, Clemence, W, Aswad, A, Mordaunt, J. A randomized, double-blind, placebo-controlled study to evaluate botulinum toxin type A in essential hand tremor. Mov Disord 1996;11(3):250256.CrossRefGoogle ScholarPubMed
Brin, MF, Lyons, KE, Doucette, J, et al. A randomized, double masked, controlled trial of botulinum toxin type A in essential hand tremor. Neurology 2001;56(11):15231528.CrossRefGoogle ScholarPubMed
Holslag, JAH, Neef, N, Beudel, M, et al. Deep brain stimulation for essential tremor: a comparison of targets. World Neurosurg 2018;110:e580e584.CrossRefGoogle ScholarPubMed
Ohye, C, Higuchi, Y, Shibazaki, T, et al. Gamma knife thalamotomy for Parkinson disease and essential tremor: a prospective multicenter study. Neurosurgery 2012;70(3):526535; discussion 535–526.CrossRefGoogle ScholarPubMed
Siderowf, A, Gollump, SM, Stern, MB, Baltuch, GH, Riina, HA. Emergence of complex, involuntary movements after gamma knife radiosurgery for essential tremor. Mov Disord 2001;16(5):965967.CrossRefGoogle ScholarPubMed
Rohani, M, Fasano, A. Focused ultrasound for essential tremor: review of the evidence and discussion of current hurdles. Tremor Other Hyperkinet Mov (N Y) 2017;7:462.CrossRefGoogle ScholarPubMed
Barkmeier-Kraemer, J, Lato, A, Wiley, K. Development of a speech treatment program for a client with essential vocal tremor. Semin Speech Lang 2011;32(1):4357.CrossRefGoogle ScholarPubMed
Berardelli, I, Pasquini, M, Roselli, V, et al. Cognitive behavioral therapy in movement disorders: a review. Mov Disord Clin Pract 2015;2(2):107115.CrossRefGoogle ScholarPubMed
Marjama-Lyons, J, Koller, W. Tremor-predominant Parkinson’s disease. Approaches to treatment. Drugs Aging 2000;16(4):273278.CrossRefGoogle ScholarPubMed
Zach, H, Dirkx, MF, Roth, D, et al. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease. Neurology 2020;95(11):e1461e1470.CrossRefGoogle ScholarPubMed
Sahoo, LK, Holla, VV, Batra, D, et al. Comparison of effectiveness of trihexyphenidyl and levodopa on motor symptoms in Parkinson’s disease. J Neural Transm (Vienna) 2020;127(12):15991606.CrossRefGoogle ScholarPubMed
Mittal, SO, Machado, D, Richardson, D, Dubey, D, Jabbari, B. Botulinum toxin in Parkinson disease tremor: a randomized, double-blind, placebo-controlled study with a customized injection approach. Mayo Clin Proc 2017;92(9):13591367.CrossRefGoogle ScholarPubMed
Lee, DJ, Dallapiazza, RF, De Vloo, P, Lozano, AM. Current surgical treatments for Parkinson’s disease and potential therapeutic targets. Neural Regen Res 2018;13(8):13421345.CrossRefGoogle ScholarPubMed
Fasano, A, Bove, F, Lang, AE. The treatment of dystonic tremor: a systematic review. J Neurol Neurosurg Psychiatry 2014;85(7):759769.CrossRefGoogle ScholarPubMed
Hai, C, Yu-ping, W, Hua, W, Ying, S. Advances in primary writing tremor. Parkinsonism Relat Disord 2010;16(9):561565.CrossRefGoogle ScholarPubMed
Lyons, M, Shneyder, N, Evidente, V. Primary writing tremor responds to unilateral thalamic deep brain stimulation. Turk Neurosurg 2013;23(1):122124.Google ScholarPubMed
Espay, AJ, Hung, SW, Sanger, TD, et al. A writing device improves writing in primary writing tremor. Neurology 2005;64(9):16481650.CrossRefGoogle ScholarPubMed
Benito-Leon, J, Domingo-Santos, A. Orthostatic tremor: an update on a rare entity. Tremor Other Hyperkinet Mov (N Y) 2016;6:411.CrossRefGoogle ScholarPubMed
Wadhwa, A, Schaefer, SM. Successful treatment of primary orthostatic tremor using perampanel. Tremor Other Hyperkinet Mov (N Y) 2019;9.Google Scholar
Evidente, VGH, Baker, ZJ, Evidente, MH, et al. Orthostatic tremor is responsive to bilateral thalamic deep brain stimulation: report of two cases performed asleep. Tremor Other Hyperkinet Mov (N Y) 2018;8:566.CrossRefGoogle ScholarPubMed
Schniepp, R, Jakl, V, Wuehr, M, et al. Treatment with 4-aminopyridine improves upper limb tremor of a patient with multiple sclerosis: a video case report. Mult Scler 2013;19(4):506508.CrossRefGoogle ScholarPubMed
Wang, KL, Wong, JK, Eisinger, RS, et al. Therapeutic advances in the treatment of holmes tremor: systematic review. Neuromodulation 2022;25(6):796803.CrossRefGoogle ScholarPubMed
Pandurangi, AA, Nayak, RB, Bhogale, GS, et al. Clonazepam in the treatment of essential palatal tremors. Indian J Pharmacol 2012;44(4):528530.Google ScholarPubMed
Shaikh, AG, Hong, S, Liao, K, et al. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain 2010;133(3):923940.CrossRefGoogle Scholar
Slengerik-Hansen, J, Ovesen, T. Botulinum toxin treatment of objective tinnitus because of essential palatal tremor: a systematic review. Otol Neurotol 2016;37(7):820828.CrossRefGoogle ScholarPubMed
Pal, PK, Lakshmi, PS, Nirmala, M. Efficacy and complication of botulinum toxin injection in palatal myoclonus: experience from a patient. Mov Disord 2007;22(10):14841486.CrossRefGoogle ScholarPubMed
Ruzicka, E, Jech, R, Zarubova, K, Roth, J, Urgosik, D. VIM thalamic stimulation for tremor in a patient with IgM paraproteinaemic demyelinating neuropathy. Mov Disord 2003;18(10):11921195.CrossRefGoogle Scholar
Breit, S, Wachter, T, Schols, L, et al. Effective thalamic deep brain stimulation for neuropathic tremor in a patient with severe demyelinating neuropathy. J Neurol Neurosurg Psychiatry 2009;80(2):235236.CrossRefGoogle Scholar
Rodrigues, B, Patil, PG, Chou, KL. Thalamic deep brain stimulation for drug-induced tremor. Parkinsonism Relat Disord 2015;21(11):13691370.CrossRefGoogle ScholarPubMed
Ricciardi, L, Edwards, MJ. Treatment of functional (psychogenic) movement disorders. Neurotherapeutics 2014;11(1):201207.CrossRefGoogle ScholarPubMed
Pothalil, D, Vingerhoets, FJG. Tremor treatment. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 501511.Google Scholar

References

Marsden, CD, Hallett, M, Fahn, S. The nosology and pathophysiology of myoclonus. In: Marsden, CD, Fahn, S, eds. Movement Disorders. London: Butterworths; 1983: 196248.Google Scholar
Caviness, JN, Alving, LI, Maraganore, DM, et al. The incidence and prevalence of myoclonus in Olmsted County, Minnesota. Mayo Clin Proc 1999;74(6):565569.CrossRefGoogle ScholarPubMed
Caviness, JN. Treatment of myoclonus. Neurotherapeutics 2014;11(1):188200.CrossRefGoogle ScholarPubMed
Gerschlager, W, Brown, P. Myoclonus. Curr Opin Neurol 2009;22(4):414418.CrossRefGoogle ScholarPubMed
Borg, M. Symptomatic myoclonus. Neurophysiol Clin 2006;36(5–6):309318.CrossRefGoogle ScholarPubMed
Kinugawa, K, Vidailhet, M, Clot, F, et al. Myoclonus–dystonia: an update. Mov Disord 2009;24(4):479489.CrossRefGoogle ScholarPubMed
Menozzi, E, Balint, B, Latorre, A, et al. Twenty years on: myoclonus–dystonia and ε-sarcoglycan – neurodevelopment, channel, and signaling dysfunction. Mov Disord 2019;34(11):15881601.CrossRefGoogle ScholarPubMed
Binelli, S, Agazzi, P, Canafoglia, L, et al. Myoclonus in Creutzfeldt–Jakob disease: polygraphic and video-electroencephalography assessment of 109 patients. Mov Disord 2010;25(16):28182827.CrossRefGoogle ScholarPubMed
Beagle, AJ, Darwish, SM, Ranasinghe, KG, et al. Relative incidence of seizures and myoclonus in Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia. J Alzheimers Dis 2017;60(1):211223.CrossRefGoogle ScholarPubMed
Caviness, JN. Myoclonus and neurodegenerative disease – what’s in a name? Parkinsonism Relat Disord 2003;9(4):185192.CrossRefGoogle Scholar
Hassan, A, van Gerpen, JA. Orthostatic tremor and orthostatic myoclonus: weight-bearing hyperkinetic disorders: a systematic review, new insights, and unresolved questions. Tremor Other Hyperkinet Mov (N Y) 2016;18(6):417.CrossRefGoogle Scholar
Oh, SY, Kim, JS, Dieterich, M. Update on opsoclonus–myoclonus syndrome in adults. J Neurol 2019;266(6):15411548.CrossRefGoogle ScholarPubMed
Crisp, SJ, Balint, B, Vincent, A. Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors. Curr Opin Neurol 2017;30(3):310316.CrossRefGoogle ScholarPubMed
Rubboli, G, Tassinari, CA. Negative myoclonus. An overview of its clinical features, pathophysiological mechanisms, and management. Neurophysiol Clin 2006;36(5–6):337343.CrossRefGoogle ScholarPubMed
Kim, JB, Jung, JM, Park, MH, Lee, EJ, Kwon, DY. Negative myoclonus induced by gabapentin and pregabalin: a case series and systematic literature review. J Neurol Sci 2017;15;382:3639.CrossRefGoogle Scholar
Janssen, S, Bloem, BR, van de Warrenburg, BP. The clinical heterogeneity of drug-induced myoclonus: an illustrated review. J Neurol 2017;264(8):15591566.CrossRefGoogle ScholarPubMed
Deuschl, G, Mischke, G, Schenck, E, Schulte-Monting, J, Lucking, CH. Symptomatic and essential rhythmic palatal myoclonus. Brain 1990;113(Pt 6):16451672.CrossRefGoogle ScholarPubMed
Pena, AB, Caviness, JN. Physiology-based treatment of myoclonus. Neurotherapeutics 2020;17(4):16651680.CrossRefGoogle ScholarPubMed
Brown, P, Day, BL, Rothwell, JC, Thompson, PD, Marsden, CD. Intrahemispheric and interhemispheric spread of cerebral cortical myoclonic activity and its relevance to epilepsy. Brain 1991;114(Pt 5):23332351.CrossRefGoogle ScholarPubMed
Guerrini, R, Bonanni, P, Parmeggiani, L, Hallett, M, Oguni, H. Pathophysiology of myoclonic epilepsies. Adv Neurol 2005;95:2346.Google ScholarPubMed
Atmaca, MM, Bebek, N, Kocasoy-Orhan, E, Gürses, C. Epilepsia partialis continua: correlation of semiology, outcome and electrophysiologic features. Clin Neurol Neurosurg 2018;171:143150.CrossRefGoogle ScholarPubMed
Tassinari, CA, Rubboli, G, Shibasaki, H. Neurophysiology of positive and negative myoclonus. Electroencephalogr Clin Neurophysiol 1998;107:181195.CrossRefGoogle ScholarPubMed
Deppe, M, Kellinghaus, C, Duning, T, et al. Nerve fiber impairment of anterior thalamocortical circuitry in juvenile myoclonic epilepsy. Neurology 2008;71(24):19811985.CrossRefGoogle ScholarPubMed
Baykan, B, Wolf, P. Juvenile myoclonic epilepsy as a spectrum disorder: a focused review. Seizure 2017;49:3641.CrossRefGoogle ScholarPubMed
Bakker, MJ, van Dijk, JG, van den Maagdenberg, AM, Tijssen, MA. Startle syndromes. Lancet Neurol 2006;5(6):513524.CrossRefGoogle ScholarPubMed
van der Salm, SM, Erro, R, Cordivari, C, et al. Propriospinal myoclonus: clinical reappraisal and review of literature. Neurology 2014;83(20):18621870.CrossRefGoogle ScholarPubMed
van der Salm, SM, Koelman, JH, Henneke, S, et al: Axial jerks: a clinical spectrum ranging from propriospinal to psychogenic myoclonus. J Neurol 2010;257:13491355.CrossRefGoogle ScholarPubMed
Pearce, JM. Palatal myoclonus (syn. palatal tremor). Eur Neurol 2008;60(6):312315.CrossRefGoogle ScholarPubMed
Pirio Richardson, S, Mari, Z, Matsuhashi, M, Hallett, M. Psychogenic palatal tremor. Mov Disord 2006;21:274276.CrossRefGoogle ScholarPubMed
Termsarasab, P, Thammongkolchai, T, Frucht, SJ. Spinal-generated movement disorders: a clinical review. J Clin Mov Disord 2015;2:18. Erratum in J Clin Mov Disord 2016;3:18.CrossRefGoogle ScholarPubMed
Chaudhry, N, Srivastava, A, Joshi, L. Hemifacial spasm: the past, present and future. J Neurol Sci 2015;356(1–2):2731.CrossRefGoogle ScholarPubMed
Ikeda, A, Kakigi, R, Funai, N, et al. Cortical tremor: a variant of cortical reflex myoclonus. Neurology 1990;40(10):15611565.CrossRefGoogle ScholarPubMed
Zutt, R, van Egmond, ME, Elting, JW, et al. A novel diagnostic approach to patients with myoclonus. Nat Rev Neurol 2015;11(12):687697.CrossRefGoogle ScholarPubMed
Bureau, M, Tassinari, CA. Epilepsy with myoclonic absences. Brain Dev 2005;27(3):178184.CrossRefGoogle ScholarPubMed
Kang, SY, Sohn, YH. Electromyography patterns of propriospinal myoclonus can be mimicked voluntarily. Mov Disord 2006;21(8):12411244.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Hallett, M, Jankovic, J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019;127:3244.CrossRefGoogle ScholarPubMed
Ferlazzo, E, Trenite, DK, Haan, GJ, et al. Update on pharmacological treatment of progressive myoclonus epilepsies. Curr Pharm Des 2017;23(37):56625666.CrossRefGoogle ScholarPubMed
Mills, K, Mari, Z. An update and review of the treatment of myoclonus. Curr Neurol Neurosci Rep 2015;15(1):512.CrossRefGoogle ScholarPubMed
Mantoan, L, Walker, M. Treatment options in juvenile myoclonic epilepsy. Curr Treat Options Neurol 2011;13(4):355370.CrossRefGoogle ScholarPubMed
Wang, X, Yu, X. Deep brain stimulation for myoclonus dystonia syndrome: a meta-analysis with individual patient data. Neurosurg Rev 2021;44(1):451462.CrossRefGoogle ScholarPubMed
Cuellar, NG, Whisenant, D, Stanton, MP. Hypnic jerks: a scoping literature review. Sleep Med Clin 2015;10(3):393401, xvi.CrossRefGoogle ScholarPubMed
Sinclair, CF, Gurey, LE, Blitzer, A. Palatal myoclonus: algorithm for management with botulinum toxin based on clinical disease characteristics. Laryngoscope 2014;124(5):11641169.CrossRefGoogle ScholarPubMed
Duarte, GS, Rodrigues, FB, Castelão, M, et al. Botulinum toxin type A therapy for hemifacial spasm. Cochrane Database Syst Rev. 2020;11(11):CD004899.Google ScholarPubMed
Sindou, M, Mercier, P. Microvascular decompression for hemifacial spasm: outcome on spasm and complications. A review. Neurochirurgie 2018;64(2):106116.CrossRefGoogle ScholarPubMed
Steger, M, Schneemann, M, Fox, M. Systemic review: the pathogenesis and pharmacological treatment of hiccups. Aliment Pharmacol Ther 2015;42(9):10371050.CrossRefGoogle ScholarPubMed
Zutt, R, Elting, JW, Tijssen, MAJ. Myoclonus. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 513533.Google Scholar

References

Albin, RL, Young, AB, Penney, JB. The functional anatomy of basal ganglia. Trends Neurosci 1989;12:366375.CrossRefGoogle ScholarPubMed
Obeso, JA, Rodríguez-Oroz, MC, Benitez-Temino, B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 2008;23(Suppl 3):548559.CrossRefGoogle ScholarPubMed
Burgunder, JM. Recent advances in the management of choreas. Ther Adv Neurol Disord 2013;6:171127.CrossRefGoogle ScholarPubMed
Walker, RH. Differential diagnosis of chorea. Curr Neurol Neurosci Rep 2011;11:385395.CrossRefGoogle ScholarPubMed
Pringsheim, T, Wiltshire, K, Day, L, et al. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 2012;27:10831091.CrossRefGoogle ScholarPubMed
The Huntington’s Disease Colaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;2:971983.Google Scholar
Langbehn, DR, Hayden, MR, Paulsen, JS; PREDICT-HD Investigators of the Huntington Study Group. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 2010;153B:397408.CrossRefGoogle ScholarPubMed
Semaka, A, Collins, JA, Hayden, MR. Unstable familial transmissions of Huntington disease alleles with 27–35 CAG repeats (intermediate alleles). Am J Med Genet B Neuropsychiatr Genet 2010;153B:314320.CrossRefGoogle ScholarPubMed
Andrew, SE, Goldberg, YP, Kremer, B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nature Genet 1993;4:398403.CrossRefGoogle ScholarPubMed
Zeitlin, S, Liu, JP, Chapman, DL, Papaioannou, VE, Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 1995;11:155163.CrossRefGoogle ScholarPubMed
Zuccato, C, Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009;5:311322.CrossRefGoogle ScholarPubMed
Borrell-Pagès, M, Zala, D, Humbert, S, Saudou, F. Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 2006;63:26422660.CrossRefGoogle ScholarPubMed
Gil, JM, Rego, AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 2008;27:28032820.CrossRefGoogle ScholarPubMed
Lehman, NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol 2009;118:329347.CrossRefGoogle ScholarPubMed
Saudou, F, Finkbeiner, S, Devys, D, Greenberg, ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998;95:5566.CrossRefGoogle Scholar
Vonsattel, JP, Meyers, RH, Stevens, TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol and Exp Neurol 1985;44:559577.CrossRefGoogle ScholarPubMed
Dash, D, Mestre, TA. Therapeutic update on Huntington’s disease: symptomatic treatments and emerging disease-modifying therapies. Neurotherapeutics 2020;17(4):16451659.CrossRefGoogle ScholarPubMed
Tabrizi, SJ, Leavitt, BR, Landwehrmeyer, GB, et al. Targeting huntingtin expression in patients with Huntington’s disease. N Engl J Med 2019;380(24):23072316.CrossRefGoogle ScholarPubMed
Paulsen, JS, Ready, RE, Hamilton, JM, et al. Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 2001;71:310314.CrossRefGoogle ScholarPubMed
Jensen, P, Fenger, K, Bolwig, T, Sørensen, SA. Crime in Huntington’s disease: a study of registered offences among patients, relatives, and controls. J Neurol Neurosurg Psychiatry 1998;65:467471.CrossRefGoogle ScholarPubMed
Paulsen, JS.Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 2011;11:474483.CrossRefGoogle ScholarPubMed
Bilney, B, Morris, ME, Perry, A. Effectiveness of physiotherapy, occupational therapy, and speech pathology for people with Huntington’s disease: a systematic review. Neurorehabil Neural Repair 2003;17:1224.CrossRefGoogle ScholarPubMed
Trejo, A, Boll, MC, Alonso, ME, et al. Use of oral nutritional supplements in patients with Huntington’s disease. Nutrition 2005;21:889894.CrossRefGoogle ScholarPubMed
Rasmussen, A, Macias, R, Yescas, P, et al. Huntington disease in children: genotype–phenotype correlation. Neuropediatrics 2000;31:190194.CrossRefGoogle ScholarPubMed
Ribaï, P, Nguyen, K, Hahn-Barma, V, et al. Psychiatric and cognitive difficulties as indicators of juvenile Huntington disease onset in 29 patients. Arch Neurol 2007;64:813819.CrossRefGoogle ScholarPubMed
Wild, EJ, Mudanohwo, EE, Sweeney, MG, et al. Huntington’s disease phenocopies are clinically and genetically heterogeneous Mov Disord 2008;23:716720.CrossRefGoogle ScholarPubMed
Hensman Moss, DJ, Poulter, M, Beck, J, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 2014;82(4):292299.CrossRefGoogle ScholarPubMed
Schneider, SA, van de Warrenburg, BP, Hughes, TD, et al. Phenotypic homogeneity of the Huntington disease-like presentation in a SCA17 family. Neurology 2006;67:17011703.CrossRefGoogle Scholar
Tsuji, S. Dentatorubral–pallidoluysian atrophy: clinical aspects and molecular genetics. Adv Neurol 2002;89:231239.Google ScholarPubMed
Wardle, M, Morris, H, Robertson, N. Clinical and genetic characteristics of non-Asian dentatorubral–pallidoluysian atrophy: a systematic review. Mov Disord 2009;24:16361640.CrossRefGoogle ScholarPubMed
Rubio, JP, Danek, A, Stone, C, et al. Chorea–acanthocytosis: genetic linkage to chromosome 9q21. Am J Hum Genet 1997;61:899908.CrossRefGoogle ScholarPubMed
Danek, A, Rubio, JP, Rampoldi, L, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol 2001;50:755764.CrossRefGoogle ScholarPubMed
Curtis, AR, Fey, C, Morris, CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001;28:350354.CrossRefGoogle Scholar
Filla, A, De Michele, G, Coppola, G, et al. Accuracy of clinical diagnostic criteria for Friedreich’s ataxia. Mov Disord 2000;15:12551258.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Bhidayasiri, R, Perlman, SL, Pulst, SM, Geschwind, DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol 2005;62:18651869.CrossRefGoogle ScholarPubMed
Hartig, MB, Prokisch, H, Meitinger, T, Klopstock, T. Pantothenate kinase-associated neurodegeneration. Curr Drug Targets 2012;13:11821189.CrossRefGoogle ScholarPubMed
Rosencrantz, R., Schilsky, M. Wilson disease: pathogenesis and clinical considerations in diagnosis and treatment. Semin Liver Dis 2011;31:245259.CrossRefGoogle ScholarPubMed
Perlman, S, Becker-Catania, S, Gatti, RA. Ataxia–telangiectasia: diagnosis and treatment. Semin Pediatr Neurol 2003;10:173182.CrossRefGoogle ScholarPubMed
Ber, I, Brice, A, Durr, A. New autosomal recessive cerebellar ataxias with oculomotor apraxia. Curr Neurol Neurosci Rep 2005;5:411417.CrossRefGoogle ScholarPubMed
Kleiner-Fisman, G. Benign hereditary chorea. Handb Clin Neurol 2011;100:199212.CrossRefGoogle ScholarPubMed
Unterberger, I, Trinka, E. Diagnosis and treatment of paroxysmal dyskinesias revisited. Ther Adv Neurol Disord 2008;1:411.CrossRefGoogle ScholarPubMed
Erro, R, Bhatia, KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry 2019;90(2):227234.CrossRefGoogle ScholarPubMed
Carecchio, M, Mencacci, NE, Iodice, A, et al. ADCY5-related movement disorders: frequency, disease course and phenotypic variability in a cohort of pediatric patients. Parkinsonism Relat Disord 2017;41:37.CrossRefGoogle Scholar
Mencacci, NE, Kamsteeg, EJ, Nakashima, K, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet 2016;98(4):763771.CrossRefGoogle ScholarPubMed
Walker, KG. An update on the treatment of Sydenham’s chorea: the evidence for established and evolving interventions. Ther Adv Neurol Disord 2010;3:301309.CrossRefGoogle ScholarPubMed
Church, AJ, Cardoso, F, Dale, RC, et al. Anti-basal ganglia antibodies in acute and persistent Sydenham’s chorea. Neurology 2002:59:227231.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J. Movement disorders in autoimmune diseases. Mov Disord 2012;27:935946.CrossRefGoogle ScholarPubMed
Gövert, F, Leypoldt, F, Junker, R, et al. Antibody-related movement disorders – a comprehensive review of phenotype–autoantibody correlations and a guide to testing. Neurol Res Pract 2020;2:6.CrossRefGoogle Scholar
Tibben, A. Predictive testing for Huntington’s disease. Brain Res Bull 2007;30:165171.CrossRefGoogle Scholar
International Huntington Association (IHA) and the World Federation of Neurology (WFN) Research Group on Huntington’s Chorea. Guidelines for the molecular genetics predictive test in Huntington’s disease. Neurology 1994;44:15331536.CrossRefGoogle Scholar
Van Rij, MC, De Rademaeker, M, Moutou, C, et al. Preimplantation genetic diagnosis (PGD) for Huntington’s disease: the experience of three European centres. Eur J Hum Genet 2012;20:368375.CrossRefGoogle ScholarPubMed
Bonelli, RM, Wenning, GK Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm 2006;12:27012720.CrossRefGoogle ScholarPubMed
Mestre, T, Ferreira, J, Coelho, MM, et al. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev 2009;(3):CD006456.CrossRefGoogle Scholar
Burgunder, JM, Guttman, M, Perlman, S, et al. An international survey-based algorithm for the pharmacological treatment of chorea in Huntington’s disease. PLoS Curr 2011;3:RRN1260.CrossRefGoogle ScholarPubMed
Biolsi, B, Cif, L, Fertit, HE, et al. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg 2008;109:130132.CrossRefGoogle ScholarPubMed
Roth, J. Chorea. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 535556.Google Scholar
de Letter, M-ACJ, Wolters, ECh. Movement disorders in psychiatry. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press (Publ) 2014:691704.Google Scholar

References

Dewey, RB, Jankovic, J. Hemiballism–hemichorea: clinical and pharmacologic findings in 21 patients. Arch Neurol 1989;46:862867.CrossRefGoogle ScholarPubMed
Ghika-Schmid, F, Ghika, J, Regli, F, et al. Hyperkinetic movement disorders during and after acute stroke: the Lausanne Stroke Registry. J Neurol Sci 1997;146:109116.CrossRefGoogle ScholarPubMed
Bedwell, SF. Some observations on hemiballismus. Neurology 1960;10:619619.CrossRefGoogle ScholarPubMed
Goldstein, L, Djaldetti, R, Benninger, F. Anti-Yo, chorea and hemiballismus: a case report. J Clin Neurosci 2017;42:113114.CrossRefGoogle ScholarPubMed
Chen, C, Lee, S, Wu, T, et al. Hemiballism after subthalamotomy in patients with Parkinson’s disease: report of 2 cases. Mov Disord 2002;17:13671371.CrossRefGoogle ScholarPubMed
Vidaković, A, Dragasević, N, Kostić, VS. Hemiballism: report of 25 cases. J Neurology Neurosurg Psychiatry 1994;57:945.CrossRefGoogle ScholarPubMed
Posturna, RB, Lang, AE. Hemiballism: revisiting a classic disorder. Lancet Neurol 2003;2:661668.CrossRefGoogle Scholar
Laganiere, S, Boes, AD, Fox, MD. Network localization of hemichorea-hemiballismus. Neurology 2016;86:21872195.CrossRefGoogle ScholarPubMed
Marsden, CD, Obeso, JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 1994;117:877897.CrossRefGoogle ScholarPubMed
Vitek, JL, Chockkan, V, Zhang, J, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 1999;46:2235.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Suarez, JI, Metman, LV, Reich, SG, et al. Pallidotomy for hemiballismus: efficacy and characteristics of neuronal activity. Ann Neurol 1997;42:807811.CrossRefGoogle ScholarPubMed
Brown, P, Eusebio, A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord 2008;23:1220.CrossRefGoogle ScholarPubMed
Obeso, JA. Editor’s note: Pathophysiology of the basal ganglia grows in understanding and complexity but essential unknown remains. Mov Disord 2019;34:11281129.CrossRefGoogle ScholarPubMed
Lehéricy, S, Grand, S, Pollak, P, et al. Clinical characteristics and topography of lesions in movement disorders due to thalamic lesions. Neurology 2001;57:10551066.CrossRefGoogle ScholarPubMed
Alonso, JV, del Pozo, FJF, Simón, JC, et al. Limb-shaking TIA presenting as hemichorea–hemiballismus: TIA chameleons diagnostic challenge in the emergency department. J Stroke Cerebrovasc Dis 2015;24:e327e331.CrossRefGoogle ScholarPubMed
Krauss, JK, Mundinger, F. Functional stereotactic surgery for hemiballism. J Neurosurg 1996;85:278286.CrossRefGoogle ScholarPubMed
Vloo, PD, Breen, DP, Milosevic, L, et al. Successful pallidotomy for post-hyperglycemic hemichorea–ballism. Parkinsonism Relat Disord 2018;61:228230.CrossRefGoogle ScholarPubMed
Ganapa, SV, Ramani, MD, Ebunlomo, OO, et al. Case report and literature review of treatment of persistent hemiballism with deep brain stimulation of the globus pallidus internus (GPi-DBS). World Neurosurg 2019;132:368370.CrossRefGoogle Scholar
Waldvogel, D. Ballism. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 557560.Google Scholar

References

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Washington: American Psychiatric Association; 2013.Google Scholar
Black, KJ, Kim, S, Yang, NY, et al. Course of tic disorders over the lifespan. Curr Dev Disord Rep 2021;8:121–32.CrossRefGoogle ScholarPubMed
Vinner, E, Belelovsky, K, Bar-Gad, I. Generating acute and chronic experimental models of motor tic expression in rats. J Vis Exp 2021;171.Google Scholar
Tremblay, L, Worbe, Y, Thobois, S, Sgambato-Faure, V, Féger, J. Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord 2015;30:11551170.CrossRefGoogle ScholarPubMed
Ganos, C. Tics and Tourette’s: update on pathophysiology and tic control. Curr Opin Neurol 2016;29:513518.CrossRefGoogle ScholarPubMed
Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357381.CrossRefGoogle ScholarPubMed
Kalanithi, PS, Zheng, W, Kataoka, Y, et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 2005;102:1330713312.CrossRefGoogle ScholarPubMed
Kataoka, Y, Kalanithi, PS, Grantz, H, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 2010;518:277291.CrossRefGoogle ScholarPubMed
Marín, O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 2012;13:107120.CrossRefGoogle ScholarPubMed
Heise, KF, Steven, B, Liuzzi, G, et al. Altered modulation of intracortical excitability during movement preparation in Gilles de la Tourette syndrome. Brain 2010;133:580590.CrossRefGoogle ScholarPubMed
Minzer, K, Lee, O, Hong, JJ, Singer, HS. Increased prefrontal D2 protein in Tourette syndrome: a postmortem analysis of frontal cortex and striatum. J Neurol Sci 2004;219:5561.CrossRefGoogle ScholarPubMed
Worbe, Y, Lehericy, S, Hartmann, A. Neuroimaging of tic genesis: present status and future perspectives. Mov Disord 2015;30:11791183.CrossRefGoogle ScholarPubMed
Martino, D, Ganos, C, Worbe, Y. Neuroimaging applications in Tourette’s syndrome. Int Rev Neurobiol 2018;143:65108.CrossRefGoogle ScholarPubMed
Peterson, BS, Staib, L, Scahill, L, et al. Regional brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry 2001;58:427440.CrossRefGoogle ScholarPubMed
Bloch, MH, Leckman, JF, Zhu, H, et al. Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology 2005;65:12531258.CrossRefGoogle ScholarPubMed
Neuner, I, Kupriyanova, Y, Stöcker, T, et al. White-matter abnormalities in Tourette syndrome extend beyond motor pathways. Neuroimage 2010;51:11841193.CrossRefGoogle ScholarPubMed
Bäumer, T, Thomalla, G, Kroeger, J, et al. Interhemispheric motor networks are abnormal in patients with Gilles de la Tourette syndrome. Mov Disord 2010;25:28282837.CrossRefGoogle ScholarPubMed
Wang, Z, Maia, TV, Marsh, R, et al. The neural circuits that generate tics in Tourette’s syndrome. Am J Psychiatry 2011;168:13261337.CrossRefGoogle ScholarPubMed
Mazzone, L, Yu, S, Blair, C, et al. An fMRI study of frontostriatal circuits during the inhibition of eye blinking in persons with Tourette syndrome. Am J Psychiatry 2010;167:341349.CrossRefGoogle ScholarPubMed
Maia, TV, Conceição, VA. Dopaminergic disturbances in Tourette syndrome: an integrative account. Biol Psychiatry 2018;84:332344.CrossRefGoogle ScholarPubMed
Augustine, F, Singer, HS. Merging the pathophysiology and pharmacotherapy of tics. Tremor Other Hyperkinet Mov 2019;8:595.CrossRefGoogle ScholarPubMed
Swain, JE, Scahill, L, Lombroso, PJ, et al. Tourette syndrome and tic disorders: a decade of progress. J Am Acad Child Adolesc Psychiatry 2007;46:947968.CrossRefGoogle ScholarPubMed
Martino, D, Johnson, I, Leckman, JF. What does immunology have to do with normal brain development and the pathophysiology underlying Tourette syndrome and related neuropsychiatric disorders? Front Neurol 2020;11:567407.CrossRefGoogle Scholar
Gilbert, DL. Inflammation in tic disorders and obsessive-compulsive disorder: are PANS and PANDAS a path forward? J Child Neurol 2019;34:598611.CrossRefGoogle ScholarPubMed
Pauls, DL, Raymond, CL, Stevenson, JM, et al. A family study of Gilles de la Tourette syndrome. Am J Hum Genet 1991;48:154163.Google ScholarPubMed
Paschou, P. The genetic basis of Gilles de la Tourette Syndrome. Neurosci Biobehav Rev 2013;37:10261039.CrossRefGoogle ScholarPubMed
Ercan-Sencicek, AG, Stillman, AA, Ghosh, AK, et al. l-Histidine decarboxylase and Tourette’s syndrome. N Engl J Med 2010;362:19011908.CrossRefGoogle ScholarPubMed
Fernandez, TV, Sanders, SJ, Yurkiewicz, IR, et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol Psychiatry 2012;71:392402.CrossRefGoogle ScholarPubMed
Abelson, JF, Kwan, KY, O’Roak, BJ, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 2005;310:317320.CrossRefGoogle ScholarPubMed
Abdulkadir, M, Mathews, CA, Scharf, JM, et al. Polygenic risk scores derived from a Tourette syndrome genome-wide association study predict presence of tics in the Avon Longitudinal Study of Parents and Children cohort. Biol Psychiatry 2019;85:298-304.CrossRefGoogle ScholarPubMed
Yu, D, Sul, JH, Tsetsos, F, et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am J Psychiatry 2019;176:217227.CrossRefGoogle ScholarPubMed
Tsetsos, F, Yu, D, Sul, JH, et al. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl Psychiatry 2021;11:56.CrossRefGoogle ScholarPubMed
Banaschewski, T, Woerner, W, Rothenberger, A. Premonitory sensory phenomena and suppressibility of tics in Tourette syndrome: developmental aspects in children and adolescents. Dev Med Child Neurol 2003;45:700703.CrossRefGoogle ScholarPubMed
Kushner, HI. A Cursing Brain? The Histories of Tourette Syndrome. Cambridge, MA: Harvard University Press; 2000.Google Scholar
Pringsheim, T, Okun, MS, Müller-Vahl, K, et al. Practice guideline recommendations summary: treatment of tics in people with Tourette syndrome and chronic tic disorders. Neurology 2019;92:896906.CrossRefGoogle ScholarPubMed
Müller-Vahl, KR, Szejko, N, Verdellen, C, et al. European clinical guidelines for Tourette syndrome and other tic disorders: summary statement. Eur Child Adolesc Psychiatry 2022;31:377382.CrossRefGoogle ScholarPubMed
Cheung, MY, Shahed, J, Jankovic, J. Malignant Tourette syndrome. Mov Disord 2007;22:17431750.CrossRefGoogle ScholarPubMed
Hirschtritt, ME, Lee, PC, Pauls, DL, et al. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry 2015;72:325333.CrossRefGoogle ScholarPubMed
Jobson, KO, Potter, WZ. International Psychopharmacology Algorithm Project Report. Psychopharmacol Bull 1995;31:457459.Google ScholarPubMed
Pringsheim, T, Marras, C. Pimozide for tics in Tourette’s syndrome. Cochrane Database Syst Rev 2009;2:CD006996.Google Scholar
Müller-Vahl, KR, Krueger, D. Does Tourette syndrome prevent tardive dyskinesia? Mov Disord 2011;26:24422443.CrossRefGoogle ScholarPubMed
Sallee, F, Kohegyi, E, Zhao, J, et al. Randomized, double-blind, placebo-controlled trial demonstrates the efficacy and safety of oral aripiprazole for the treatment of Tourette’s disorder in children and adolescents. J Child Adolesc Psychopharmacol 2017;27:771781.CrossRefGoogle ScholarPubMed
Yoo, HK, Joung, YS, Lee, JS, et al. A multicenter, randomized, double-blind, placebo-controlled study of aripiprazole in children and adolescents with Tourette’s disorder. J Clin Psychiatry 2013;74:e772–780.CrossRefGoogle ScholarPubMed
Jankovic, J, Jimenez-Shahed, J, Brown, LW. A randomised, double-blind, placebo-controlled study of topiramate in the treatment of Tourette syndrome. J Neurol Neurosurg Psychiatry 2010;81:7073.CrossRefGoogle ScholarPubMed
Cavanna, AE, Nani, A. Antiepileptic drugs and Tourette syndrome. Int Rev Neurobiol 2013;112:373389.CrossRefGoogle ScholarPubMed
Müller-Vahl, KR. Treatment of Tourette syndrome with cannabinoids. Behav Neurol 2013;27:119124.CrossRefGoogle ScholarPubMed
Pandey, S, Srivanitchapoom, P, Kirubakaran, R, Berman, BD. Botulinum toxin for motor and phonic tics in Tourette’s syndrome. Cochrane Database Syst Rev 2018;1:CD012285.Google ScholarPubMed
Azrin, NH, Nunn, RG. Habit-reversal: a method of eliminating nervous habits and tics. Behav Res Ther 1973;11:619628.CrossRefGoogle ScholarPubMed
Piacentini, J, Woods, DW, Scahill, L, et al. Behavior therapy for children with Tourette disorder: a randomized controlled trial. JAMA 2010;303:19291937.CrossRefGoogle ScholarPubMed
Wilhelm, S, Peterson, AL, Piacentini, J, et al. Randomized trial of behavior therapy for adults with Tourette syndrome. Arch Gen Psychiatry 2012;69:795803.CrossRefGoogle ScholarPubMed
Verdellen, CW, Keijsers, GP, Cath, DC, Hoogduin, CA. Exposure with response prevention versus habit reversal in Tourettes’s syndrome: a controlled study. Behav Res Ther 2004;42:501511.CrossRefGoogle ScholarPubMed
van de Griendt, JM, Verdellen, CW, van Dijk, MK, Verbraak, MJ. Behavioural treatment of tics: habit reversal and exposure with response prevention. Neurosci Biobehav Rev 2013;37:11721177.CrossRefGoogle ScholarPubMed
Martino, D, Deeb, W, Jimenez-Shahed, J, et al. The 5 pillars in Tourette syndrome deep brain stimulation patient selection: present and future. Neurology 2021;96:664676.CrossRefGoogle ScholarPubMed
Muller-Vahl, KR. Deep brain stimulation in Tourette syndrome: the known and the unknown. J Neurol Neurosurg Psychiatry 2019;90:10761077.CrossRefGoogle ScholarPubMed
Hartmann, A. Tics. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 561576.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×