Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T03:17:34.224Z Has data issue: false hasContentIssue false

Chapter 49 - Episodic/Paroxysmal Movement Disorders

from Section 4: - Dyscoordinative and Otherwise Inappropriate Motor Behaviors

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Paroxysmal movement disorders are a heterogeneous group of syndromes that produce recurrent attacks of involuntary movements without loss of consciousness as their common feature. In this chapter a very short historical overview is given before discussing the current classification and diagnostic criteria of the three main types of paroxysmal movement disorders: paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia and paroxysmal exercise–induced dyskinesia. During the past two decades, a rapidly growing number of genes that cause paroxysmal movement disorders have been reported. This also challenges the current classification because many genetic forms of paroxysmal dyskinesia can be caused by mutations of the same gene. Nevertheless, a first clinical description and classification appears to be reasonable and important. The chapter also describes the episodic ataxias, along with their genetic background, as well as the non-genetic causes of paroxysmal movement disorders, which include vascular, structural, infectious, inflammatory and metabolic causes. The last part of the chapter deals with a proposed approach to a patient with paroxysmal dyskinesia in daily practice.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatia, KP. Paroxysmal dyskinesias. Mov Disord 2011;26(6):11571165.CrossRefGoogle ScholarPubMed
Kertesz, A. Paroxysmal kinesigenic choreoathetosis. An entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology 1967;17(7):680690.CrossRefGoogle ScholarPubMed
Richards, RN, Barnett, HJ. Paroxysmal dystonic choreoathetosis. A family study and review of the literature. Neurology 1968;18(5):461469.CrossRefGoogle ScholarPubMed
Lance, JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol 1977;2(4):285293.CrossRefGoogle ScholarPubMed
Goodenough, DJ, Fariello, RG, Annis, BL, Chun, RW. Familial and acquired paroxysmal dyskinesias. A proposed classification with delineation of clinical features. Arch Neurol 1978;35(12):827831.CrossRefGoogle ScholarPubMed
Fahn, S. The paroxysmal dyskinesias. In: Marsden, CD, Fahn, S, eds. Movement Disorders 3. Oxford: Butterworth-Heinemann; 1994: 310345.Google Scholar
Demirkiran, M, Jankovic, J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 1995;38(4):571579.CrossRefGoogle ScholarPubMed
Méneret, A, Gaudebout, C, Riant, F, et al. PRRT2 mutations and paroxysmal disorders. Eur J Neurol 2013;20(6):872878.CrossRefGoogle ScholarPubMed
Chen, WJ, Lin, Y, Xiong, ZQ, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011;43(12):12521255.CrossRefGoogle ScholarPubMed
Rainier, S, Thomas, D, Tokarz, D, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 2004;61(7):10251029.CrossRefGoogle ScholarPubMed
Suls, A, Dedeken, P, Goffin, K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008;131(Pt 7):18311844.CrossRefGoogle ScholarPubMed
Liao, JY, Salles, PA, Shuaib, UA, Fernandez, HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021;128(4):447471.CrossRefGoogle ScholarPubMed
van Rootselaar, AF, Schade van Westrum, S, Velis, DN, Tijssen, MA. The paroxysmal dyskinesias. Pract Neurol 2009;9(2):102109.CrossRefGoogle ScholarPubMed
Bruno, MK, Hallett, M, Gwinn-Hardy, K, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 2004;63(12):22802287.CrossRefGoogle ScholarPubMed
de Gusmão, CM, Garcia, L, Mikati, MA, Su, S, Silveira-Moriyama, L. Paroxysmal genetic movement disorders and epilepsy. Front Neurol 2021;12:648031.CrossRefGoogle ScholarPubMed
Wang, JL, Cao, L, Li, XH, Hu, ZM, Li, JD, Zhang, JG, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011;134(Pt 12):34933501.CrossRefGoogle Scholar
Erro, R, Sheerin, UM, Bhatia, KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord 2014;29(9):11081116.CrossRefGoogle ScholarPubMed
Ebrahimi-Fakhari, D, Saffari, A, Westenberger, A, Klein, C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 2015;138(Pt 12):34763495.CrossRefGoogle ScholarPubMed
Heron, SE, Grinton, BE, Kivity, S, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012;90(1):152160.CrossRefGoogle ScholarPubMed
Ono, S, Yoshiura, K, Kinoshita, A, et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012;57(5):338341.CrossRefGoogle ScholarPubMed
Watanabe, K, Yamamoto, N, Negoro, T, et al. Benign complex partial epilepsies in infancy. Pediatr Neurol 1987;3(4):208211.CrossRefGoogle ScholarPubMed
Dale, RC, Gardiner, A, Antony, J, Houlden, H. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol 2012;54(10):958960.CrossRefGoogle ScholarPubMed
Gardiner, AR, Bhatia, KP, Stamelou, M, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 2012;79(21):21152121.CrossRefGoogle ScholarPubMed
Liu, XR, Huang, D, Wang, J, et al. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol Genet 2016;2(2):e66.CrossRefGoogle ScholarPubMed
Landolfi, A, Barone, P, Erro, R. The spectrum of PRRT2-associated disorders: update on clinical features and pathophysiology. Front Neurol 2021;12:629747.CrossRefGoogle ScholarPubMed
Tian, WT, Huang, XJ, Mao, X, et al. Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov Disord 2018;33(3):459467.CrossRefGoogle ScholarPubMed
Gardella, E, Becker, F, Møller, RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016;79(3):428436.CrossRefGoogle ScholarPubMed
Balint, B, Erro, R, Salpietro, V, Houlden, H, Bhatia, KP. PKD or not PKD: that is the question. Ann Neurol 2016;80(1):167168.CrossRefGoogle ScholarPubMed
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Wilson’s disease. J Hepatol 2012;56(3):6710–685.Google Scholar
Kim, HJ, Yoon, JH. A case of Wilson’s disease presenting with paroxysmal dystonia. Neurol Sci 2017;38(10):18811882.CrossRefGoogle ScholarPubMed
Harvey, S, King, MD, Gorman, KM. Paroxysmal movement disorders. Front Neurol 2021;12:659064.CrossRefGoogle ScholarPubMed
Bruno, MK, Lee, HY, Auburger, GW, et al. Genotype–phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology 2007;68(21):17821789.CrossRefGoogle ScholarPubMed
Erro, R, Bhatia, KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry 2019;90(2):227234.CrossRefGoogle ScholarPubMed
Pandey, S, Tomar, LR, Mahadevan, L. Progressive nonparoxysmal chorea and dystonia due to myofibrillogenesis regulator-1 gene mutation. Parkinsonism Relat Disord 2019;60:186187.CrossRefGoogle ScholarPubMed
Sun, N, Nasello, C, Deng, L, et al. The PNKD gene is associated with Tourette disorder or Tic disorder in a multiplex family. Mol Psychiatry 2018;23(6):14871495.CrossRefGoogle ScholarPubMed
Lee, HY, Nakayama, J, Xu, Y, et al. Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest 2012;122(2):507518.CrossRefGoogle Scholar
Ghezzi, D, Viscomi, C, Ferlini, A, et al. Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Hum Mol Genet 2009;18(6):10581064.CrossRefGoogle ScholarPubMed
Du, W, Bautista, JF, Yang, H, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 2005;37(7):733738.CrossRefGoogle Scholar
Zhang, ZB, Tian, MQ, Gao, K, Jiang, YW, Wu, Y. De novo KCNMA1 mutations in children with early-onset paroxysmal dyskinesia and developmental delay. Mov Disord 2015;30(9):12901292.CrossRefGoogle ScholarPubMed
Balint, B, Stephen, CD, Udani, V, et al. Paroxysmal asymmetric dystonic arm posturing – a less recognized but characteristic manifestation of ATP1A3-related disease. Mov Disord Clin Pract 2019;6(4):312315.CrossRefGoogle ScholarPubMed
Marzin, P, Mignot, C, Dorison, N, et al. Early-onset encephalopathy with paroxysmal movement disorders and epileptic seizures without hemiplegic attacks: about three children with novel ATP1A3 mutations. Brain Dev 2018;40(9):768774.CrossRefGoogle ScholarPubMed
Uchitel, J, Helseth, A, Prange, L, et al. The epileptology of alternating hemiplegia of childhood. Neurology 2019;93(13):e1248e1259.CrossRefGoogle ScholarPubMed
Sethi, KD, Bhatia, KP, eds. Paroxysmal Movement Disorders. Cham: Springer International Publishing; 2021.CrossRefGoogle Scholar
De Vivo, DC, Trifiletti, RR, Jacobson, RI, et al. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991;325(10):703709.CrossRefGoogle ScholarPubMed
De Giorgis, V, Teutonico, F, Cereda, C, et al. Sporadic and familial glut1ds Italian patients: a wide clinical variability. Seizure 2015;24:2832.CrossRefGoogle ScholarPubMed
Gardiner, AR, Jaffer, F, Dale, RC, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015;138(Pt 12):35673580.CrossRefGoogle ScholarPubMed
Mencacci, NE, Isaias, IU, Reich, MM, et al. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2014;137(Pt 9):24802492.CrossRefGoogle ScholarPubMed
Dale, RC, Melchers, A, Fung, VS, et al. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol 2010;52(6):583586.CrossRefGoogle ScholarPubMed
Erro, R, Stamelou, M, Ganos, C, et al. The clinical syndrome of paroxysmal exercise-induced dystonia: diagnostic outcomes and an algorithm. Mov Disord Clin Pract 2014;1(1):5761.CrossRefGoogle ScholarPubMed
Olgiati, S, Skorvanek, M, Quadri, M, et al. Paroxysmal exercise-induced dystonia within the phenotypic spectrum of ECHS1 deficiency. Mov Disord 2016;31(7):10411048.CrossRefGoogle ScholarPubMed
Lüthy, K, Mei, D, Fischer, B, et al. TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model. Brain 2019;142(8):23192335.CrossRefGoogle Scholar
Steel, D, Heim, J, Kruer, MC, et al. Biallelic mutations of TBC1D24 in exercise-induced paroxysmal dystonia. Mov Disord 2020;35(2):372373.CrossRefGoogle ScholarPubMed
VanDyke, DH, Griggs, RC, Murphy, MJ, Goldstein, MN. Hereditary myokymia and periodic ataxia. J Neurol Sci 1975;25(1):109118.CrossRefGoogle ScholarPubMed
Browne, DL, Gancher, ST, Nutt, JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 1994;8(2):136140.CrossRefGoogle ScholarPubMed
Ganos, C, Aguirregomozcorta, M, Batla, A, et al. Psychogenic paroxysmal movement disorders – clinical features and diagnostic clues. Parkinsonism Relat Disord 2014;20(1):4146.CrossRefGoogle ScholarPubMed
Plant, GT, Williams, AC, Earl, CJ, Marsden, CD. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry 1984;47(3):275279.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×