Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T08:09:45.179Z Has data issue: false hasContentIssue false

Chapter 8 - Autoimmune Movement Disorders

from Section 1: - Basic Introduction

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Autoimmune movement disorders, although relatively rare, are not to be missed because of the treatment implications. There is a broad clinical spectrum, but recognition of some characteristic forms, or associated red flags or other clues, can point to the diagnosis. This chapter covers the clinical spectrum of primary neurologic or systemic autoimmune disease presenting or mainly manifesting as a movement disorder, and addresses the underlying immune-pathophysiologic aspects.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lancaster, E, Dalmau, J. Neuronal autoantigens – pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 2012;8(7):380390.CrossRefGoogle ScholarPubMed
Balint, B, Vincent, A, Meinck, HM, Irani, SR, Bhatia, KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain 2018;141(1):1336.CrossRefGoogle ScholarPubMed
Chen, Y, Xing, XW, Zhang, JT, et al. Autoimmune encephalitis mimicking sporadic Creutzfeldt–Jakob disease: a retrospective study. J Neuroimmunol 2016;295–296:18.CrossRefGoogle ScholarPubMed
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65(10):13411346.CrossRefGoogle ScholarPubMed
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87(14):14491456.CrossRefGoogle ScholarPubMed
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15(4):391404.CrossRefGoogle ScholarPubMed
Zekeridou, A, Kryzer, T, Guo, Y, et al. Phosphodiesterase 10A IgG: a novel biomarker of paraneoplastic neurologic autoimmunity. Neurology 2019;93(8):e815e822.CrossRefGoogle ScholarPubMed
Mencacci, NE, Kamsteeg, EJ, Nakashima, K, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet 2016;98(4):763771.CrossRefGoogle ScholarPubMed
Michael, S, Waters, P, Irani, SR. Stop testing for autoantibodies to the VGKC-complex: only request LGI1 and CASPR2. Pract Neurol 2020;20(5):377384.CrossRefGoogle Scholar
Dawes, JM, Weir, GA, Middleton, SJ, et al. Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability. Neuron 2018;97(4):806822.CrossRefGoogle ScholarPubMed
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88(18):17361743.CrossRefGoogle ScholarPubMed
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12(2):157165.CrossRefGoogle ScholarPubMed
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90(6):721726.CrossRefGoogle ScholarPubMed
Berlot, R, Bhatia, KP, Kojović, M. Pseudodystonia: a new perspective on an old phenomenon. Parkinsonism Relat Disord 2019;62:4450.CrossRefGoogle Scholar
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e699.CrossRefGoogle ScholarPubMed
Lehmann, HC, Burke, D, Kuwabara, S. Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2019;90(9):981987.CrossRefGoogle ScholarPubMed
Balint, B, Meinck, HM. Pragmatic treatment of stiff person spectrum disorders. Mov Disord Clin Pract 2018;5(4):394401.CrossRefGoogle ScholarPubMed
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136(Pt 10):31513162.CrossRefGoogle Scholar
Flanagan, EP, Kotsenas, AL, Britton, JW, et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm 2015;2(6):e161.CrossRefGoogle ScholarPubMed
Kim, SM, Waters, P, Woodhall, M, et al. Utility of aquaporin-4 antibody assay in patients with neuromyelitis optica spectrum disorders. Mult Scler 2013;19(8):10601067.CrossRefGoogle ScholarPubMed
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73(1):120128.CrossRefGoogle ScholarPubMed
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83(20):17971803.CrossRefGoogle ScholarPubMed
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13(3):276286.CrossRefGoogle Scholar
Gövert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86(14):13531355.CrossRefGoogle ScholarPubMed
Balint, B, Jarius, S, Nagel, S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014;82(17):15211528.CrossRefGoogle ScholarPubMed
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127(Pt 8):18311844.CrossRefGoogle ScholarPubMed
Tada, S, Furuta, M, Fukada, K, et al. Severe parkinsonism associated with anti-CRMP5 antibody-positive paraneoplastic neurological syndrome and abnormal signal intensity in the bilateral basal ganglia. J Neurol Neurosurg Psychiatry 2016;87(8):907910.CrossRefGoogle ScholarPubMed
Kurtis, MM, Toledano, R, García-Morales, I, Gil-Nagel, A. Immunomodulated parkinsonism as a presenting symptom of LGI1 antibody encephalitis. Parkinsonism Relat Disord 2015;21(10):12861287.CrossRefGoogle ScholarPubMed
Kannoth, S, Nambiar, V, Gopinath, S, et al. Expanding spectrum of contactin-associated protein 2 (CASPR2) autoimmunity-syndrome of parkinsonism and ataxia. Neurol Sci 2018;39(3):455460.CrossRefGoogle ScholarPubMed
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135(Pt 11):34533468.CrossRefGoogle ScholarPubMed
Fuseya, K, Kimura, A, Yoshikura, N, et al. Corticobasal syndrome in a patient with anti-IgLON5 antibodies. Mov Disord Clin Pract 2020;7(5):557559.CrossRefGoogle Scholar
Blattner, MS, de Bruin, GS, Bucelli, RC, Day, GS. Sleep disturbances are common in patients with autoimmune encephalitis. J Neurol 2019;266(4):10071015.CrossRefGoogle ScholarPubMed
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13(6):575586.CrossRefGoogle Scholar
Delmont, E, Brodovitch, A, Kouton, L, et al. Antibodies against the node of Ranvier: a real-life evaluation of incidence, clinical features and response to treatment based on a prospective analysis of 1500 sera. J Neurol 2020;267(12):36643672.CrossRefGoogle ScholarPubMed
Kunchok, A, Zekeridou, A, McKeon, A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr Opin Neurol 2019;32(3):452458.CrossRefGoogle ScholarPubMed
Fang, B, McKeon, A, Hinson, SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol 2016;73(11):12971307.CrossRefGoogle ScholarPubMed
Honorat, JA, Komorowski, L, Josephs, KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurology Neuroimmun Neuroinflamm 2017;4(5):e385.CrossRefGoogle ScholarPubMed
Morales-Briceño, H, Cruse, B, Fois, AF, et al. IgLON5-mediated neurodegeneration is a differential diagnosis of CNS Whipple disease. Neurology 2018;90(24):11131115.CrossRefGoogle ScholarPubMed
Camacho, A, Núñez, N, Armangué, T, Simón, R. Myorhythmia-like dyskinesia affecting the face and ear associated with anti-N-methyl-d-aspartate receptor encephalitis. Mov Disord Clin Pract 2015;3(4):425426.CrossRefGoogle ScholarPubMed
Wenninger, S. Expanding the clinical spectrum of IgLON5-syndrome. J Neuromuscul Dis 2017;4(4):337339.CrossRefGoogle ScholarPubMed
Gövert, F, Leypoldt, F, Junker, R, et al. Antibody-related movement disorders – a comprehensive review of phenotype–autoantibody correlations and a guide to testing. Neurol Res Pract 2020;2(1):6.CrossRefGoogle Scholar
Vacchiano, V, Giannoccaro, MP, Rinaldi, R, Guarino, M, Liguori, R. Movement disorders associated with GABAA receptor encephalitis: a video case report. Mov Disord Clin Pract 2020;7(6):681683.CrossRefGoogle ScholarPubMed
Ariño, H, Armangué, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87(8):759765.CrossRefGoogle ScholarPubMed
Baumgartner, A, Rauer, S, Hottenrott, T, et al. Admission diagnoses of patients later diagnosed with autoimmune encephalitis. J Neurol 2019;266(1):124132.CrossRefGoogle ScholarPubMed
Hermetter, C, Fazekas, F, Hochmeister, S. Systematic review: syndromes, early diagnosis, and treatment in autoimmune encephalitis. Front Neurol 2018;9:706.CrossRefGoogle ScholarPubMed
Blinder, T, Lewerenz, J. Cerebrospinal fluid findings in patients with autoimmune encephalitis – a systematic analysis. Front Neurol 2019;10:804.CrossRefGoogle ScholarPubMed
Budhram, A, Dubey, D, Sechi, E, et al. Neural antibody testing in patients with suspected autoimmune encephalitis. Clin Chem 2020;66(12):14961509.CrossRefGoogle ScholarPubMed
Lang, K, Prüss, H. Frequencies of neuronal autoantibodies in healthy controls: estimation of disease specificity. Neurol Neuroimmunol Neuroinflamm 2017;4(5):e386.CrossRefGoogle ScholarPubMed
Balint, B, Bhatia, K. Reopening the case for anti-basal ganglia antibodies (ABGAs): identification of dopamine-2 receptor antibodies associated with movement disorders. Mov Disord 2013;28(6):733.CrossRefGoogle ScholarPubMed
Bejerot, S, Klang, A, Hesselmark, E. The Cunningham Panel: concerns remain. Transl Psychiatry 2019;9(1):224-.CrossRefGoogle ScholarPubMed
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76(1):8294.CrossRefGoogle ScholarPubMed
Hara, M, Martinez-Hernandez, E, Ariño, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90(16):e1386e1394.CrossRefGoogle ScholarPubMed
Balint, B, Bhatia, KP, Dalmau, J. “Antibody of unknown significance” (AUS): the issue of interpreting antibody test results. Mov Disord 2021;36(7):15431547.CrossRefGoogle ScholarPubMed
Nosadini, M, Mohammad, SS, Ramanathan, S, Brilot, F, Dale, RC. Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother 2015;15(12):13911419.CrossRefGoogle ScholarPubMed
Abboud, H, Probasco, J, Irani, SR, et al. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J Neurol Neurosurg Psychiatry 2021;92(8):897907.CrossRefGoogle ScholarPubMed
Pittock, SJ, Berthele, A, Fujihara, K, et al. Eculizumab in aquaporin-4–positive neuromyelitis optica spectrum disorder. N Engl J Med 2019;381(7):614625.CrossRefGoogle ScholarPubMed
Wickel, J, Chung, HY, Platzer, S, et al. Generate-Boost: study protocol for a prospective, multicenter, randomized controlled, double-blinded phase II trial to evaluate efficacy and safety of bortezomib in patients with severe autoimmune encephalitis. Trials 2020;21(1):625.CrossRefGoogle ScholarPubMed
Scheibe, F, Ostendorf, L, Reincke, SM, et al. Daratumumab treatment for therapy-refractory anti-CASPR2 encephalitis. J Neurol 2020;267(2):317323.CrossRefGoogle ScholarPubMed
Dubey, D, David, WS, Reynolds, KL, et al. Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann Neurol 2020;87(5):659669.CrossRefGoogle ScholarPubMed
Vogrig, A, Muñiz-Castrillo, S, Honnorat, J. Value of onconeural antibodies in checkpoint inhibitor-related toxicities. Ann Neurol 2020;88(1):199200.CrossRefGoogle ScholarPubMed
Wilson, R, Menassa, DA, Davies, AJ, et al. Seronegative antibody-mediated neurology after immune checkpoint inhibitors. Ann Clin Transl Neurol 2018;5(5):640645.CrossRefGoogle ScholarPubMed
Vogrig, A, Muñiz-Castrillo, S, Desestret, V, Joubert, B, Honnorat, J. Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors. Ther Adv Neurol Disord 2020;13:1756286420932797.CrossRefGoogle ScholarPubMed
Honorat, JA, Lopez-Chiriboga, AS, Kryzer, TJ, et al. Autoimmune septin-5 cerebellar ataxia. Neurol Neuroimmunol Neuroinflamm 2018;5(5):e474.CrossRefGoogle ScholarPubMed
Shelly, S, Kryzer, TJ, Komorowski, L, et al. Neurochondrin neurological autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6(6):e612.CrossRefGoogle ScholarPubMed
Basal, E, Zalewski, N, Kryzer, TJ, et al. Paraneoplastic neuronal intermediate filament autoimmunity. Neurology 2018;91(18):e1677e1689.CrossRefGoogle ScholarPubMed
Dubey, D, Wilson, MR, Clarkson, B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol 2020;77(11):14201429.CrossRefGoogle ScholarPubMed
Menozzi, E, Mulroy, E, Akbarian-Tefaghi, L, Bhatia, KP, Balint, B. Movement disorders in systemic autoimmune diseases: clinical spectrum, ancillary investigations, pathophysiological considerations. Parkinsonism Relat Disord 2021;88:116128.CrossRefGoogle ScholarPubMed
Conway, KS, Camelo-Piragua, S, Fisher-Hubbard, A, et al. Multiple system atrophy pathology is associated with primary Sjögren’s syndrome. JCI Insight 2020;5(15):e138619.CrossRefGoogle ScholarPubMed
Bhatia, KP, Brown, P, Gregory, R, et al. Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum. Brain 1995;118(Pt 5):10871093.CrossRefGoogle ScholarPubMed
Tijssen, MA, Thom, M, Ellison, DW, et al. Cortical myoclonus and cerebellar pathology. Neurology 2000;54(6):13501356.CrossRefGoogle ScholarPubMed
Peluso, S, Antenora, A, De Rosa, A, et al. Antiphospholipid-related chorea. Front Neurol 2012;3:150.CrossRefGoogle ScholarPubMed
Garretti, F, Agalliu, D, Lindestam Arlehamn, CS, Sette, A, Sulzer, D. Autoimmunity in Parkinson’s disease: the role of α-synuclein-specific T cells. Front Immunol 2019;10:303.CrossRefGoogle ScholarPubMed
Sabatino, JJ, Jr., Pröbstel, AK, Zamvil, SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019;20(12):728745.CrossRefGoogle ScholarPubMed
Witoelar, A, Jansen, IE, Wang, Y, et al. Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol 2017;74(7):780792.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×