Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:05:15.551Z Has data issue: false hasContentIssue false

Chapter 46 - Ataxia

from Section 4: - Dyscoordinative and Otherwise Inappropriate Motor Behaviors

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

"Ataxia" refers to both the neurologic syndrome of motor coordination and to a large and diverse group of diseases that have motor coordination impairment as their main clinical feature. The brain structure most consistently affected is the cerebellum. Although many different brain diseases may manifest with ataxia, the vast majority of slowly progressive ataxias are genetic diseases. Indeed, genetic molecular analysis has become the cornerstone of both diagnosis and classification of this complex group of conditions. In this overview, the basics of the clinical features and the classification of these diseases, as well as common conditions, and recently defined novel forms of ataxia are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16:367378.CrossRefGoogle ScholarPubMed
D’Angelo, E. Physiology of the cerebellum. Handb Clin Neurol 2018;154:85108.CrossRefGoogle ScholarPubMed
Diener, HC, Dichgans, J. Pathophysiology of cerebellar ataxia. Mov Disord 1992;7:95109.CrossRefGoogle ScholarPubMed
Stoodley, CJ, Schmahmann, JD. Functional topography of the human cerebellum. Handb Clin Neurol 2018;154:5970.CrossRefGoogle ScholarPubMed
Shemesh, AA, Zee, DS. Eye movement disorders and the cerebellum. J Clin Neurophysiol 2019;36:405–14.CrossRefGoogle ScholarPubMed
Konigsmark, BW, Weiner, LP. The olivopontocerebellar atrophies: a review. Medicine 1970;49:227242.CrossRefGoogle ScholarPubMed
Harding, AE. Classification of the hereditary ataxias and paraplegias. Lancet 1983;1(8334):11511155.CrossRefGoogle ScholarPubMed
Jackson, JF, Currier, RD, Terasaki, PI, Morton, NE. Spinocerebellar ataxia and HLA linkage. N Engl J Med 1977;296:11381141.CrossRefGoogle ScholarPubMed
Orr, HT, Chung, MY, Banfi, S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221226.CrossRefGoogle ScholarPubMed
Campuzano, V, Montermini, L, Moltò, MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271:14231427.CrossRefGoogle ScholarPubMed
Ruano, L, Melo, C, Silva, MC, Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 2014;42:174183.CrossRefGoogle ScholarPubMed
Van De Warrenburg, BPC, Sinke, RJ, Verschuuren-Bemelmans, CC, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002;58:702708.CrossRefGoogle ScholarPubMed
Pareyson, D, Gellera, C, Castellotti, B, et al. Clinical and molecular studies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J Neurol 1999;246:389393.CrossRefGoogle ScholarPubMed
Velázquez Pérez, L, Cruz, GS, Santos Falcón, N, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett 2009;454:157160.CrossRefGoogle ScholarPubMed
Dürr, A. Friedreich’s ataxia: treatment within reach. Lancet Neurol 2002;1:370374.CrossRefGoogle ScholarPubMed
Swift, M, Morrell, D, Cromartie, E, et al. The incidence and gene frequency of ataxia–telangiectasia in the United States. Am J Hum Genet 1986;39:573583.Google ScholarPubMed
Nanetti, L, Cavalieri, S, Pensato, V, et al. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein. Orphanet J Rare Dis 2013;8:123.CrossRefGoogle ScholarPubMed
Vermeer, S, Meijer, RPPRPP, Pijl, BJBJ, et al. ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 2008;9:207214.CrossRefGoogle ScholarPubMed
Guergueltcheva, V, Azmanov, DN, Angelicheva, D, et al. Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am J Hum Genet 2012;91:553564.CrossRefGoogle ScholarPubMed
Davarniya, B, Hu, H, Kahrizi, K, et al. The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two Azeri families. PLoS One 2015;10(8):e0129631,CrossRefGoogle ScholarPubMed
Hagerman, R, Hagerman, P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 2013;12:786798.CrossRefGoogle ScholarPubMed
Brussino, A, Gellera, C, Saluto, A, et al. FMR1 gene premutation is a frequent genetic cause of late-onset sporadic cerebellar ataxia. Neurology 2005;64:145147.CrossRefGoogle ScholarPubMed
Van Esch, H, Dom, R, Bex, D, et al. Screening for FMR-1 premutations in 122 older flemish males presenting with ataxia. Eur J Hum Genet 2005;13:121123.CrossRefGoogle ScholarPubMed
Klockgether, T, Lüdtke, R, Kramer, B, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998;121:589600.CrossRefGoogle ScholarPubMed
Trouillas, P, Takayanagi, T, Hallett, M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 1997;145:205211.CrossRefGoogle ScholarPubMed
Schmitz-Hübsch, T, Du Montcel, STT, Baliko, L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66:17171720.CrossRefGoogle ScholarPubMed
Baets, J, Deconinck, T, Smets, K, et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 2010;75:11811188.CrossRefGoogle ScholarPubMed
Ophoff, RA, Terwindt, GM, Vergouwe, MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87:543552.CrossRefGoogle ScholarPubMed
Nabais Sá, MJ, Olson, AN, Yoon, G, et al. De novo variants in EEF2 cause a neurodevelopmental disorder with benign external hydrocephalus. Hum Mol Genet 2021;29:38923899.CrossRefGoogle Scholar
Lise, S, Clarkson, Y, Perkins, E, et al. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genet 2012;8(12):e1003074.CrossRefGoogle ScholarPubMed
Elsayed, SM, Heller, R, Thoenes, M, et al. Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations. Eur J Hum Genet 2014;22:286288.CrossRefGoogle ScholarPubMed
Galatolo, D, Tessa, A, Filla, A, Santorelli, FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia–spasticity spectrum. A retrospective analysis. Neurogenetics 2018;19:18.CrossRefGoogle ScholarPubMed
Arning, L, Epplen, JT, Rahikkala, E, et al. The SETX missense variation spectrum as evaluated in patients with ALS4-like motor neuron diseases. Neurogenetics 2013;14:5361.CrossRefGoogle ScholarPubMed
Pyle, A, Smertenko, T, Bargiela, D et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 2015;138:276283.CrossRefGoogle ScholarPubMed
da Graça, FF, Peluzzo, TM, Bonadia, LC, et al. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum 2022;21:4954.CrossRefGoogle ScholarPubMed
Shakya, S, Kumari, R, Suroliya, V, et al. Whole exome and targeted gene sequencing to detect pathogenic recessive variants in early onset cerebellar ataxia. Clin Genet 2019;96:566574.CrossRefGoogle ScholarPubMed
Vermeer, S, Hoischen, A, Meijer, RPPRPP, et al. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 2010;87:813819.CrossRefGoogle ScholarPubMed
Dupré, N, Gros-Louis, F, Chrestian, N, et al. Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 2007;62:9398.CrossRefGoogle ScholarPubMed
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2017;32:724725.CrossRefGoogle ScholarPubMed
Moro, A, Moscovich, M, Farah, M, et al. Nonmotor symptoms in spinocerebellar ataxias (SCAs). Cerebellum Ataxias 2019;6:12.CrossRefGoogle ScholarPubMed
Scott, SS de O, Pedroso, JL, Barsottini, OGP, França-Junior, MC, Braga-Neto, P. Natural history and epidemiology of the spinocerebellar ataxias: insights from the first description to nowadays. J Neurol Sci 2020;417:117082.CrossRefGoogle ScholarPubMed
Globas, C, du Montcel, ST, Baliko, L, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 2008;23:22322238.CrossRefGoogle ScholarPubMed
Seidel, K, Siswanto, S, Brunt, ERP, et al. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012;124:121.CrossRefGoogle ScholarPubMed
Menon, RP, Nethisinghe, S, Faggiano, S, et al. The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet 2013;9(7):e1003648.CrossRefGoogle ScholarPubMed
Elden, AC, Kim, HJ, Hart, MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:10691075.CrossRefGoogle ScholarPubMed
Ramos, EM, Martins, S, Alonso, I, et al. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2). Am J Med Genet Part B Neuropsychiatr Genet 2010;153:524531.CrossRefGoogle Scholar
Van De Warrenburg, BPC, Frenken, CWGM, Ausems, MGEM, et al. Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol 2001;248:911914.CrossRefGoogle ScholarPubMed
Koob, MD, Moseley, ML, Schut, LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999;21:379384.CrossRefGoogle ScholarPubMed
Moseley, ML, Zu, T, Ikeda, Y, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006;38:758769.CrossRefGoogle ScholarPubMed
Zu, T, Gibbens, B, Doty, NS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 2011;108:260265.CrossRefGoogle ScholarPubMed
Izumi, Y, Maruyama, H, Oda, M, et al. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet 2003;72:704709.CrossRefGoogle ScholarPubMed
Factor, SA, Qian, J, Lava, NS, Hubbard, JD, Payami, H. False-positive SCA8 gene test in a patient with pathologically proven multiple system atrophy. Ann Neurol 2005;57:462463.CrossRefGoogle Scholar
Lieto, M, Riso, V, Galatolo, D, et al. The complex phenotype of spinocerebellar ataxia type 48 in eight unrelated Italian families. Eur J Neurol 2020;27:498505.CrossRefGoogle ScholarPubMed
Cocozza, S, Pontillo, G, De Michele, G, et al. The “crab sign”: an imaging feature of spinocerebellar ataxia type 48. Neuroradiology 2020;62:10951103.CrossRefGoogle ScholarPubMed
Shi, CH, Schisler, JC, Rubel, CE, et al. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 2014;23:10131024.CrossRefGoogle Scholar
Pakdaman, Y, Berland, S, Bustad, HJ, et al. Genetic dominant variants in stub1, segregating in families with SCA48, display in vitro functional impairments indistinctive from recessive variants associated with SCAR16. Int J Mol Sci 2021;22:5870.CrossRefGoogle ScholarPubMed
Jen, JC, Graves, TD, Hess, EJ, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007;130:24842493.CrossRefGoogle ScholarPubMed
Piarroux, J, Riant, F, Humbertclaude, V, et al. FGF14-related episodic ataxia: delineating the phenotype of episodic ataxia type 9. Ann Clin Transl Neurol 2020;7:565572.CrossRefGoogle ScholarPubMed
Schesny, M, Joncourt, F, Tarnutzer, AA. Acetazolamide-responsive episodic ataxia linked to novel splice site variant in FGF14 gene. Cerebellum 2019;18:649653.CrossRefGoogle ScholarPubMed
Yoon, T, Cowan, JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 2004;279:2594325946.CrossRefGoogle ScholarPubMed
Berry-Kravis, E, Abrams, L, Coffey, SM, et al. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord 2007;22:20182030.CrossRefGoogle ScholarPubMed
Schon, K, van Os, NJH, Oscroft, N, et al. Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia. Ann Neurol 2019;85:170180.CrossRefGoogle ScholarPubMed
Verhagen, MMM, Abdo, WF, Willemsen, MAAP, et al. Clinical spectrum of ataxia–telangiectasia in adulthood. Neurology 2009;73:430437.CrossRefGoogle ScholarPubMed
Bronstein, AM, Mossman, S, Luxon, LM. The neck–eye reflex in patients with reduced vestibular and optokinetic function. Brain 1991;114A:111.Google Scholar
Szmulewicz, DJ, Waterston, JA, Macdougall, HG, et al. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): a review of the clinical features and video-oculographic diagnosis. Ann N Y Acad Sci 2011;1233:139147.CrossRefGoogle ScholarPubMed
Traschütz, A, Cortese, A, Reich, S, et al. Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology 2021;96:e1369–1382.CrossRefGoogle ScholarPubMed
Cortese, A, Simone, R, Sullivan, R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 2019;51:649658.CrossRefGoogle ScholarPubMed
Le Ber, I, Bouslam, N, Rivaud-Péchoux, S, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 2004;127:759767.CrossRefGoogle ScholarPubMed
Anheim, M, Fleury, M, Monga, B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 2010;11:112.CrossRefGoogle ScholarPubMed
Bras, J, Alonso, I, Barbot, C, et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet 2015;96:474479.CrossRefGoogle ScholarPubMed
Suraweera, A, Becherel, OJ, Chen, P, et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol 2007;177:969979.CrossRefGoogle ScholarPubMed
Richard, P, Feng, S, Tsai, YL, et al. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 2021;17:18891906.CrossRefGoogle ScholarPubMed
Tarnutzer, AA, Gerth-Kahlert, C, Timmann, D, et al. Boucher–Neuhäuser syndrome: cerebellar degeneration, chorioretinal dystrophy and hypogonadotropic hypogonadism: two novel cases and a review of 40 cases from the literature. J Neurol 2015;262:194202.CrossRefGoogle Scholar
Delague, V, Bareil, C, Bouvagnet, P, et al. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34–9qter in a large consanguineous Lebanese family. Ann Neurol 2001;50:250253.CrossRefGoogle Scholar
Tranebjaerg, L, Teslovich, TM, Jones, MP, et al. Genome-wide homozygosity mapping localizes a gene for autosomal recessive non-progressive infantile ataxia to 20q11–q13. Hum Genet 2003;113:293295.CrossRefGoogle ScholarPubMed
Huang, L, Chardon, JW, Carter, MT, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 2012;7:67.CrossRefGoogle ScholarPubMed
De Bot, ST, Willemsen, MAAP, Vermeer, S, et al. Reviewing the genetic causes of spastic-ataxias. Neurology 2012;79:15071514.CrossRefGoogle ScholarPubMed
Mancini, C, Giorgio, E, Rubegni, A, et al. Prevalence and phenotype of the c.1529C>T SPG7 variant in adult‐onset cerebellar ataxia in Italy. Eur J Neurol 2019;26:8086.CrossRefGoogle ScholarPubMed
Bourassa, C V., Meijer, IA, Merner, ND, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in newfoundland families. Am J Hum Genet 2012;91:548552.CrossRefGoogle ScholarPubMed
Corbett, MA, Schwake, M, Bahlo, M, et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet 2011;88:657683.CrossRefGoogle ScholarPubMed
Boissé Lomax, L, Bayly, MA, Hjalgrim, H, et al. “North Sea” progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain 2013;136:11461154.CrossRefGoogle ScholarPubMed
Gilman, S, Little, R, Johanns, J, et al. Evolution of sporadic olivopontocerebellar atrophy into multiple system atrophy. Neurology 2000;55:527532.CrossRefGoogle ScholarPubMed
Lin, DJ, Hermann, KL, Schmahmann, JD. The diagnosis and natural history of multiple system atrophy, cerebellar type. Cerebellum 2016;15:663679.CrossRefGoogle ScholarPubMed
Pellecchia, MT, Stankovic, I, Fanciulli, A, et al. Can autonomic testing and imaging contribute to the early diagnosis of multiple system atrophy? A systematic review and recommendations by the Movement Disorder Society Multiple System Atrophy Study Group. Mov Disord Clin Pract 2020;7:750762.CrossRefGoogle Scholar
Sturm, E, Stefanova, N. Multiple system atrophy: genetic or epigenetic? Exp Neurobiol 2014;23:277291.CrossRefGoogle ScholarPubMed
Katzeff, JS, Phan, K, Purushothuman, S, Halliday, GM, Kim, WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019;7:117.CrossRefGoogle ScholarPubMed
Boxer, AL, Yu, JT, Golbe, LI, et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017;16:552563.CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, et al. The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 2001;124:14381449.CrossRefGoogle ScholarPubMed
Hadjivassiliou, M. Immune-mediated acquired ataxias. Handb Clin Neurol 2012;103:189199.CrossRefGoogle ScholarPubMed
Wang, Y, Tourkevich, R, Bosley, J, Gold, DR, Newsome, SD. Ocular motor and vestibular characteristics of antiglutamic acid decarboxylase–associated neurologic disorders. J Neuroophthalmol. 2021;41:e665e681.CrossRefGoogle ScholarPubMed
Lin, CY, Wang, MJ, Tse, W, et al. Serum antigliadin antibodies in cerebellar ataxias: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018;89:11741180.CrossRefGoogle ScholarPubMed
Chan, JL, Murphy, KA, Sarna, JR. Myoclonus and cerebellar ataxia associated with COVID-19: a case report and systematic review. J Neurol 2021;1:132.Google Scholar
Manto, M, Dupre, N, Hadjivassiliou, M, al. Medical and paramedical care of patients with cerebellar ataxia during the COVID-19 outbreak: seven practical recommendations of the COVID 19 Cerebellum Task Force. Front Neurol 2020;11:516.CrossRefGoogle ScholarPubMed
Ilg, W, Bastian, AJ, Boesch, S, et al. Consensus paper: Management of degenerative cerebellar disorders. Cerebellum 2014;13:248268.CrossRefGoogle ScholarPubMed
Ilg, W, Synofzik, M, Brötz, D, et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009;73:18231830.CrossRefGoogle ScholarPubMed
Synofzik, M, Ilg, W. Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed Res Int 2014;2014:583507.CrossRefGoogle ScholarPubMed
Romano, S, Coarelli, G, Marcotulli, C, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015;14:985991.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Hancock, J, Ghanekar, SD, et al. Emerging therapies in Friedreich’s ataxia. Expert Rev Neurother 2020;20:12151228.CrossRefGoogle ScholarPubMed
Kearney, M, Orrell, RW, Fahey, M, Brassington, R, Pandolfo, M. Pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev 2016;(8):CD007791.CrossRefGoogle Scholar
Anheim, M, Tranchant, C, Koenig, M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012;366:636646.CrossRefGoogle ScholarPubMed
Tarnutzer, AA, Straumann, D, Salman, MS. Neuro-ophthalmologic assessment and investigations in children and adults with cerebellar diseases. Handb Clin Neurol 2018;154:305327.CrossRefGoogle ScholarPubMed
Parker, JL, Santiago, M. Oculomotor aspects of the hereditary cerebellar ataxias. Handb Clin Neurol 2012;103:6383.CrossRefGoogle ScholarPubMed
Press, GA, Murakami, J, Courchesne, E, et al. The cerebellum in sagittal plane - anatomic-MR correlation: 2. The cerebellar hemispheres. Am J Roentgenol 1989;153:837846.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Doyon, J, McDonald, D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 1999;10:233260.CrossRefGoogle ScholarPubMed
Kremer, B. Ataxia: pathophysiology and classification. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 589611.Google Scholar
Tarnutzer, A. Ataxia: clinical considerations, diagnosis and treatment. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 613647.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×